Capillary-Inserted Rotor Design for HRµMAS NMR-Based Metabolomics on Mass-Limited Neurospheres
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Rotor Packing Procedure
2.3. NMR Spectroscopy
3. Results and Discussion
3.1. Practicality and Performance of the Capillary-Inserted Rotor Design
3.2. Feasibility of the Capillary-Inserted Rotor on Studying Mass-Limited Neurosphere Samples
4. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern Analytical Techniques in Metabolomics Analysis. Analyst 2012, 137, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Marsal, S.; Julià, A. Analytical Methods in Untargeted Metabolomics: State of the Art in 2015. Front. Bioeng. Biotechnol. 2015, 3, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Larive, C.K.; Barding, G.A.; Dinges, M.M. NMR Spectroscopy for Metabolomics and Metabolic Profiling. Anal. Chem. 2015, 87, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, C.; Mallamace, D.; Vasi, S.; Ferrantelli, V.; Dugo, G.; Cicero, N. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet. J. Anal. Methods Chem. 2015, 2015, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cicero, N.; Corsaro, C.; Salvo, A.; Vasi, S.; Giofré, S.V.; Ferrantelli, V.; Di Stefano, V.; Mallamace, D.; Dugo, G. The Metabolic Profile of Lemon Juice by Proton HR-MAS NMR: The Case of the PGI Interdonato Lemon of Messina. Nat. Prod. Res. 2015, 29, 1894–1902. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, C.; Cicero, N.; Mallamace, D.; Vasi, S.; Naccari, C.; Salvo, A.; Giofrè, S.V.; Dugo, G. HR-MAS and NMR towards Foodomics. Food Res. Int. 2016, 89, 1085–1094. [Google Scholar] [CrossRef]
- Nagana Gowda, G.A.; Raftery, D. Recent Advances in NMR-Based Metabolomics. Anal. Chem. 2017, 89, 490–510. [Google Scholar] [CrossRef] [PubMed]
- Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The Future of NMR-Based Metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Sakellariou, D.; Le Goff, G.; Jacquinot, J.-F. High-Resolution, High-Sensitivity NMR of Nanolitre Anisotropic Samples by Coil Spinning. Nature 2007, 447, 694–697. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Aguiar, P.M.; Sakellariou, D. Slow Magic-Angle Coil Spinning: A High-Sensitivity and High-Resolution NMR Strategy for Microscopic Biological Specimens. Magn. Reson. Med. 2010, 63, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Jiménez, B.; Li, X.; Holmes, E.; Nicholson, J.K.; Lindon, J.C.; Sakellariou, D. Evaluation of High Resolution Magic-Angle Coil Spinning NMR Spectroscopy for Metabolic Profiling of Nanoliter Tissue Biopsies. Anal. Chem. 2012, 84, 3843–3848. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Li, X.; Sakellariou, D. Refined Magic-Angle Coil Spinning Resonator for Nanoliter NMR Spectroscopy: Enhanced Spectral Resolution. Anal. Chem. 2013, 85, 2021–2026. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Li, X.; Molin, L.; Solari, F.; Elena-Herrmann, B.; Sakellariou, D. μHigh Resolution-Magic-Angle Spinning NMR Spectroscopy for Metabolic Phenotyping of Caenorhabditis Elegans. Anal. Chem. 2014, 86, 6064–6070. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Boutin, C.; Aguiar, P.M. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS) μNMR Metabolic Profiling of Whole Saccharomyces Cervisiae Cells: A Demonstrative Study. Front. Chem. 2014, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, P.M.; Jacquinot, J.-F.; Sakellariou, D. Experimental and Numerical Examination of Eddy (Foucault) Currents in Rotating Micro-Coils: Generation of Heat and Its Impact on Sample Temperature. J. Magn. Reson. 2009, 200, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Endo, Y.; Nemoto, T.; Bouzier-Sore, A.-K.; Wong, A. High-Resolution NMR-Based Metabolic Detection of Microgram Biopsies Using a 1 mm HRμMAS Probe. Analyst 2015, 140, 8097–8100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duong, N.T.; Endo, Y.; Nemoto, T.; Kato, H.; Bouzier-Sore, A.-K.; Nishiyama, Y.; Wong, A. Evaluation of a High-Resolution Micro-Sized Magic Angle Spinning (HRμMAS) Probe for NMR-Based Metabolomic Studies of Nanoliter Samples. Anal. Methods 2016, 8, 6815–6820. [Google Scholar] [CrossRef]
- Kataoka, Y.; RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan. Personal Communication, 2016.
- Rietze, R.L.; Reynolds, B.A. Neural Stem Cell Isolation and Characterization. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2006; Volume 419, pp. 3–23. [Google Scholar]
- Morris, G.A.; Freeman, R. Selective Excitation in Fourier Transform Nuclear Magnetic Resonance. J. Magn. Reson. 1978, 29, 433–462. [Google Scholar] [CrossRef]
- Carr, H.Y.; Purcell, E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630–638. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Foxall, P.J.D.; Spraul, M.; Farrant, R.D.; Lindon, J.C. 750 MHz 1H and 1H-13C NMR Spectroscopy of Human Blood Plasma. Anal. Chem. 1995, 67, 793–811. [Google Scholar] [CrossRef] [PubMed]
- Schlotterbeck, G.; Ross, A.; Hochstrasser, R.; Senn, H.; Kühn, T.; Marek, D.; Schett, O. High-Resolution Capillary Tube NMR. A Miniaturized 5-μL High-Sensitivity TXI Probe for Mass-Limited Samples, Off-Line LC NMR, and HT NMR. Anal. Chem. 2002, 74, 4464–4471. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Number | 1H Shift (δ) (ppm) | Molecule |
---|---|---|
1 | 0.93 (t); 1.00 (d); 1.28 (m); 1.47 (m); 1.96 (m) | isoleucine |
2 | 0.95 (d); 0.97 (d); 1.71 (m); 3.69 (dd) | leucine |
3 | 0.97 (d); 1.02 (d); 2.24 (m); 3.57 (d) | valine |
4 | 1.20 (d); 2.31 (m); 2.38 (m); 4.13 (m) | 3-hydroxybutyrate |
5 | 1.33 (d) | lactate |
6 | 1.46 (d); 3.76 (q) | alanine |
7 | 1.91 (s) | acetate |
8 | 2.00 (m); 2.14 (m); 2.36 (m) | glutamate |
9 | 2.08 (m); 2.09 (m); 2.41 (m); 3.68 (t) | glutamine |
10 | 2.68 (dd); 2.81 (dd) | aspartate |
11 | 2.89 (t); 2.96 (t); 3.01 (t) | lysyl |
12 | 3.19 (s); 3.50 (m) | phosphoryl choline |
13 | 3.24 (s); 3.67 (dd); 3.78 (m) | glycerol phosphocholine |
14 | 3.25 (t); 3.41 (t) | taurine |
15 | 3.28 (t); 3.56 (dd); 4.06 (t) | myo-inositol |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, N.T.; Yamato, M.; Nakano, M.; Kume, S.; Tamura, Y.; Kataoka, Y.; Wong, A.; Nishiyama, Y. Capillary-Inserted Rotor Design for HRµMAS NMR-Based Metabolomics on Mass-Limited Neurospheres. Molecules 2017, 22, 1289. https://doi.org/10.3390/molecules22081289
Duong NT, Yamato M, Nakano M, Kume S, Tamura Y, Kataoka Y, Wong A, Nishiyama Y. Capillary-Inserted Rotor Design for HRµMAS NMR-Based Metabolomics on Mass-Limited Neurospheres. Molecules. 2017; 22(8):1289. https://doi.org/10.3390/molecules22081289
Chicago/Turabian StyleDuong, Nghia Tuan, Masanori Yamato, Masayuki Nakano, Satoshi Kume, Yasuhisa Tamura, Yosky Kataoka, Alan Wong, and Yusuke Nishiyama. 2017. "Capillary-Inserted Rotor Design for HRµMAS NMR-Based Metabolomics on Mass-Limited Neurospheres" Molecules 22, no. 8: 1289. https://doi.org/10.3390/molecules22081289
APA StyleDuong, N. T., Yamato, M., Nakano, M., Kume, S., Tamura, Y., Kataoka, Y., Wong, A., & Nishiyama, Y. (2017). Capillary-Inserted Rotor Design for HRµMAS NMR-Based Metabolomics on Mass-Limited Neurospheres. Molecules, 22(8), 1289. https://doi.org/10.3390/molecules22081289