A Novel and Practical Chromatographic “Fingerprint-ROC-SVM” Strategy Applied to Quality Analysis of Traditional Chinese Medicine Injections: Using KuDieZi Injection as a Case Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fingerprints and Similarity Evaluation
2.2. The Establishment of “Fingerprint-ROC-SVM” Prediction Model
2.3. Application of the Novel Analytical Strategy
3. Materials and Methods
3.1. Materials and Reagents
3.2. Sample Collection and Preparation
3.3. Chromatographic and Mass Spectrometric Conditions
3.4. Data Processing
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Song, Y.L.; Zhang, N.; Shi, S.P.; Li, J.; Zhang, Q.; Zhao, Y.F.; Jiang, Y.; Tu, P.F. Large-scale qualitative and quantitative characterization of components in Shenfu injection by integrating hydrophilic interaction chromatography, reversed phase liquid chromatography, and tandem mass spectrometry. J. Chromatogr. A 2015, 1407, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gao, Y.; Wang, H.; Liu, Z. A rat model of Shuang Huang Lian injection-induced anaphylaxis. Asian Pac. J. Allergy Immunol. 2010, 28, 185–191. [Google Scholar] [PubMed]
- Hou, W.Q.; Tian, Y.H.; Liao, T.G.; Huang, Y.P.; Tang, Z.T.; Wu, Y.; Duan, Y.X. Development of the mass spectral fingerprint by headspace-solid-phase microextraction-mass spectrometry and chemometric methods for rapid quality control of flavoring essence. Microchem. J. 2016, 128, 75–83. [Google Scholar] [CrossRef]
- Alvarez-Segura, T.; Cabo-Calvet, E.; Torres-Lapasió, J.R.; García-Álvarez-Coque, M.C. An approach to evaluate the information in chromatographic fingerprints: Application to the optimisation of the extraction and conservation conditions of medicinal herbs. J. Chromatogr. A 2015, 1422, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Liang, Y.Z.; Xie, P.S.; Chau, F.T. Information theory applied to chromatographic fingerprint of herbal medicine for quality control. J. Chromatogr. A 2003, 1002, 25–40. [Google Scholar] [CrossRef]
- Zhong, J.S.; Wan, J.Z.; Ding, W.J.; Wu, X.F.; Xie, Z.Y. Multi-responses extraction optimization combined with high-performance liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry and chemometrics techniques for the fingerprint analysis of Aloe barbadensis Miller. J. Pharm. Biomed. Anal. 2015, 107, 131–140. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine. 2000. Available online: http://apps.who.int/medicinedocs/en/d/Jwhozip42e/ (accessed on 2 February 2016).
- State Drug Administration of China. Technical requirements for chromatographic fingerprints of traditional Chinese medicinal injection. Chin. Tradit. Pat. Med. 2000, 22, 671–678. [Google Scholar]
- Food and Drug Administration. Guidance for Industry: Botanical Drug Products. Available online: www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm458484.pdf (accessed on 13 September 2015).
- European Medicines Agency. Guidance on Quality of Herbal Medicinal Products/Traditional Herbal Medicinal Products. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/09/WC500113209.pdf (accessed on 17 October 2015).
- Guo, L.X.; Li, R.; Liu, K.; Yang, J.; Li, H.J.; Li, S.L.; Liu, J.Q.; Liu, L.F.; Xin, G.Z. Structural characterization and discrimination of Chinese medicinal materials with multiple botanical origins based on metabolite profiling and chemometrics analysis: Clematidis Radix et Rhizoma as a case study. J. Chromatogr. A 2015, 1425, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.L.; Zhao, C.; Liang, X.R.; Ying, Y.; Han, B.; Yang, B.; Jiang, C. Fingerprint analysis of Desmodium Triquetrum L. based on ultra performance liquid chromatography with photodiode array detector combined with chemometrics methods. J. Chromatogr. Sci. 2016, 54, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.R.; Ning, Z.W.; Ji, D.; Chen, Y.; Mao, C.Q.; Lu, T.L. Approach based on high-performance liquid chromatography fingerprint coupled with multivariate statistical analysis for the quality evaluation of Gastrodia Rhizoma. J. Sep. Sci. 2015, 38, 3825–3831. [Google Scholar] [CrossRef] [PubMed]
- Shu, Z.H.; Li, X.Q.; Rahman, K.; Qin, L.P.; Zheng, C.J. Chemical fingerprint and quantitative analysis for the quality evaluation of Vitex negundo seeds by reversed-phase high-performance liquid chromatography coupled with hierarchical clustering analysis. J. Sep. Sci. 2016, 39, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Zhang, Z.Z.; Hou, Z.G.; Yang, B.; Li, A.Z.; Guo, X.J.; Wang, Y.M.; Li, Y.B. Rapid classi cation and identi cation of complex chemical compositions in traditional Chinese medicine based on UPLC-Q-TOF/MS coupled with data processing techniques using the KuDieZi injection as an example. Anal. Methods 2015, 7, 5210–5217. [Google Scholar] [CrossRef]
- Shi, P.Y.; Zhang, Y.F.; Qu, H.B.; Fan, X.H. Systematic characterisation of secondary metabolites from Ixeris sonchifolia by the combined use of HPLC-TOFMS and HPLC-ITMS. Phytochem. Anal. 2011, 22, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Li, Y.T.; Zhang, X.S.; Song, A.H.; Zhang, J.D.; Yin, R. Comparative study of direct injection analysis and liquid chromatography mass spectrometry for identification of chemical constituents in Kudiezi injection by FT-ICR MS. Int. J. Mass Spectrom. 2016, 405, 32–38. [Google Scholar] [CrossRef]
- Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Greiner, M.; Pfeiffer, D.; Smith, R.D. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev. Vet. Med. 2000, 45, 23–41. [Google Scholar] [CrossRef]
- Kottas, M.; Kuss, O.; Zapf, A. A modified Wald interval for the area under the ROC curve (AUC) in diagnostic case-control studies. BMC Med. Res. Methodol. 2014, 14, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.H.; Zhang, Y.; Ye, G.Z.; Li, X.; Yin, P.Y.; Ruan, Q.; Xu, G.W. Classification and differential metabolite discovery of liver diseases based on plasma metabolic profiling and support vector machines. J. Sep. Sci. 2011, 34, 3029–3036. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
No. | tR (min) | Positive Ion Mode | Negative Ion Mode | Formula | Chemical Name | References | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Obsd (m/z) | Calcd (m/z) | Error (ppm) | Fragment Ions | Obsd (m/z) | Calcd (m/z) | Error (ppm) | Fragment Ions | |||||
1 | 2.69 | - | - | - | - | 243.0624 | 243.0617 | −2.88 | 243 (100), 200, 110 | C9H12N2O6 | Uridine | Standard |
2 | 3.81 | 268.1041 | 268.1046 | −1.86 | 268, 136 (100) | C10H13N5O4 | Adenosine | Standard | ||||
3 | 4.42 | 284.0978 | 284.0983 | −1.76 | 284, 152 (100), 113 | 282.0841 | 282.0838 | 1.06 | 282 (100), 150 | C10H13N5O5 | Guanosine | Standard |
4 | 8.19 | - | - | - | - | 153.0189 | 153.0188 | −0.65 | 153 (100), 109 | C7H6O4 | 3,4-Dihydroxybenzoic acid | [15] |
5 | 11.92 | - | - | - | - | 311.0405 | 311.0403 | −0.64 | 311 (100), 179, 149 | C13H12O9 | Caffeoyltartaric acid | Standard |
6 | 19.72 | - | - | - | - | 353.0881 | 353.0873 | −2.27 | 353, 191 (100), 179 | C16H18O9 | Chlorogenic acid | Standard |
7 | 24.87 | 611.1594 | 611.1612 | −2.95 | 611 (100), 449, 287 | 609.1471 | 609.1456 | 2.46 | 609 (100) | C27H30O16 | Luteolin-7-O-β-d-gentiobioside | [16] |
8 | 25.68 | - | - | - | - | 473.0739 | 473.0720 | −4.02 | 473, 311 (100), 293 | C22H18O12 | Chicory acid | Standard |
9 | 27.91 | 463.0887 | 463.0877 | 2.16 | 463 (100), 287 | 461.0724 | 461.0720 | 0.87 | 461 (100), 447 | C21H18O12 | Luteolin-7-O-glucuronide | Standard |
10 | 31.8 | 423.1667 | 423.1655 | 2.84 | 423, 356, 261 (100) | 421.1510 | 421.1499 | −2.61 | 421 (100), 259 | C21H26O9 | Ixerin Z | [16] |
11 | 33.14 | 447.0940 | 447.0927 | 2.91 | 447 (100), 271 | 445.0787 | 445.0771 | −3.59 | 445 (100), 425, 259 | C21H18O11 | Apigenin-7-O-glucuronide | Standard |
12 | 34.28 | 425.1808 | 425.1812 | −0.94 | 425, 263 (100) | 423.1663 | 423.1655 | −1.89 | 423 (100), 261 | C21H28O9 | 11,13α-dihydroixerin Z | [17] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Wang, Y.; Shan, L.; Zou, J.; Wu, Y.; Yang, F.; Zhang, Y.; Li, Y.; Zhang, Y. A Novel and Practical Chromatographic “Fingerprint-ROC-SVM” Strategy Applied to Quality Analysis of Traditional Chinese Medicine Injections: Using KuDieZi Injection as a Case Study. Molecules 2017, 22, 1237. https://doi.org/10.3390/molecules22071237
Yang B, Wang Y, Shan L, Zou J, Wu Y, Yang F, Zhang Y, Li Y, Zhang Y. A Novel and Practical Chromatographic “Fingerprint-ROC-SVM” Strategy Applied to Quality Analysis of Traditional Chinese Medicine Injections: Using KuDieZi Injection as a Case Study. Molecules. 2017; 22(7):1237. https://doi.org/10.3390/molecules22071237
Chicago/Turabian StyleYang, Bin, Yuan Wang, Lanlan Shan, Jingtao Zou, Yuanyuan Wu, Feifan Yang, Yani Zhang, Yubo Li, and Yanjun Zhang. 2017. "A Novel and Practical Chromatographic “Fingerprint-ROC-SVM” Strategy Applied to Quality Analysis of Traditional Chinese Medicine Injections: Using KuDieZi Injection as a Case Study" Molecules 22, no. 7: 1237. https://doi.org/10.3390/molecules22071237
APA StyleYang, B., Wang, Y., Shan, L., Zou, J., Wu, Y., Yang, F., Zhang, Y., Li, Y., & Zhang, Y. (2017). A Novel and Practical Chromatographic “Fingerprint-ROC-SVM” Strategy Applied to Quality Analysis of Traditional Chinese Medicine Injections: Using KuDieZi Injection as a Case Study. Molecules, 22(7), 1237. https://doi.org/10.3390/molecules22071237