An Efficient Synthesis of Arylated Pyridines from Conjugated Acetylenes and Substituted Benzylamines Catalyzed by Base
Abstract
:1. Introduction
2. Resultsand Discussion
3. Materials and Methods
3.1. General Conditions
3.2. General Procedure for the Preparation of Arylated Pyridines
3.3. Analytical Data of Representative Products
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 2005, 22, 627–646. [Google Scholar] [CrossRef] [PubMed]
- Deininger, M.W.N.; Druker, B.J. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol. Rev. 2003, 55, 401–423. [Google Scholar] [PubMed]
- Reimann, S.; Ehlers, P.; Parpart, S.; Surkus, A.; Spannenberg, A.; Langer, P. Site-selective synthesis of arylated pyridines by Suzuki-Miyaura reactions of 2,3,5,6-tetrachloropyridine. Tetrahedron 2015, 71, 5371–5384. [Google Scholar]
- O’Hagen, D. Pyrrole, pyrrolidine, pyridine, piperidine and tropane alkaloids. Nat. Prod. Rep. 2000, 17, 435–446. [Google Scholar]
- Cui, J.-J.; Tran-Dube, M.; Shen, H.; Nambu, M.; Kung, P.P.; Pairish, M.; Jia, L.; Meng, J.; Funk, L.; Botrous, I.; et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and Anaplastic Lymphoma Kinase (ALK). J. Med. Chem. 2011, 54, 6342–6363. [Google Scholar] [CrossRef] [PubMed]
- Nagamitsu, T.; Sunazuka, T.; Obata, R.; Tomoda, H.; Tanaka, H.; Harigaya, Y.; Omura, S. Total synthesis of (+)-pyripyropene A. A potent, orally bioavailable inhibitor of Acyl-CoA: Cholesterol acyltransferase. J. Org. Chem. 1995, 60, 8126–8127. [Google Scholar] [CrossRef]
- Trecourt, F.; Gervais, B.; Mallet, M.; Quéguiner, G. First synthesis of caerulomycin C. J. Org. Chem. 1996, 61, 1673–1676. [Google Scholar] [CrossRef] [PubMed]
- Sammakia, T.; Stangeland, E.L.; Whitcomb, M.C. Total synthesis of caerulomycin C via the halogen dance reaction. Org. Lett. 2002, 4, 2385–2388. [Google Scholar] [CrossRef] [PubMed]
- Matolcsy, G. Pesticide Chemistry; Elsevier: Amsterdam, The Netherlands, 1988; p. 427. [Google Scholar]
- Sweetman, B.A.; Muller-Bunz, H.; Guiry, P.J. Synthesis, resolution and racemisation studies of new tridentate ligands for asymmetric catalysis. Tetrahedron Lett. 2005, 46, 4643–4646. [Google Scholar] [CrossRef]
- Durola, F.; Sauvage, J.P.; Wenger, O.S. Sterically non-hindering endocyclic ligands of the bi-isoquinoline family. Chem. Commun. 2006, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Jha, R.R.; Chaudhary, R.; Tiwari, R.K.; Danodia, A.K. 2-(1-Benzotriazolyl)pyridine: A robust bidentate ligand for the palladium-catalyzed CC (Suzuki, Heck, Fujiwara Moritani, Sonogashira), CN and CS coupling reactions. Adv. Synth. Catal. 2013, 355, 421–438. [Google Scholar] [CrossRef]
- Zhou, G.; Wong, W.-Y.; Yang, X. New design tactics in OLEDs using functionalized 2-phenylpyridine-type cyclometalates of iridium (III) and platinum (II). Chemistry 2011, 6, 1706–1719. [Google Scholar]
- Cowley, M.J.; Adams, R.W.; Atkinson, K.D.; Cockett, M.C.R.; Duckett, S.B.; Green, G.G.R.; Lohamn, J.A.B.; Kerssebaum, R.; Kilgour, D.; Mewis, R.E. Iridium N-Heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen. J. Am. Chem. Soc. 2011, 133, 6134–6137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, A. Functional materials: From hard to soft porous frameworks. Angew. Chem. Int. Ed. 2010, 49, 8328–8344. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.D.; Ruggi, A.; Pascu, M.; Scopelliti, R.; Severin, K. Clathrochelate-based Bipyridyl Ligands of Nanoscale Dimensions: Easy-to-access building blocks for supramolecular chemistry. Chem. Sci. 2013, 4, 1658–1662. [Google Scholar] [CrossRef]
- Wu, D.; Zhi, L.; Bodwell, G.J.; Cui, G.; Tsao, N.; Müllen, K. Self-assembly of positively charged discotic PAHs: From nanofibers to nanotubes. Angew. Chem. Int. Ed. 2007, 46, 5417–5420. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Li, X.-P.; Lu, X.-C.; Hsieh, I.-F.; Cao, Y.; Moorefield, C.N.; Wesdemiotis, C.; Cheng, S.Z.D.; Newkome, G.R. Stoichiometric self-assembly of shape-persistent 2D complexes: A facile route to a symmetric supramacromolecular spoked wheel. J. Am. Chem. Soc. 2011, 133, 11450–11453. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Naohiko, Y. Modular pyridine synthesis from oximes and enals through synergistic copper/iminium catalysis. J. Am. Chem. Soc. 2013, 135, 3756–3759. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, M.; Matthew, D.-H.; Omar, K.-A. Direct synthesis of pyridine derivatives. J. Am. Chem. Soc. 2007, 129, 10096–10097. [Google Scholar]
- Chalk, A.J. A new pyridine synthesis from conjugated acetylenes and substituted methylamines. Tetrahedron 1974, 30, 1387–1391. [Google Scholar] [CrossRef]
- Sha, F.; Shen, H.; Wu, X.Y. Highly regioselective assembly of Di- or trisubstituted pyridines fromarynes, isocyanides, and 3-bromo- or 3-acetoxypropynes. Eur. J. Org. Chem. 2013, 2013, 2537–2540. [Google Scholar] [CrossRef]
- Chen, B.; Guo, M.-P.; Wen, Y.-J.; Shen, X.-L.; Zhou, X.-L.; Lv, M.-Y. Efficient P, O chelate palladium (II)/AgNO3 cocatalyzed homocoupling of aromatic terminal alkynes in aqueous media under ambient atmosphere. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 259–263. [Google Scholar] [CrossRef]
- Chalk, A.J. A new pyridine synthesis and its redirection to a pyrrole synthesis with cuprous chloride. Tetrahedron Lett. 1972, 33, 3487–3490. [Google Scholar] [CrossRef]
- Jiang, Y.-J.; Park, C.M.; Loh, T.P. Transition-metal-free synthesis of substituted pyridines via ring expansion of 2-Allyl-2H-azirines. Organ. Lett. 2014, 16, 3432–3435. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Entry | Ratio of 1:2 | Temperature | Solvent | Catalyst | Yield(%) b |
---|---|---|---|---|---|
1 | 1:10 | 140 °C | DMSO | K2CO3 | 96 |
2 | 1:8 | 140 °C | DMSO | K2CO3 | 96 |
3 | 1:6 | 140 °C | DMSO | K2CO3 | 85 |
4 | 1:5 | 140 °C | DMSO | K2CO3 | 80 |
5 | 1:4 | 140 °C | DMSO | K2CO3 | 70 |
6 | 1:8 | 120 °C | DMSO | K2CO3 | 70 |
7 | 1:8 | 80 °C | DMSO | K2CO3 | 30 |
8 | 1:8 | 140 °C | DMF | K2CO3 | 99 |
9 | 1:8 | 140 °C | DMAc | K2CO3 | 94 |
10 | 1:8 | 140 °C | PEG400 | K2CO3 | 50 |
11 | 1:8 | 140 °C | DMF | _ | 38 |
12 | 1:8 | 140 °C | DMF | Cs2CO3 | 65 |
13 | 1:8 | 140 °C | DMF | Na2CO3 | 81 |
14 | 1:8 | 140 °C | DMF | NaOH | 86 |
15 | 1:8 | 140 °C | DMF | KOH | 88 |
16 | 1:8 | 140 °C | DMF | NaF | 65 |
17 | 1:8 | 140 °C | DMF | NaHCO3 | 87 |
18 | 1:8 | 140 °C | DMF | NaH2PO4 | 53 |
19 | 1:8 | 140 °C | DMF | KH2PO4 | 61 |
20 | 1:8 | 140 °C | DMF | CH3COONa | 63 |
Entry | Acetylene | Benzylamine | Product | Yield(%) b |
---|---|---|---|---|
1 | 3cab | 99 | ||
2 | 3cac | 99 | ||
3 | 3cad | 73 | ||
4 | 3cae | 62 | ||
5 | 3caf | 50 | ||
6 | 3cbb | 90 | ||
7 | 3cbc | 99 | ||
8 | 3ccb | 77 | ||
9 | 3cdb | 78 | ||
10 | 3ccd | 63 | ||
11 | 3cec | 65 | ||
12 | 3ced | 45 | ||
13 | 3cee | 48 | ||
14 | 3cfb | 60 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, M.; Chen, B.; Zhu, Q.; Jin, H.; Peng, Q.; Kang, Y. An Efficient Synthesis of Arylated Pyridines from Conjugated Acetylenes and Substituted Benzylamines Catalyzed by Base. Molecules 2017, 22, 1277. https://doi.org/10.3390/molecules22081277
Guo M, Chen B, Zhu Q, Jin H, Peng Q, Kang Y. An Efficient Synthesis of Arylated Pyridines from Conjugated Acetylenes and Substituted Benzylamines Catalyzed by Base. Molecules. 2017; 22(8):1277. https://doi.org/10.3390/molecules22081277
Chicago/Turabian StyleGuo, Mengping, Bo Chen, Qiming Zhu, Hua Jin, Qiuling Peng, and Yanping Kang. 2017. "An Efficient Synthesis of Arylated Pyridines from Conjugated Acetylenes and Substituted Benzylamines Catalyzed by Base" Molecules 22, no. 8: 1277. https://doi.org/10.3390/molecules22081277
APA StyleGuo, M., Chen, B., Zhu, Q., Jin, H., Peng, Q., & Kang, Y. (2017). An Efficient Synthesis of Arylated Pyridines from Conjugated Acetylenes and Substituted Benzylamines Catalyzed by Base. Molecules, 22(8), 1277. https://doi.org/10.3390/molecules22081277