Phytochemicals of Euphorbia lathyris L. and Their Antioxidant Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content (TPC) of Different Parts of E. lathyris
2.2. Total Flavonoid Content (TFC) of Different Parts of E. lathyris
2.3. HPLC Analysis of Phenolic Compounds
2.4. HPLC Analysis of Flavonoids
2.5. DPPH and FRAP Assays
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals
3.3. Extraction of Samples
3.4. Determination of Total Phenolic Content (TPC)
3.5. Determination of Total Flavonoid Content (TFC)
3.6. HPLC Analysis of Phenolic Compounds
3.7. HPLC Analysis of Flavonoids
3.8. Ferric-Reducing Antioxidant Power (FRAP) Assay
3.9. DPPH Free Radical Scavenging Activity
3.10. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nemethy, E.K.; Otvos, J.W.; Calvin, M. Analysis of extractables from one Euphorbia. J. Am. Oil Chem. Soc. 1979, 56, 957–960. [Google Scholar] [CrossRef]
- Escrig, P.V.; Iglesias, D.J.; Corma, A.; Primo, J.; Primo-Millo, E.; Cabedo, N. Euphorbia characias as bioenergy crop: A study of variations in energy value components according to phenology and water status. J. Agric. Food Chem. 2013, 61, 10096–10109. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.G.; Zhan, Z.J.; Yang, S.P.; Yue, J.M. Lathyranoic acid A: First secolathyrane diterpenoid in nature from Euphorbia lathyris. Org. Lett. 2005, 7, 1379–1382. [Google Scholar] [CrossRef] [PubMed]
- Itokawa, H.; Ichihara, Y.; Watanabe, K.; Takeya, K. An antitumor principle from Euphorbia lathyris. Planta Med. 1989, 55, 271–272. [Google Scholar]
- Hou, X.R.; Wan, L.L.; Zhan, Z.J.; Li, C.P.; Shan, W.G. Analysis and determination of diterpenoids in unprocessed and processed Euphorbia lathyris seeds by HPLC-ESI-MS. J. Pharmaceut. Biomed. Anal. 2011, 1, 197–202. [Google Scholar] [CrossRef]
- Lu, J.; Li, G.; Huang, J.; Zhang, C.; Zhang, L.; Zhang, K.; Li, P.; Lin, R.; Wang, J. Lathyrane-type diterpenoids from the seeds of Euphorbia lathyris. Phytochemistry 2014, 104, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, J.; Evanics, F.; Vasas, A.; Dombi, G.; Jerkovich, G.; Máthe, I. A novel lathyrane diterpenoid from the roots of Euphorbia lathyris. J. Nat. Prod. 1999, 62, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.L.; Luo, Y.H.; Wei, X.Y.; Wang, N. Non-terpenoid constituents from the seeds of Euphorbia lathyri. J. Tropical Subtropical Botany 2009, 17, 298–301. [Google Scholar]
- Jiao, W.; Lu, L.; Deng, M.C.; Shao, H.W.; Lu, R.H. Study on chemical constituents in seeds of Euphorbia lathyris. Chin. Traditional Herb. Drugs 2010, 41, 181–187. [Google Scholar]
- Surveswaran, S.; Cai, Y.Z.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 2007, 102, 938–953. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Szakiel, A.; Paczkowski, C.; Pensec, F.; Bertsch, C. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem. Rev. 2012, 11, 263–284. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Qiu, N.; Ding, H.; Yao, R. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res. Int. 2008, 41, 363–370. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Dragland, S.; Senoo, H.; Wake, K.; Holte, K.; Blomhoff, R. Several culinary and medicinal herbs are important sources of dietary antioxidants. J. Nutr. 2003, 133, 1286–1290. [Google Scholar] [PubMed]
- Xiao, Z.P.; Peng, Z.Y.; Peng, M.J.; Yan, W.B.; Ouyang, Y.Z.; Zhu, H.L. Flavonoids health benefits and their molecular mechanism. Mini-Rev. Med. Chem. 2011, 11, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.X.; Xu, G.Z.; Wang, Z.Q.; Gao, Q.X.; Wang, S.; Zhang, Y.Z. Seasonal variations of the antioxidant composition in ground bamboo sasa argenteastriatus leaves. Int. J. Mol. Sci. 2012, 13, 2249–2262. [Google Scholar] [CrossRef] [PubMed]
- Subhan, N.; Alam, M.A.; Ahmed, F.; Awal, M.A.; Nahar, L.; Sarkar, S.D. In vitro antioxidant property of the extract of Excocaria agallocha (Euphorbiaceae). DARU-J. Faculty. Pharm. 2008, 16, 149–154. [Google Scholar]
- Kadri, A.; Gharsallah, N.; Damak, M.; Gdoura, R. Chemical composition and in vitro antioxidant properties of essential oil of Ricinus communis L. J. Med. Plant Res. 2011, 5, 1466–1470. [Google Scholar]
- Ho, C.T.; Osawa, T.; Huang, M.; Rosen, R. Food Phytochemicals for Cancer Prevention II: Teas, Spices, and Herbs; American Chemical Society: Washington, DC, USA, 1994; pp. 144–153. [Google Scholar]
- Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res. 2000, 113, 287–299. [Google Scholar] [CrossRef]
- Srivastava, A.; Greenspan, P.; Hartle, D.K.; Hargrove, J.L.; Amarowicz, R.; Pegg, R.B. Antioxidant and anti-inflammatory activities of polyphenolics from Southeastern US range blackberry cultivars. J. Agric. Food Chem. 2010, 58, 6102–6109. [Google Scholar] [CrossRef] [PubMed]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 2005, 53, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- He, X.J.; Liu, D.; Liu, R.H. Sodium borohydride/chloranil-based assay for quantifying total flavonoids. J. Agric. Food Chem. 2008, 56, 9337–9344. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Alventosa, J.M. Identification of flavonoid diglycosides in several genotypes of Asparagus from the Huetor-Tajar population variety. J. Agric. Food Chem. 2007, 55, 10028–10035. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free-radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Sample Availability: Free and bound extraction compounds of Euphorbia lathyris L. are available from the authors. |
Part | Free Phenolics | Bound Phenolics | Total Phenolics |
---|---|---|---|
stem | 161.17 ± 8.64 b | 53.97 ± 6.36 b | 215.14 ± 15.00 b |
root | 90.45 ± 4.60 c | 52.55 ± 0.44 b | 143.00 ± 5.04 c |
seed | 95.04 ± 8.90 c | 22.40 ± 0.53 c | 117.44 ± 9.43 d |
testa | 222.12 ± 12.09 a | 68.34 ± 3.00 a | 290.46 ± 15.09 a |
Part | Free Flavonoids | Bound Flavonoids | Total Flavonoids |
---|---|---|---|
stem | 3.15 ± 0.29 c | 42.28 ± 2.34 b | 45.43 ± 2.63 b |
root | 144.67 ± 2.89 a | 71.01 ± 0.21 a | 215.68 ± 3.1 a |
seed | 4.23 ± 0.17 c | 7.49 ± 0.22 c | 11.72 ± 0.39 c |
testa | 42.36 ± 0.80 b | 1.20 ± 0.13 d | 43.56 ± 0.93 b |
Part | Composition | Free | Bound | Total |
---|---|---|---|---|
stem | gallic acid | 1.16 ± 0.01 | 0.83 ± 0.04 | 1.99 ± 0.20 |
chlorogenic acid | 0.38 ± 0.01 | 3.53 ± 0.06 | 3.91 ± 0.07 | |
vanillic acid | nd | nd | nd | |
ferulic acid | 0.52 ± 0.10 | nd | 0.52 ± 0.10 | |
root | gallic acid | 1.19 ± 0.15 | 1.04 ± 0.14 | 2.23 ± 0.29 |
chlorogenic acid | 1.03 ± 0.04 | 7.83 ± 0.15 | 8.86 ± 0.19 | |
vanillic acid | 0.50 ± 0.06 | nd | 0.50 ± 0.06 | |
p-coumaric acid | nd | nd | nd | |
ferulic acid | 0. 97 ± 0.07 | nd | 0.97 ± 0.07 | |
seed | gallic acid | 1.57 ± 0.06 | 0.95 ± 0.07 | 2.52 ± 0.13 |
chlorogenic acid | nd | 0.82 ± 0.03 | 0.82 ± 0.03 | |
vanillic acid | 0.08 ± 0.01 | nd | 0.08 ± 0.01 | |
p-coumaric acid | nd | nd | nd | |
ferulic acid | 0.59 ± 0.06 | nd | 0.59 ± 0.06 | |
testa | gallic acid | 1.79 ± 0.01 | nd | 1.79 ± 0.01 |
chlorogenic acid | 2.97 ± 0.18 | nd | 2.97 ± 0.18 | |
caffeic acid | 5.36 ± 0.21 | nd | 5.36 ± 0.21 | |
p-coumaric acid | 4.88 ± 0.09 | nd | 4.88 ± 0.09 | |
ferulic acid | 1.18 ± 0.11 | nd | 1.18 ± 0.11 |
Stem | Root | Seed | Testa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Free | Bound | Total | Free | Bound | Total | Free | Bound | Total | Free | Bound | Total | |
rutin | 50.65 ± 0.11 | 184.37 ± 0.54 | 235.02 ± 0.65 | nd | nd | nd | 78.75 ± 0.59 | nd | 78.75 ± 0.59 | 107.43 ± 0.18 | nd | 107.43 ± 0.18 |
resveratrol | nd | 258.17 ± 2.04 | 258.17 ± 2.04 | nd | nd | nd | 5.20 ± 0.13 | nd | 5.20 ± 0.13 | nd | nd | nd |
quercetin | nd | 143.15 ± 1.24 | 143.15 ± 1.24 | nd | 78.00 ± 1.56 | 78.00 ± 1.56 | 7.47 ± 0.44 | 16.32 ± 0.39 | 23.79 ± 0.83 | 8.73 ± 0.06 | nd | 8.73 ± 0.06 |
kaempferol | 12.87 ± 0.59 | nd | 12.87 ± 0.59 | 9.27 ± 0.86 | 8.97 ± 0.21 | 18.24 ± 1.07 | nd | 6.27 ± 0.25 | 6.27 ± 0.25 | nd | nd | nd |
baicalein | nd | 119.95 ± 0.36 | 119.95 ± 0.36 | nd | nd | nd | 14.47 ± 0.48 | nd | 14.47 ± 0.48 | nd | nd | nd |
wogonin | nd | 589.40 ± 0.55 | 589.40 ± 0.55 | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Stem | Root | Seed | Testa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Free | Bound | Total | Free | Bound | Total | Free | Bound | Total | Free | Bound | Total | |
DPPH assay | 1.57 ± 0.05e | 0.63 ± 0.06f | 2.20 ± 0.11d | 2.46 ± 0.12c | 4.02 ± 0.10b | 6.48 ± 0.23a | 0.61 ± 0.05f | 2.04 ± 0.10d | 2.65 ± 0.15c | 61.29 ± 0.29a | nd | 61.29 ± 0.29a |
FRAP assay | 105.71 ± 1.51h | 71.39 ± 2.95i | 177.10 ± 4.46f | 1807.50 ± 17.09d | 37.69 ± 4.69j | 1845.19 ± 21.78c | 1131.25 ± 6.38e | 1972.43 ± 52.13b | 3106.68 ± 58.51a | 69.29 ± 4.92i | 44.86 ± 0.13j | 114.15 ± 5.05g |
Phenolic Acid | Regression Equation | R2 | Recovery Rate/% | Relative Standard Deviation (RSD)/% |
---|---|---|---|---|
gallic acid | Y = 0.671X − 0.4473 | 0.9995 | 97.96 | 0.67 |
chlorogenic acid | Y = 0.3466X + 0.7087 | 0.9998 | 95.95 | 0.96 |
caffeic acid | Y = 0.6887X + 0.9467 | 0.9996 | 99.50 | 0.30 |
vanillic acid | Y = 0.4037X + 0.5282 | 0.9997 | 93.87 | 0.32 |
p-coumaric acid | Y = 1.0566X + 0.6752 | 1.0000 | 97.42 | 0.15 |
ferulic acid | Y = 0.6427X − 0.2327 | 0.9999 | 97.34 | 0.96 |
Flavone | Regression Equation | R2 | Recovery Rate/% | RSD/% |
---|---|---|---|---|
rutin | Y = 0.2751X + 0.7493 | 0.9994 | 107.05 | 0.44 |
resveratrol | Y = 1.3482X + 2.1331 | 0.9993 | 91.21 | 5.15 |
quercetin | Y = 0.4254X − 0.5830 | 0.9998 | 97.68 | 2.05 |
kaempferol | Y = 0.4856X − 1.0943 | 0.9997 | 116.54 | 1.01 |
baicalein | Y = 0.7495X − 4.5946 | 0.9995 | 95.43 | 1.74 |
wogonin | Y = 0.3569X − 0.4124 | 0.9996 | 91.62 | 1.9 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Wang, C.; Meng, Q.; Tian, Q.; Niu, Y.; Niu, W. Phytochemicals of Euphorbia lathyris L. and Their Antioxidant Activities. Molecules 2017, 22, 1335. https://doi.org/10.3390/molecules22081335
Zhang L, Wang C, Meng Q, Tian Q, Niu Y, Niu W. Phytochemicals of Euphorbia lathyris L. and Their Antioxidant Activities. Molecules. 2017; 22(8):1335. https://doi.org/10.3390/molecules22081335
Chicago/Turabian StyleZhang, Lizhen, Chu Wang, Qiuxia Meng, Qin Tian, Yu Niu, and Wei Niu. 2017. "Phytochemicals of Euphorbia lathyris L. and Their Antioxidant Activities" Molecules 22, no. 8: 1335. https://doi.org/10.3390/molecules22081335
APA StyleZhang, L., Wang, C., Meng, Q., Tian, Q., Niu, Y., & Niu, W. (2017). Phytochemicals of Euphorbia lathyris L. and Their Antioxidant Activities. Molecules, 22(8), 1335. https://doi.org/10.3390/molecules22081335