Metal-Based Nanoparticles for the Treatment of Infectious Diseases
Abstract
:1. Introduction
2. Bacterial Infections
2.1. Metal-Based Nanoparticles with Antibacterial Activity
2.1.1. Silver-Based Nanoparticles
2.1.2. Iron Oxide-Based Nanoparticles
2.1.3. Copper Oxide Nanoparticles
2.1.4. Zinc Oxide Nanoparticles
2.1.5. Aluminium Oxide-Based Nanoparticles
2.1.6. Gold-Based Nanoparticles
2.1.7. Titanium Dioxide-Based Nanoparticles
2.1.8. Gallium-Based Nanoparticles
3. Viral Infections
3.1. HIV
3.1.1. Silver Nanoparticles
3.1.2. Gallium Nanoparticles
3.1.3. Gold Nanoparticles
3.2. Herpes
3.2.1. Tin Nanoparticles
3.2.2. Silver Nanoparticles
3.2.3. Zinc Oxide Nanoparticles
3.2.4. Gold Nanoparticle
3.3. Hepatitis
3.3.1. Silver Nanoparticles
3.3.2. Iron Oxide Nanoparticles
3.3.3. Cuprous Oxide Nanoparticles
3.3.4. Gold Nanoparticles
3.4. Influenza
4. Parasitic Infections
4.1. Malaria
4.1.1. Silver Nanoparticles
4.1.2. Metal Oxide Nanoparticles
4.1.3. Gold Nanoparticles
4.2. Leishmaniasis
4.2.1. Silver Nanoparticles
4.2.2. Gold Nanoparticles
4.2.3. Metal Oxide Nanoparticles
4.3. Helminth Infections
4.3.1. Silver Nanoparticles
4.3.2. Gold Nanoparticles
4.3.3. Metal Oxide Nanoparticles
5. Conclusions and Future Trend
Acknowledgments
Conflicts of Interest
References
- Morens, D.M.; Fauci, A.S. Emerging infectious diseases: Threats to human health and global stability. PLoS Pathog. 2013, 9, e1003467. [Google Scholar] [CrossRef] [PubMed]
- Fauci, A.S.; Morens, D.M. The perpetual challenge of infectious diseases. N. Eng. J. Med. 2012, 366, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 2008, 72, 457–470. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health (US). Biological sciences curriculum study NIH curriculum supplement series. In Understanding Emerging and Re-emerging Infectious Diseases; National Institutes of Health (US): Bethesda, MD, USA, 2007. Available online: https://www.ncbi.nlm.nih.gov/books/NBK20370/ (accessed on 20 April 2017).
- Casadevall, A. Antibody-based therapies for emerging infectious diseases. Emerg. Infect. Dis. 1996, 2, 200. [Google Scholar] [CrossRef] [PubMed]
- Saylor, C.; Dadachova, E.; Casadevall, A. Monoclonal antibody-based therapies for microbial diseases. Vaccine 2009, 27, G38–G46. [Google Scholar] [CrossRef] [PubMed]
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioall. Sci. 2010, 2, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Ribet, D.; Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015, 17, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Melville, S.; Craig, L. Type IV pili in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 2013, 77, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Pizarro-Cerda, J.; Cossart, P. Bacterial adhesion and entry into host cells. Cell 2006, 124, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Chamot-Rooke, J.; Mikaty, G.; Malosse, C.; Soyer, M.; Dumont, A.; Gault, J.; Imhaus, A.F.; Martin, P.; Trellet, M.; Clary, G.; et al. Posttranslational modification of pili upon cell contact triggers N. meningitis dissemination. Science 2011, 331, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.S.; Otto, M. Molecular basis of in vivo biofilm formation by bacterial pathogens. Chem. Biol. 2012, 19, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- McManus, M.C. Mechanisms of bacterial resistance to antimicrobial agents. Am. J. Health Syst. Pharm. 1997, 54, 1420–1433. [Google Scholar] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Courvalin, P. Antimicrobial drug resistance: “Prediction is very difficult, especially about the future”. Emerg. Infect. Dis. 2005, 11, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Varela, M.F. Molecular mechanisms of bacterial resistance to antimicrobial agents. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex Research Centre: Malaga, Spain, 2013; Volume 1, pp. 522–534. [Google Scholar]
- Roberts, M.C. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 2005, 245, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C. Tetracycline therapy: Update. Clin. Infect. Dis. 2003, 36, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Ammons, M.C. Anti-biofilm strategies and the need for innovations in wound care. Recent Pat. Anti Infect. Drug Dis. 2010, 5, 10–17. [Google Scholar] [CrossRef]
- Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem. Soc. Rev. 2012, 41, 2943–2970. [Google Scholar] [CrossRef] [PubMed]
- Zain, N.M.; Stapley, A.G.; Shama, G. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr. Polym. 2014, 112, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, M.; Manikandan, S.; Kumaraguru, A.K. Nanoparticles: A new technology with wide applications. Res. J. Nanosci. Nanotechnol. 2011, 1, 1–11. [Google Scholar] [CrossRef]
- Choi, O.; Deng, K.K.; Kim, N.J.; Ross, L.; Surampalli, R.Y.; Hu, Z.Q. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008, 42, 3066–3074. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2, 32. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Rong, K.; Li, J.; Yang, H.; Chen, R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J. Mater. Sci. Mater. Med. 2013, 24, 1465–1471. [Google Scholar] [CrossRef] [PubMed]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnol 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.A.; Kanwal, Z.; Rauf, A.; Sabri, A.N.; Riaz, S.; Naseem, S. Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomater 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Van Dong, P.; Ha, C.H.; Kasbohm, J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int. Nano Lett. 2012, 2, 9. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, B.; Garmaroudi, F.S.; Hashemi, M.; Nezhad, H.R.; Nasrollahi, A.; Ardalan, S.; Ardalan, S. Comparison of the anti-bacterial activity on the nanosilver shapes: Nanoparticles, nanorods and nanoplates. Adv. Powder Technol. 2012, 23, 22–26. [Google Scholar] [CrossRef]
- Romaniuk, J.A.; Cegelski, L. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos. Trans. R. Soc. B 2015, 370. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Wen, J.; Xiong, X.; Hu, Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ. Sci. Pollut. Res. 2016, 23, 4489–4497. [Google Scholar] [CrossRef] [PubMed]
- Jafari, A.R.; Mosavi, T.; Mosavari, N.; Majid, A.; Movahedzade, F.; Tebyaniyan, M.; Arastoo, S. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells. Int. J. Mycobacteriol. 2016, 5, S181–S183. [Google Scholar] [CrossRef] [PubMed]
- Praba, V.L.; Kathirvel, M.; Vallayyachari, K.; Surendar, K.; Muthuraj, M.; Jesuraj, P.J.; Govindarajan, S.; Raman, K.V. Bactericidal effect of silver nanoparticles against Mycobacterium tuberculosis. J. Bionanosci. 2013, 3, 282–287. [Google Scholar] [CrossRef]
- Singh, R.; Nawale, L.U.; Arkile, M.; Shedbalkar, U.U.; Wadhwani, S.A.; Sarkar, D.; Chopade, B.A. Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study. Int. J. Antimicrob. Agents. 2015, 46, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Yilma, A.N.; Singh, S.R.; Dixit, S.; Dennis, V.A. Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis. Int. J. Nanomed. 2013, 8, 2421–2432. [Google Scholar]
- Alexander, J.W. History of the medical use of a silver. Surg. Infect. 2009, 10, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Jacob Inbaneson, S.; Ravikumar, S.; Manikandan, N. Antibacterial potential of silver nanoparticles against isolated urinary tract infectious bacterial pathogens. Appl. Nanosci. 2011, 1, 231–236. [Google Scholar] [CrossRef]
- Pickard, R.; Lam, T.; MacLennan, G.; Starr, K.; Kilonzo, M.; McPherson, G.; Gillies, K.; McDonald, A.; Walton, K.; Buckley, B.; et al. Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: A multicentre randomised controlled trial. Lancet 2012, 380, 1927–1935. [Google Scholar] [CrossRef]
- Ritter, J.; Thomas, L.; Lederer, J.; Jarvis, W.R. Effectiveness of a silver-alloy and hydrogel coated urinary catheter on symptomatic catheter-associated urinary tract infections. Am. J. Infect. Control. 2013, 41, S143–S144. [Google Scholar] [CrossRef]
- Ford, J.; Hughes, G.; Phillips, P. Literature Review of Silver-Coated Urinary Catheters—Draft SMTL January 2014. Available online: http://www.medidex.com/research/830-silver-coated-catheters-full-article.html (accessed on 7 July 2017).
- Thibon, P.; Le Coutour, X.; Leroyer, R.; Fabry, J. Randomized multi-centre trial of the effects of a catheter coated with hydrogel and silver salts on the incidence of hospital-acquired urinary tract infections. J. Hosp. Infect. 2000, 45, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.; Karchmer, T.; Richards, A.; Song, X.; Perl, T.M. A prospective trial of a novel, silicone-based, silver-coated foley catheter for the prevention of nosocomial urinary tract infections. Infect. Control Hosp. Epidemiol. 2006, 27, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.; Ruan, L.; Yin, Y.; Yang, T.; Ge, M.; Cheng, X. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii. Int. J. Nanomed. 2016, 11, 3789–3800. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, J.; Wu, C.; Wu, Q.; Li, J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnol 2005, 16, 1912–1917. [Google Scholar] [CrossRef]
- Deng, H.; McShan, D.; Zhang, Y.; Sinha, S.S.; Arslan, Z.; Ray, P.C.; Yu, H. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ. Sci. Technol. 2016, 50, 8840–8848. [Google Scholar] [CrossRef] [PubMed]
- Smekalova, M.; Aragon, V.; Panacek, A.; Prucek, R.; Zboril, R.; Kvitek, L. Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet. J. 2016, 209, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Akram, F.E.; El-Tayeb, T.; Abou-Aisha, K.; El-Azizi, M. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Ann. Clin. Microb. Antimicrob. 2016, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Thirumurugan, G.; Rao, J.S.; Dhanaraju, M.D. Elucidating pharmacodynamic interaction of silver nanoparticle-topical deliverable antibiotics. Sci. Rep. 2016, 6, 29982. [Google Scholar] [CrossRef] [PubMed]
- Balaji Raja, R.; Singh, P. Synergistic effect of silver nanoparticles with the cephalexin antibiotic against the test strains. Biores. Bull. 2012, 2, 171–179. [Google Scholar]
- Fatimah, I. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J. Adv. Res. 2016, 7, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Mehata, M.S. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 2016, 9, 109–115. [Google Scholar] [CrossRef]
- Tripathy, A.; Raichur, A.M.; Chandrasekaran, N.; Prathna, T.C.; Mukherjee, A. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J. Nanopart. Res. 2010, 12, 237–246. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B 2010, 76, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Ponarulselvam, S.; Panneerselvam, C.; Murugan, K.; Aarthi, N.; Kalimuthu, K.; Thangamani, S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed. 2012, 2, 574–580. [Google Scholar] [CrossRef]
- Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. Peer J. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.A.; Yahya, R.; Sekaran, S.D.; Puteh, R. Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv. Mater. Sci. Eng. 2016. [Google Scholar] [CrossRef]
- Allafchian, A.R.; Mirahmadi-Zare, S.Z.; Jalali, S.A.; Hashemi, S.S.; Vahabi, M.R. Green synthesis of silver nanoparticles using phlomis. J. Nanostr. Chem. 2016, 6, 129–135. [Google Scholar] [CrossRef]
- Maiti, S.; Krishnan, D.; Barman, G.; Ghosh, S.K.; Laha, J.K. Antimicrobial activities of silver nanoparticles synthesized from Lycopersicon esculentum extract. J. Anal. Sci. Technol. 2014, 5. [Google Scholar] [CrossRef]
- Chiguvare, H.; Oyedeji, O.O.; Matewu, R.; Aremu, O.; Oyemitan, I.A.; Oyedeji, A.O.; Nkeh-Chungag, B.N.; Songca, S.P.; Mohan, S.; Oluwafemi, O.S. Synthesis of Silver Nanoparticles Using Buchu Plant Extracts and Their Analgesic Properties. Molecules 2016, 21. [Google Scholar] [CrossRef] [PubMed]
- Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma, A.R.; Singh, R.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanopart. Res. 2011, 13, 2981–2988. [Google Scholar] [CrossRef]
- Singh, T.; Jyoti, K.; Patnaik, A.; Singh, A.; Chauhan, R.; Chandel, S.S. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J. Genet. Eng. Biotechnol. 2017, 15, 31–39. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; El-Kassas, H.Y. Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: A review. J. Genet. Eng. Biotechnol. 2016, 14, 299–310. [Google Scholar] [CrossRef]
- Saravanan, C.; Rajesh, R.; Kaviarasan, T.; Muthukumar, K.; Kavitake, D.; Shetty, P.H. Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol. Rep. 2017, 15, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010, 156, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ashajyothi, C.; Oli, A.K.; Prabhurajeshwar, C. Potential bactericidal effect of silver nanoparticles synthesised from Enterococcus species. Orient. J. Chem. 2014, 30, 1253–1262. [Google Scholar]
- Minaeian, S.; Shahverdi, A.R.; Nohi, A.S.; Shahverdi, H.R. Extracellular biosynthesis of silver nanoparticles by some bacteria. J. Sci. IAU 2008, 17, 1–4. [Google Scholar]
- Shirley, A.D.; Dayanand, A.; Sreedhar, B.; Dastager, S.G. Antimicrobial activity of silver nanoparticles synthesized from novel Streptomyces species. Dig. J. Nanomater. Biostruct. 2010, 5, 447–451. [Google Scholar]
- Prabhu, Y.T.; Rao, K.V.; Kumari, B.S.; Kumar, V.S.; Pavani, T. Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int. Nano Lett. 2015, 5, 85–92. [Google Scholar] [CrossRef]
- Mahdavi, M.; Namvar, F.; Ahmad, M.B.; Mohamad, R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 2013, 18, 5954–5964. [Google Scholar] [CrossRef] [PubMed]
- Arokiyaraj, S.; Saravanan, M.; Prakash, N.U.; Arasu, M.V.; Vijayakumar, B.; Vincent, S. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: An in vitro study. Mater. Res. Bull. 2013, 48, 3323–3327. [Google Scholar] [CrossRef]
- Makarov, V.V.; Makarova, S.S.; Love, A.J.; Sinitsyna, O.V.; Dudnik, A.O.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 2014, 30, 5982–5988. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef] [PubMed]
- Rafi, M.M.; Ahmed, K.S.; Nazeer, K.P.; Kumar, D.S.; Thamilselvan, M. Synthesis, characterization and magnetic properties of hematite (α-Fe2O3) nanoparticles on polysaccharide templates and their antibacterial activity. Appl. Nanosci. 2015, 5, 515–520. [Google Scholar] [CrossRef]
- Behera, S.S.; Patra, J.K.; Pramanik, K.; Panda, N.; Thatoi, H. Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J. Nano Sci. Eng. 2012, 2, 196–200. [Google Scholar] [CrossRef]
- Ismail, R.A.; Sulaiman, G.M.; Abdulrahman, S.A.; Marzoog, T.R. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. 2015, 53, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 2015, 5, 14813. [Google Scholar] [CrossRef] [PubMed]
- Irshad, R.; Tahir, K.; Li, B.; Ahmad, A.; Siddiqui, A.R.; Nazir, S. Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. J. Photochem. Photobiol. B Biol. 2017, 170, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Caamaño, M.; Carrillo-Morales, M.; Olivares-Trejo, J.J. Iron Oxide Nanoparticle Improves the Antibacterial Activity of Erythromycin. J. Bacteriol. Parasitol. 2016, 7, 267. [Google Scholar] [CrossRef]
- Tran, N.; Mir, A.; Mallik, D.; Sinha, A.; Nayar, S.; Webster, T.J. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomed. 2010, 5, 277–283. [Google Scholar]
- Inbaraj, B.S.; Tsai, T.Y.; Chen, B.H. Synthesis, characterization and antibacterial activity of superparamagnetic nanoparticles modified with glycol chitosan. Sci. Technol. Adv. Mater. 2012, 13, 015002. [Google Scholar] [CrossRef] [PubMed]
- Masadeh, M.M.; Karasneh, G.A.; Al-Akhras, M.A.; Albiss, B.A.; Aljarah, K.M.; Al-Azzam, S.I.; Alzoubi, K.H. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnol 2015, 67, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Phul, R.; Khatoon, N.; Sardar, M. Antibacterial efficacy of Ocimum sanctum leaf extract-treated iron oxide nanoparticles. N. J. Chem. 2017, 41, 2055–2061. [Google Scholar] [CrossRef]
- Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R. Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spect. Acta Part A 2014, 117, 801–804. [Google Scholar] [CrossRef] [PubMed]
- Njagi, E.C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H.M.; Collins, J.B.; Hoag, G.E.; Suib, S.L. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 2011, 27, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Madhavi, V.; Prasad, T.N.; Reddy, A.V.; Ravindra Reddy, B.; Madhavi, G. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spect. Acta Part A 2013, 116, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.M.; Mandal, B.K.; Kumar, K.S.; Reddy, P.S.; Sreedhar, B. Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spect. Acta Part A 2013, 102, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustain. Chem. Eng. 2013, 1, 1551–1554. [Google Scholar] [CrossRef]
- Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyac, E.; Eroğlu, A.E.; Scott, T.B.; Hallam, K.R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 2011, 172, 258–266. [Google Scholar] [CrossRef]
- Kuang, Y.; Wang, Q.; Chen, Z.; Megharaj, M.; Naidu, R. Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J. Colloid Interface Sci. 2013, 410, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Senthil, M.; Ramesh, C. Biogenic synthesis of Fe3O4 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Pseudomonas aeruginosa. Dig. J. Nanomat. Biostruc. 2012, 7, 1655–1661. [Google Scholar]
- Naseem, T.; Farrukh, M.A. Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract. J. Chem. 2015, 2015, 912342. [Google Scholar] [CrossRef]
- Ahamed, M.; Alhadlaq, H.A.; Khan, M.A.; Karuppiah, P.; Al-Dhabi, N.A. Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomater. 2014, 1–4. [Google Scholar] [CrossRef]
- Pandey, P.; Packiyaraj, M.S.; Nigam, H.; Agarwal, G.S.; Singh, B.; Patra, M.K. Antimicrobial properties of CuO nanorods and multi-armed nanoparticles against B. anthracis vegetative cells and endospores. Beilstein J. Nanotechnol. 2014, 5, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef] [PubMed]
- Khashan, K.; Sulaiman, G.; Abdulameer, F. Synthesis and Antibacterial Activity of CuO Nanoparticles Suspension Induced by Laser Ablation in Liquid. Arabian J. Sci. Eng. 2016, 41, 301–310. [Google Scholar] [CrossRef]
- Ramyadevi, J.; Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A.A. Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 2012, 71, 114–116. [Google Scholar] [CrossRef]
- Alswat, A.A.; Ahmad, M.B.; Hussein, M.Z.; Ibrahim, N.A.; Saleh, T.A. Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J. Mater. Sci. Technol. 2017. [Google Scholar] [CrossRef]
- Rani, R.; Kumar, H.; Salar, R.K.; Purewal, S.S. Antibacterial activity of copper oxide nanoparticles against gram-negative bacterial strain synthesized by reverse micelle technique. Int. J. Pharm. Res. Dev. 2014, 6, 72–78. [Google Scholar]
- Hsueh, Y.H.; Tsai, P.H.; Lin, K.S. pH-Dependent antimicrobial properties of copper oxide nanoparticles in Staphylococcus aureus. Int. J. Mol. Sci. 2017, 18, 793. [Google Scholar] [CrossRef] [PubMed]
- Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.; Memic, A. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains. Int. J. Nanomed. 2012, 7, 3527–3535. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Nath, B.C.; Phukon, P.; Dolui, S.K. Synthesis and evaluation of antioxidant and antibacterial behaviour of CuO nanoparticles. Colloids Surf. B 2013, 101, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, S.; Gaikwad, S.; Nimse, M.; Rajbhoj, A. Copper oxide nanoparticles: Synthesis, characterization and their antibacterial activity. J. Cluster Sci. 2011, 22, 121–129. [Google Scholar] [CrossRef]
- Gilbertson, L.M.; Albalghiti, E.M.; Fishman, Z.S.; Perreault, F.; Corredor, C.; Posner, J.D.; Elimelech, M.; Pfefferle, L.D.; Zimmerman, J.B. Shape-dependent surface reactivity and antimicrobial activity of nano-cupric oxide. Environ. Sci. Technol. 2016, 50, 3975–3984. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, O.; Ivask, A.; Käkinen, A.; Kahru, A. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ. Pollut. 2012, 169, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Kaweeteerawat, C.; Chang, C.H.; Roy, K.R.; Liu, R.; Li, R.; Toso, D.; Fischer, H.; Ivask, A.; Ji, Z.; Zink, J.I.; et al. Cu nanoparticles have different impacts in Escherichia coli and Lactobacillus brevis than their microsized and ionic analogues. ACS Nano 2015, 9, 7215–7225. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Gao, S.H.; Lu, J.; Bond, P.L.; Verstraete, W.; Yuan, Z. Copper oxide nanoparticles induce lysogenic bacteriophage and metal resistance genes in Pseudomonas aeruginosa PAO1. ACS Appl. Mater. Interfaces 2017. [Google Scholar] [CrossRef] [PubMed]
- Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci. 2014, 4, 571–576. [Google Scholar] [CrossRef]
- Meghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv. 2015, 5, 12293–12299. [Google Scholar] [CrossRef]
- Reddy, L.S.; Nisha, M.M.; Joice, M.; Shilpa, P.N. Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm Biol. 2014, 52, 1388–1397. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.H.; Ke, W.J.; Hsieh, C.T.; Lin, K.S.; Tzou, D.Y.; Chiang, C.L. ZnO nanoparticles affect Bacillus subtilis cell growth and biofilm formation. PLoS ONE 2015, 10, e0128457. [Google Scholar] [CrossRef] [PubMed]
- Narasimha, G.; Sridevi, A.; Devi Prasad, B.; Praveen Kumar, B. Chemical synthesis of Zinc Oxide (ZnO) nanoparticles and their antibacterial activity against a clinical isolate Staphylococcus aureus. Int. J. Nano Dimens. 2014, 5, 337–340. [Google Scholar]
- Xie, Y.; He, Y.; Irwin, P.L.; Jin, T.; Shi, X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011, 77, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- Dobrucka, R.; Długaszewska, J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Biol. Sci. 2016, 23, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Dutta, R.K.; Nenavathu, B.P.; Gangishetty, M.K.; Reddy, A.V. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf. B Biointerface. 2012, 94, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Krithika, G.; Saraswathy, R.; Muralidhar, M.; Thulasi, D.; Lalitha, N.; Kumararaja, P.; Nagavel, A.; Balaji, A.; Jayavel, R. Zinc oxide nanoparticles—Synthesis, characterization and antibacterial activity. J. Nanosci. Nanotechnol. 2017, 17, 5209–5216. [Google Scholar] [CrossRef]
- Hameed, A.S.; Karthikeyan, C.; Ahamed, A.P.; Thajuddin, N.; Alharbi, N.S.; Alharbi, S.A.; Ravi, G. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Mirhosseini, M.; Firouzabadi, F.B. Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. Int. J. Dairy Technol. 2013, 66, 291–295. [Google Scholar] [CrossRef]
- Liu, Y.; He, L.; Mustapha, A.; Li, H.; Hu, Z.Q.; Lin, M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J. Appl. Microbiol. 2009, 107, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Seil, J.T.; Webster, T.J. Antibacterial effect of zinc oxide nanoparticles combined with ultrasound. Nanotechnol 2012, 23, 495101. [Google Scholar] [CrossRef] [PubMed]
- Rago, I.; Chandraiahgari, C.R.; Bracciale, M.P.; De Bellis, G.; Zanni, E.; Guidi, M.C.; Sali, D.; Broggi, A.; Palleschi, C.; Sarto, M.S.; et al. Zinc oxide microrods and nanorods: Different antibacterial activity and their mode of action against Gram-positive bacteria. RSC Adv. 2014, 4, 56031–56040. [Google Scholar] [CrossRef]
- Voicu, G.; Oprea, O.; Vasile, B.S.; Andronescu, E. Antibacterial activity of zinc oxide-gentamicin hybrid material. Dig. J. Nanomater. Biostruct. 2013, 8, 1191–1203. [Google Scholar]
- Stan, M.; Popa, A.; Toloman, D.; Silipas, T.D.; Vodnar, D.C.; Katona, G. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts. In Proceedings of the AIP Conference, Cluj-Napoca, Romania, 23–25 December 2015. [Google Scholar]
- Gunalan, S.; Sivaraj, R.; Rajendran, V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. Int. 2012, 22, 693–700. [Google Scholar] [CrossRef]
- Venkataraju, J.L.; Sharath, R.; Chandraprabha, M.N.; Neelufar, E.; Hazra, A.; Patra, M. Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles. J. Biochem. Technol. 2014, 3, 151–154. [Google Scholar]
- Sadiq, I.M.; Chowdhury, B.; Chandrasekaran, N.; Mukherjee, A. Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Jalal, M.; Ansari, M.A.; Shukla, A.K.; Ali, S.G.; Khan, H.M.; Pal, R.; Alam, J.; Cameotra, S.S. Green synthesis and antifungal activity of Al2O3 NPs against fluconazole-resistant Candida spp. isolated from a tertiary care hospital. RSC Adv. 2016, 6, 107577–107590. [Google Scholar] [CrossRef]
- Ansari, M.A.; Khan, H.M.; Alzohairy, M.A.; Jalal, M.; Ali, S.G.; Pal, R.; Musarrat, J. Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World J. Microbiol. Biotechnol. 2015, 31, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, P.A.; Raveendra, R.S.; Krishna, R.H.; Ananda, S.; Bhagya, N.P.; Nagabhushana, B.M.; Lingaraju, K.; Naika, H.R. Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J. Asian Ceram. Soc. 2015, 3, 345–351. [Google Scholar] [CrossRef]
- Brintha, S.R.; Ajitha, M. Synthesis, structural and antibacterial activity of aluminium and nickel doped ZnO nanoparticles by Sol-gel method. Asian J. Chem. Sci. 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Fouad, S.A.; Elshoky, H.A.; Mohammed, G.M.; Salaheldin, T.A. Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int. J. Vet. Sci. Med. 2017, 5, 23–29. [Google Scholar] [CrossRef]
- Zhou, Y.; Kong, Y.; Kundu, S.; Cirillo, J.D.; Liang, H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J. Nanobiotechnol. 2012, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Robinson, S.M.; Gupta, A.; Saha, K.; Jiang, Z.; Moyano, D.F.; Sahar, A.; Riley, M.A.; Rotello, V.M. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 2014, 8, 10682–10686. [Google Scholar] [CrossRef] [PubMed]
- Shamaila, S.; Zafar, N.; Riaz, S.; Sharif, R.; Nazir, J.; Naseem, S. Gold nanoparticles: An efficient antimicrobial agent against enteric bacterial human pathogen. Nanomater 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Shareena Dasari, T.P.; Zhang, Y.; Yu, H. Antibacterial activity and cytotoxicity of gold (I) and (III) Ions and gold nanoparticles. Biochem. Pharmacol. 2015, 4. [Google Scholar] [CrossRef]
- Lima, E.; Guerra, R.; Lara, V.; Guzmán, A. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem. Cent. J. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- MubarakAli, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B 2011, 85, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shareena Dasari, T.P.; Deng, H.; Yu, H. Antimicrobial activity of gold nanoparticles and ionic gold. J. Environ. Sci. Health Part C 2015, 33, 286–327. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Prabhune, A.; Perry, C.C. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem. 2010, 20, 6789–6798. [Google Scholar] [CrossRef]
- Cui, Y.; Zhao, Y.; Tian, Y.; Zhang, W.; Lü, X.; Jiang, X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 2012, 33, 2327–2333. [Google Scholar] [CrossRef] [PubMed]
- Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B 2010, 80, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.B.; Subramanian, S.; Sivasubramanian, A.; Veerappan, G.; Veerappan, A. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 130, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Rajathi, F.A.; Parthiban, C.; Kumar, V.G.; Anantharaman, P. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim. Acta Mol. Biomol. Spectrosc. 2012, 99, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Bindhu, M.R.; Umadevi, M. Antibacterial activities of green synthesized gold nanoparticles. Mater. Lett. 2014, 120, 122–125. [Google Scholar] [CrossRef]
- Prasad, T.N.; Elumalai, E.K. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 439–442. [Google Scholar] [CrossRef]
- Arshi, N.; Ahmed, F.; Kumar, S.; Anwar, M.S.; Lu, J.; Koo, B.H.; Lee, C.G. Microwave assisted synthesis of gold nanoparticles and their antibacterial activity against Escherichia coli (E. coli). Curr. Appl. Phys. 2011, 11, S360–S363. [Google Scholar] [CrossRef]
- Burygin, G.L.; Khlebtsov, B.N.; Shantrokha, A.N.; Dykman, L.A.; Bogatyrev, V.A.; Khlebtsov, N.G. On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res. Lett. 2009, 4, 794. [Google Scholar] [CrossRef] [PubMed]
- Zharov, V.P.; Mercer, K.E.; Galitovskaya, E.N.; Smeltzer, M.S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 2006, 90, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Shokri, R.; Salouti, M.; Zanjani, R.S. Anti protein A antibody-gold nanorods conjugate: A targeting agent for selective killing of methicillin resistant Staphylococcus aureus using photothermal therapy method. J. Microbiol. 2015, 53, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.C.; Tsai, P.J.; Chen, Y.C. Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine 2007, 2, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Ho, P.L.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003, 3, 1261–1263. [Google Scholar] [CrossRef]
- Saha, B.; Bhattacharya, J.; Mukherjee, A.; Ghosh, A.; Santra, C.; Dasgupta, A.K.; Karmakar, P. In Vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res. Lett. 2007, 2, 614. [Google Scholar] [CrossRef]
- Bagga, P.; Ansari, T.M.; Siddiqui, H.H.; Syed, A.; Bahkali, A.H.; Rahman, M.A.; Khan, M.S. Bromelain capped gold nanoparticles as the novel drug delivery carriers to aggrandize effect of the antibiotic levofloxacin. EXCLI J. 2016, 15, 772–780. [Google Scholar] [PubMed]
- Jesline, A.; John, N.P.; Narayanan, P.M.; Vani, C.; Murugan, S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl. Nanosci. 2015, 5, 157–162. [Google Scholar] [CrossRef]
- Thomas, A.; Venkataramana, J. Antimicrobial activity of TiO2 nanoparticles against Microbial Isolates causing dental plaques. Int. J. Bioassays. 2014, 3, 3106–3110. [Google Scholar]
- Santhoshkumar, T.; Rahuman, A.A.; Jayaseelan, C.; Rajakumar, G.; Marimuthu, S.; Kirthi, A.V.; Velayutham, K.; Thomas, J.; Venkatesan, J.; Kim, S.K. Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac. J. Trop. Med. 2014, 7, 968–976. [Google Scholar] [CrossRef]
- Besinis, A.; De Peralta, T.; Handy, R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicol 2014, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Alhadrami, H.A.; Al-Hazmi, F. Antibacterial Activities of Titanium Oxide Nanoparticles. J. Bioelectron. Nanotechnol. 2017, 2, 5. [Google Scholar]
- Desai, V.S.; Meenal, K. Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique. Res. J. Microbiol. 2009, 4, 97–103. [Google Scholar]
- Lin, X.; Li, J.; Ma, S.; Liu, G.; Yang, K.; Tong, M.; Lin, D. Toxicity of TiO2 nanoparticles to Escherichia coli: Effects of particle size, crystal phase and water chemistry. PLoS ONE 2014, 9, e110247. [Google Scholar] [CrossRef] [PubMed]
- Planchon, M.; Ferrari, R.; Guyot, F.; Gélabert, A.; Menguy, N.; Chanéac, C.; Thill, A.; Benedetti, M.F.; Spalla, O. Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids Surf. B. 2013, 102, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.; Binh, C.T.; Kelly, J.J.; Gaillard, J.F.; Gray, K.A. Cytotoxicity of commercial nano-TiO2 to Escherichia coli assessed by high-throughput screening: Effects of environmental factors. Water Res. 2013, 47, 2352–2362. [Google Scholar] [CrossRef] [PubMed]
- Narayanasamy, P.; Switzer, B.L.; Britigan, B.E. Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Kurtjak, M.; Vukomanović, M.; Kramer, L.; Suvorov, D. Biocompatible nano-gallium/hydroxyapatite nanocomposite with antimicrobial activity. J. Mater. Sci. Mater. Med. 2016, 27, 170. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.R.; Britigan, B.E.; Moran, D.M.; Narayanasamy, P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS ONE 2017, 12, e0177987. [Google Scholar] [CrossRef] [PubMed]
- Olakanmi, O.; Gunn, J.S.; Su, S.; Soni, S.; Hassett, D.J.; Britigan, B.E. Gallium disrupts iron uptake by intracellular and extracellular Francisella strains and exhibits therapeutic efficacy in a murine pulmonary infection model. Antimicrob. Agents Chemother. 2010, 54, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Strasfeld, L.; Chou, S. Antiviral drug resistance: Mechanisms and clinical implications. Infect. Dis. Clin. N. Am. 2010, 24, 809–833. [Google Scholar] [CrossRef] [PubMed]
- Global AIDS/HIV Epidermic. Available online: https://www.aids.gov/hiv-aids-basics/hiv-aids-101/global-statistics/ (accessed on 21 April 2017).
- Lara, H.H.; Ayala-Nuñez, N.V.; Ixtepan-Turrent, L.; Rodriguez-Padilla, C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 2010, 8. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.W.; Rong, C.; Chung, N.P.Y.; Ho, C.M.; Lin, C.L.S.; Che, C.M. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun. 2005, 40, 5059–5061. [Google Scholar] [CrossRef] [PubMed]
- Elechiguerra, J.L.; Burt, J.L.; Morones, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 2005, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.R.; Britigan, B.E.; Narayanasamy, P. Ga (III) nanoparticles inhibit growth of both Mycobacterium tuberculosis and HIV and release of interleukin-6 (IL-6) and IL-8 in coinfected macrophages. Antimicrob. Agents Chemother. 2017, 61, e02505-16. [Google Scholar] [CrossRef] [PubMed]
- Endsley, A.N.; Ho, R.J.Y. Enhanced anti-HIV efficacy of indinavir after Inclusion in CD4 targeted lipid nanoparticles. J. Acquir. Immune Defic. Syndr. 2012, 61, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Soto, E.R.; O’Connell, O.; Dikengil, F.; Peters, P.J.; Clapham, P.R.; Ostroff, G.R. Targeted delivery of glucan particle encapsulated gallium nanoparticles inhibits HIV growth in human macrophages. J. Drug Deliv. 2016. [Google Scholar] [CrossRef] [PubMed]
- Kesarkar, R.; Shroff, S.; Yeole, M.; Chowdhary, A. L-Cysteine Functionalized Gold Nanocargos Potentiates Anti-HIV Activity of Azidothymydine against HIV-1Ba-L Virus. J. Immunol. Virol. 2015, 1. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Ganesan, S. Gold nanoparticles as an HIV entry inhibitor. Curr. HIV Res. 2012, 10, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Garrido, C.; Simpson, C.A.; Dahl, N.P.; Bresee, J.; Whitehead, D.C.; Lindsey, E.A.; Harris, T.L.; Smith, C.A.; Carter, C.J.; Feldheim, D.L.; et al. Gold nanoparticles to improve HIV drug delivery. Futur. Med. Chem. 2015, 7, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Kesarkar, R.; Oza, G.; Pandey, S.; Dahake, R.; Mukherjee, S.; Chowdhary, A.; Sharon, M. Gold nanoparticles: Effective as both entry inhibitors and virus neutralizing agents against HIV. J. Microbiol. Biotechnol. Res. 2017, 2, 276–283. [Google Scholar]
- Chiodo, F.; Marradi, M.; Calvo, J.; Yuste, E.; Penadés, S. Glycosystems in nanotechnology: Gold glyconanoparticles as carrier for anti-HIV prodrugs. Beilstein J. Org. Chem. 2014, 10, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Bowman, M.C.; Ballard, T.E.; Ackerson, C.J.; Feldheim, D.L.; Margolis, D.M.; Melander, C. Inhibition of HIV fusion with multivalent gold nanoparticles. J. Am. Chem. Soc. 2008, 130, 6896–6897. [Google Scholar] [CrossRef] [PubMed]
- Bastian, A.R.; Nangarlia, A.; Bailey, L.D.; Holmes, A.; Sundaram, R.V.; Ang, C.; Moreira, D.R.; Freedman, K.; Duffy, C.; Contarino, M.; et al. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J. Biol. Chem. 2015, 290, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Nemunaitis, J. Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther. 2006, 13, 975–992. [Google Scholar] [CrossRef] [PubMed]
- Vonka, V.; Kanaka, J.; Hirsch, I.; Zavadova, H.; Krčmář, M.; Suchankova, A.; Řezácová, D.; Brouček, J.; Press, M.; Domorazkova, E.; et al. Prospective study on the relationship between cervical neoplasia and herpes simplex type-2 virus. II. Herpes simplex type-2 antibody presence in sera taken at enrolment. Int. J. Cancer 1984, 33, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Trigilio, J.; Antoine, T.E.; Paulowicz, I.; Mishra, Y.K.; Adelung, R.; Shukla, D. Tin oxide nanowires suppress herpes simplex virus-1 entry and cell-to-cell membrane fusion. PLoS ONE 2012, 7, e48147. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.L.; Li, S.R.; Kong, F.J.; Hou, R.J.; Guan, X.L.; Guo, F. Inhibition effect of silver nanoparticles on herpes simplex virus 2. Genet. Mol. Res. 2014, 13, 7022–7028. [Google Scholar] [CrossRef] [PubMed]
- Orlowski, P.; Tomaszewska, E.; Gniadek, M.; Baska, P.; Nowakowska, J.; Sokolowska, J.; Nowak, Z.; Donten, M.; Celichowski, G.; Grobelny, J.; et al. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS ONE 2014, 9, e104113. [Google Scholar] [CrossRef] [PubMed]
- Baram-Pinto, D.; Shukla, S.; Perkas, N.; Gedanken, A.; Sarid, R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconj. Chem. 2009, 20, 1497–1502. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, A.M.; Ao, Z.; Girilal, M.; Chen, L.; Xiao, X.; Kalaichelvan, P.T.; Yao, X. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: A new approach to inhibit HIV-and HSV-transmitted infection. Int. J. Nanomed. 2012, 7, 5007–5018. [Google Scholar]
- Gaikwad, S.; Ingle, A.; Gade, A.; Rai, M.; Falanga, A.; Incoronato, N.; Russo, L.; Galdiero, S.; Galdiero, M. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomed. 2013, 8, 4303–4314. [Google Scholar]
- Antoine, T.E.; Hadigal, S.R.; Yakoub, A.M.; Mishra, Y.K.; Bhattacharya, P.; Haddad, C.; Valyi-Nagy, T.; Adelung, R.; Prabhakar, B.S.; Shukla, D. Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes. J. Immunol. 2016, 196, 4566–4575. [Google Scholar] [CrossRef] [PubMed]
- Mishra, Y.K.; Adelung, R.; Röhl, C.; Shukla, D.; Spors, F.; Tiwari, V. Virostatic potential of micro–nano filopodia-like ZnO structures against herpes simplex virus-1. Antivir. Res. 2011, 92, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Sarid, R.; Gedanken, A.; Baram-Pinto, D. Pharmaceutical Compositions Comprising Water-Soluble Sulfonate-Protected Nanoparticles and Uses Thereof. U.S. Patent 20120027809 A1, 2 February 2012. [Google Scholar]
- Baram-Pinto, D.; Shukla, S.; Gedanken, A.; Sarid, R. Inhibition of HSV-1 Attachment, Entry, and Cell-to-Cell Spread by Functionalized Multivalent Gold Nanoparticles. Small 2010, 6, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Samji, N.S.; Anand, B.S. Viral Hepatitis. 2017. Available online: http://emedicine.medscape.com/article/775507-overview#a7 (accessed on 12 July 2017).
- Lu, L.; Sun, R.W.; Chen, R.; Hui, C.K.; Ho, C.M.; Luk, J.M.; Lau, G.K.; Che, C.M. Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther. 2008, 13, 253–262. [Google Scholar] [PubMed]
- Ryoo, S.R.; Jang, H.; Kim, K.S.; Lee, B.; Kim, K.B.; Kim, Y.K.; Yeo, W.S.; Lee, Y.; Kim, D.E.; Min, D.H. Functional delivery of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials 2012, 33, 2754–2761. [Google Scholar] [CrossRef] [PubMed]
- Hang, X.; Peng, H.; Song, H.; Qi, Z.; Miao, X.; Xu, W. Antiviral activity of cuprous oxide nanoparticles against hepatitis C virus in vitro. J. Virol. Methods. 2015, 222, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Yasri, S.; Wiwanitkit, V. Effect of gold nanoparticle on viral load of hepatitis C virus. J. Coast. Life Med. 2014, 2, 2754–2761. [Google Scholar]
- Lee, M.Y.; Yang, J.A.; Jung, H.S.; Beack, S.; Choi, J.E.; Hur, W.; Koo, H.; Kim, K.; Yoon, S.K.; Hahn, S.K. Hyaluronic acid–gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection. ACS Nano 2012, 6, 9522–9531. [Google Scholar] [CrossRef] [PubMed]
- Taubenberger, J.K.; Morens, D.M. The pathology of influenza virus infections. Annu. Rev. Pathmechdis. Mech. Dis. 2008, 3, 499–522. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Sakoda, Y.; Ohyanagi, T.; Nagahori, N.; Shibuya, H.; Okamastu, M.; Miura, N.; Kida, H.; Nishimura, S.I. Novel thiosialosides tethered to metal nanoparticles as potent influenza A virus haemagglutinin blockers. Antivir. Chem. Chemother. 2013, 23, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Yang, Z.; Duan, W.; Li, X.; Yin, J.; Shigdar, S.; O’Connor, M.L.; Marappan, M.; Zhao, X.; Miao, Y.; et al. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomed. 2013, 8, 4103–4114. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 2013, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, Z.; Zhao, M.; Guo, M.; Xu, T.; Wang, C.; Xia, H.; Zhu, B. Reversal of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with amantadine. RSC Adv. 2016, 6, 89679–89686. [Google Scholar] [CrossRef]
- Sametband, M.; Shukla, S.; Meningher, T.; Hirsh, S.; Mendelson, E.; Sarid, R.; Gedanken, A.; Mandelboim, M. Effective multi-strain inhibition of influenza virus by anionic gold nanoparticles. Med. Chem. Commun. 2011, 2, 421–423. [Google Scholar] [CrossRef]
- Xiang, D.X.; Chen, Q.; Pang, L.; Zheng, C.L. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J. Virol. Methods 2011, 178, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Mehrbod, P.; Motamed, N.; Tabatabaian, M.; Estyar, R.S.; Amini, E.; Shahidi, M.; Kheiri, M.T. In vitro antiviral effect of “Nanosilver” on influenza virus. DARU J. Pharm. Sci. 2015, 17, 88–93. [Google Scholar]
- Pink, R.; Hudson, A.; Mouriès, M.A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov. 2005, 4, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Bushman, M.; Morton, L.; Duah, N.; Quashie, N.; Abuaku, B.; Koram, K.A.; Dimbu, P.R.; Plucinski, M.; Gutman, J.; Lyaruu, P.; et al. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum. Proc. R. Soc. B 2016, 283, 20153038. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Kaushik, N.K.; Sardar, M.; Sahal, D. Evaluation of antiplasmodial activity of green synthesized silver nanoparticles. Colloids Surf. B 2013, 111, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Jaganathan, A.; Murugan, K.; Panneerselvam, C.; Madhiyazhagan, P.; Dinesh, D.; Vadivalagan, C.; Chandramohan, B.; Suresh, U.; Rajaganesh, R.; Subramaniam, J.; et al. Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol. Int. 2016, 65, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Madhiyazhagan, P.; Hwang, J.S.; Wang, L.; Dinesh, D.; Suresh, U.; Roni, M.; Higuchi, A.; et al. Eco-friendly drugs from the marine environment: Spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ. Sci. Pollut. Res. 2016, 23, 16671–16685. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Panneerselvam, C.; Samidoss, C.M.; Madhiyazhagan, P.; Suresh, U.; Roni, M.; Chandramohan, B.; Subramaniam, J.; Dinesh, D.; Rajaganesh, R.; et al. In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res. Vet. Sci. 2016, 106, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Inbaneson, S.J.; Ravikumar, S. In vitro antiplasmodial activity of PDDS-coated metal oxide nanoparticles against Plasmodium falciparum. Appl. Nanosci. 2013, 3, 197–201. [Google Scholar] [CrossRef]
- Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Reddy, B.P.; Rao, K.B. Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.P.; Bordoloi, M.; Gogoi, K.; Roy, S.; Narzary, B.; Bhattacharyya, D.R.; Mohapatra, P.K.; Mazumder, B. Antimalarial silver and gold nanoparticles: Green synthesis, characterization and in vitro study. Biomed. Pharmacother. 2017, 91, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Starke, C.G. Leishmaniasis. 2017. Available online: http://emedicine.medscape.com/article/220298-overview (accessed on 12 July 2017).
- Mohapatra, S. Drug resistance in leishmaniasis: Newer developments. Trop. Parasitol. 2014, 4, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Ameneh, S.; Khadije, M.; Ahmad-Reza, T.; Omid, R. Inhibition of Leishmania major growth by Ultraviolet radiation B with Silver nanoparticles in an animal model. In Proceedings of the World Congress on Advances in Nano, Biomechanics, Robotics and Energy Research, Seoul, Korea, 25–28 August 2013. [Google Scholar]
- Rossi-Bergmann, B.; Pacienza-Lima, W.; Marcato, P.D.; De Conti, R.; Duran, N. Therapeutic potential of biogenic silver nanoparticles in murine cutaneous leishmaniasis. J. Nano Res. 2012, 20, 89–97. [Google Scholar] [CrossRef]
- Lima, D.D.; Gullon, B.; Cardelle-Cobas, A.; Brito, L.M.; Rodrigues, K.A.; Quelemes, P.V.; Ramos-Jesus, J.; Arcanjo, D.D.; Plácido, A.; Batziou, K.; et al. Chitosan-based silver nanoparticles: A study of the antibacterial, antileishmanial and cytotoxic effects. J. Bioact. Compat. Polym. 2016, 32, 397–410. [Google Scholar] [CrossRef]
- Ahmad, A.; Syed, F.; Shah, A.; Khan, Z.; Tahir, K.; Khan, A.U.; Yuan, Q. Silver and gold nanoparticles from Sargentodoxa cuneata: Synthesis, characterization and antileishmanial activity. RSC Adv. 2015, 5, 73793–73806. [Google Scholar] [CrossRef]
- Zahir, A.A.; Chauhan, I.S.; Bagavan, A.; Kamaraj, C.; Elango, G.; Shankar, J.; Arjaria, N.; Roopan, S.M.; Rahuman, A.A.; Singh, N. Green synthesis of silver and titanium dioxide nanoparticles using Euphorbia prostrata extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in Leishmania donovani. Antimicrob. Agents Chemother. 2015, 59, 4782–4799. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.; Das, S.; Bera, T.; Mukherjee, A. Rapid synthesis for monodispersed gold nanoparticles in kaempferol and anti-leishmanial efficacy against wild and drug resistant strains. RSC Adv. 2017, 7, 14159–14167. [Google Scholar] [CrossRef]
- Torabi, N.; Mohebali, M.; Shahverdi, A.R.; Rezayat, S.M.; Edrissian, G.H.; Esmaeili, J.; Charehdar, S. Nanogold for the treatment of zoonotic cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): An animal trial with methanol extract of Eucalyptus camaldulensis. J. Pharm. Sci. 2012, 1, 113–116. [Google Scholar]
- Jebali, A.; Kazemi, B. Nano-based antileishmanial agents: A toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol. In Vitro 2013, 27, 1896–1904. [Google Scholar] [CrossRef] [PubMed]
- Delavari, M.; Dalimi, A.; Ghaffarifar, F.; Sadraei, J. In vitro study on cytotoxic effects of ZnO nanoparticles on promastigote and amastigote forms of Leishmania major (MRHO/IR/75/ER). Iran. J. Parasitol. 2014, 9, 6–13. [Google Scholar] [PubMed]
- Nadhman, A.; Khan, M.I.; Nazir, S.; Khan, M.; Shahnaz, G.; Raza, A.; Shams, D.F.; Yasinzai, M. Annihilation of Leishmania by daylight responsive ZnO nanoparticles: A temporal relationship of reactive oxygen species-induced lipid and protein oxidation. Int. J. Nanomed. 2016, 11, 2451–2461. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Brindley, P.J.; Bethony, J.M.; King, C.H.; Pearce, E.J.; Jacobson, J. Helminth infections: The great neglected tropical diseases. J. Clin. Investig. 2008, 118, 1311–1312. [Google Scholar] [CrossRef] [PubMed]
- Hedley, L.; Wani, R.L.S. Helminth Infections: Diagnosis and Treatment. 2015. Available online: http://www.pharmaceutical-journal.com/learning/learning-article/helminth-infections-diagnosis-and-treatment/20069529.article (accessed on 13 July 2017).
- Rashid, M.M.; Ferdous, J.; Banik, S.; Islam, M.R.; Uddin, A.M.; Robel, F.N. Anthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. Charantia. fruit extract. BMC Complement. Altern. Med. 2016, 16, 242. [Google Scholar] [CrossRef] [PubMed]
- Kar, P.K.; Murmu, S.; Saha, S.; Tandon, V.; Acharya, K. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS ONE 2014, 9, e84693. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.A.; Singh, B.R.; Ullah, R.; Shoeb, M.; Naqvi, A.H.; Abidi, S.M. Anthelmintic effect of biocompatible zinc oxide nanoparticles (ZnO NPs) on Gigantocotyle explanatum, a neglected parasite of Indian water buffalo. PLoS ONE 2015, 10, e0133086. [Google Scholar] [CrossRef] [PubMed]
- Dorostkar, R.; Ghalavand, M.; Nazarizadeh, A.; Tat, M.; Hashemzadeh, M.S. Anthelmintic effects of zinc oxide and iron oxide nanoparticles against Toxocara vitulorum. Int. Nano Lett. 2017, 7, 157–164. [Google Scholar] [CrossRef]
Metal Nanoparticles | Therapeutic Outcome | References |
---|---|---|
Silver nanoparticles | Effective against Escherichia coli and Staphylococcus aureus. | [24,25,26,27,28,29,30] |
Sphere-shaped, and triangle shaped silver nanoparticles | The antibacterial activity of the nanoparticles against P. aeruginosa bacteria was enhanced for spherically shaped nanoparticles. The triangle-shaped silver nanoparticles exhibited enhanced antibacterial effect which is attributed to high-atom-density facets and interaction of the facets with the surface of the bacteria. | [31,32,33,34] |
Rod-shaped silver nanoparticles | Triangular shaped nanoparticles exhibited high antibacterial activity against Escherichia coli than the spherical and rod shaped silver nanoparticles. | [32] |
Hexagonal and nanoplates silver nanoparticles | Hexagonal-shaped silver nanoparticles were effective against S. aureus and E. coli when compared to the nanorod- and nanoplate-shaped silver nanoparticles. | [35,36] |
Nanocube and nanowire-shaped silver nanoparticles | Nanocube-shaped silver nanoparticles exhibited the highest antibacterial activity because of their surface area, effective contact area, and facet reactivity. | [37] |
Silver nanoparticles | Inhibited the growth of Mycobacterium tuberculosis | [38,39,40] |
Silver nanoparticles | Effective against bacteria causing sexually transmitted disease e.g., Chlamydia trachomatis. | [41,42] |
Silver nanoparticles in urinary catheter | Effective against bacteria that are responsible for urinary tract infections. | [43,44,45,46,47,48] |
silver nanoparticles combined with polymixin B and rifampicin | Good synergistic effects in the treatment of Acinetobacter baumannii infection. | [49] |
Silver nanoparticles combination with amoxicillin | Good synergistic effects against Escherichia coli resulting from chelation between active groups such as hydroxy and amido groups on amoxicillin with the nanosilver. | [50] |
Silver nanoparticles combination with β-lactam; quinolone; aminoglycoside and polykeptide | Effective against drug-resistant bacteria Salmonella typhimurium. β-lactam class of antibiotics did not show synergistic effects because of its inability to form a complex with the nanoparticles. | [51] |
Silver nanoparticles combination with gentamicin and penicillin | Excellent antibacterial effects against animal bacterial infections, Actinobacillus pleuropneumoniae, A. pleuropneumoniae and Pasteurella multocida. | [52] |
Silver nanoparticles combination with visible blue light and either amoxicillin, azithromycin, clarithromycin, linezolid or vancomycin | Good synergistic antibacterial effects against methicillin-resistant Staphylococcus aureus. | [53] |
Silver nanoparticles combined with either cefazolin, mupirocin, gentamycin, neomycin, tetracycline or vancomycin | Combination of nanoparticles with antibiotics was effective against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. | [54] |
Conjugation of cephalexin onto silver nanoparticles | Effective against E. coli and S. aureus by binding to the cell wall resulting in the destruction of the cell outer membrane. | [55] |
Silver nanoparticles prepared using plants extracts | Stable nanoparticles with good antibacterial activity. | [56,57,58,59,60,61,62,63,64,65,66] |
Silver nanoparticles prepared by biological methods using virus, bacteria and fungi | Good antibacterial activity. | [67,68,69,70,71,72,73] |
Metal Nanoparticles | Therapeutic Outcome | References |
---|---|---|
Iron oxide nanoparticles | Good antibacterial activity on E. coli, P. vulgaris. Staphylococcus aureus | [74,75,76,77,78] |
Iron oxide nanoparticles combination with erythromycin | Good synergistic antibacterial effects against S. pneumonia | [79] |
Iron oxide nanoparticles | Inhibition of growth of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens | [80,81] |
Iron oxide nanoparticles coated with chitosan biomolecules | Good inhibition of growth of Bacillus subtilis and Escherichia coli bacteria | [82] |
Iron oxide nanoparticles using Punica granatum peel extract | Strong antibacterial activity against Pseudomonas aeruginosa | [83] |
Iron oxide nanoparticles | Good antibacterial effects against Staphylococcus aureus which is dependent on concentration | [85] |
Chitosan coated iron nanoparticles | Inhibited the growth of Escherichia coli and Salmonella enteritidis | [86] |
Iron oxide nanoparticles combined with ciprofloxacin | Poor antibacterial activity | [87] |
Iron oxide nanoparticles prepared using leaf extract | Good antibacterial with varied shapes | [88,89,90,91,92,93,94,95,96,97] |
Copper oxide nanoparticles | Very sensitive to E. coli and E. faecalis and less selective to K. pneumonia | [98] |
copper oxide nanorods and multi-armed nanoparticles | Multi-armed nanoparticles exhibited higher antibacterial activity against E. coli than the nanorods | [99] |
Copper oxide nanoparticles | The antibacterial activity of copper oxides is attributed to lipid peroxidation, generation of reactive oxygen species, protein oxidation and DNA degradation in bacteria cells | [100] |
Copper oxide nanoparticles | antibacterial of the nanoparticles was dependent on the particle sizes | [101,102] |
Copper oxide nanoparticles | The nanoparticles exhibited spherical shapes with high antibacterial activities against Bacillus subtilis and Salmonella choleraesuis | [103] |
Copper oxide nanoparticles | The antibacterial activity of the nanoparticles was effective against K. pneumoniae, S. typhimurium, and E. aerogenes | [104] |
Copper oxide nanoparticles | Effective against different strains of Staphylococcus aureus | [105] |
Copper oxide nanoparticles | Good antibacterial activity of copper oxide nanoparticles against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria | [106] |
Copper oxide nanoparticles | Good antibacterial activity against Escherichia coli and Pseudomonas aeruginosa | [107] |
Copper oxide nanoparticles | Effective against Escherichia coli and Lactobacillus brevis | [108,109,110,111,112,113,114] |
Metal Nanoparticles | Therapeutic Outcome | References |
---|---|---|
Zinc oxide nanoparticles | Good antibacterial activity against Klebsiella pneumonia that causes respiratory infection | [115] |
Zinc oxide nanoparticles | The inhibition effect on the growth of B. subtilis was dependent on the concentration of the nanoparticles | [116,117] |
Zinc oxide nanoparticles | The antibacterial effect against clinical isolate of Staphylococcus aureus was excellent | [118] |
Zinc oxide nanoparticles | Effective against Campylobacter jejuni | [119] |
Zinc oxide nanoparticles | Good antibacterial activity by ROS mediated membrane lipid oxidation of Escherichia coli, S. aureus, P. aeruginosa and V. anguillarum | [120,121,122,123] |
Zinc oxide nanoparticles | Effective against E. coli | [124,125,126] |
Zinc oxide nanoparticles | Effective against Gram-positive bacteria. The antibacterial effect was high on B. subtilis cells when compared to S. aureus | [127] |
Zinc oxide nanoparticles coated with gentamicin | The antibacterial effects against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus and Listeria monocytogenes was significant | [128] |
Zinc oxide nanoparticles using aqueous extracts of P. crispum | Excellent antibacterial activity | [129] |
Zinc oxide nanoparticles prepared from plants extract | Enhanced antibacterial activity | [130,131] |
Aluminium oxide nanoparticles | Nanoparticles penetrated Candida cells disrupting the morphological and physiological activity of the cells. | [132,133] |
aluminium oxide nanoparticles prepared from leaf extracts of lemongrass | Good antibacterial, activity against clinical isolates of P. aeruginosa was significant | [134] |
Aluminium oxide nanoparticles | Effective against gram-positive and gram-negative bacteria | [135,136] |
Metal Nanoparticles | Therapeutic Outcome | References |
---|---|---|
Gold nanoparticles | Effective against bacterial infection in animal, Corynebacterium pseudotuberculosis | [137] |
Gold nanoparticles | Effective against E. Coli | [138,139,140,141,142] |
Gold nanoparticles | The nanoparticles were active against Gram-negative, Gram-positive uropathogens and multi-drug resistant pathogens | [139] |
Gold nanoparticles | Active against enteric bacteria e.g., Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Klebsiella pneumonia | [140] |
Gold nanoparticles | Effective against E. coli, S. typhimurium DT104, and S. aureus | [141] |
Gold nanoparticles | Inhibited growth of Salmonella typhi | [142] |
Gold nanoparticles | Effective against Staphylococcus aureus and Escherichia coli | [143] |
Gold nanoparticles combined with gentamicin | Effective against Escherichia coli | [144,145] |
Gold nanoparticles capped with cefaclor | Potent antimicrobial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria | [145] |
Gold nanoparticles | Potent antibacterial effect against multidrug-resistant Gram-negative bacteria | [146] |
Gold nanoparticles prepared using banana peel extract | Good antibacterial activity | [147] |
Gold nanoparticles combined with ofloxacin | Superior bactericidal property | [148] |
Gold nanoparticles prepared using Stoechospermum marginatum | Enhanced antibacterial activity | [149] |
Gold nanoparticle prepared from A. comosus extract | Useful purification processes for inhibiting the growth of bacteria | [150] |
Gold nanoparticles prepared using aqueous leaves extract of Moringa oleifera | Effective against Staphylococcus aureus, Candida tropicalis, Candida krusei, Klebsiella pneumonia | [151] |
Gold nanoparticles | Active against Escherichia coli | [152] |
Gold nanoparticles combined with gentamicin | Good antibacterial activity | [153] |
light-absorbing gold nanoparticles conjugated with specific antibodies | selective killing of the Gram-positive bacterium Staphylococcus aureus | [154,155,156,157] |
Gold nanoparticles combined with vancomycin | Selective binding to the cell of Gram-positive bacteria, Gram-negative bacteria and antibiotic-resistant bacteria | [156,157] |
Gold nanoparticles combined with ampicillin | Effective against E. coli, Micrococcus luteus and Staphylococcus aureus | [158] |
Gold nanoparticles combined with streptomycin | Effective against E. coli, Micrococcus luteus and Staphylococcus aureus | [158] |
Gold nanoparticles combined with kanamycin | Effective against E. coli, Micrococcus luteus and Staphylococcus aureus | [158] |
Gold nanoparticles combined with levofloxacin | Inhibited growth of S. aureus and E. coli | [159] |
Titanium dioxide nanoparticles | Effective against biofilm producing methicillin-resistant S. aureus | [160] |
Titanium dioxide nanoparticles | Inhibited growth of bacteria that causes dental plaques | [161] |
Titanium dioxide nanoparticles | Effective against Streptococcus mutans | [163] |
Titanium dioxide nanoparticles | Effective against E. coli | [164,165,166,167,168] |
Gallium nanoparticles | Inhibited the growth of mycobacteria | [169] |
Gallium nanoparticles | Good antibacterial properties against Pseudomonas aeruginosa | [170] |
Gallium nanoparticles | Inhibited growth of Mycobacterium tuberculosis significantly | [171] |
Gallium nanoparticles | Disrupted F. Tularensis Fe metabolism | [172] |
Nanoparticles | Infection | Therapeutic Outcome | References |
---|---|---|---|
Silver nanoparticles | HIV | Inhibition of CD4-dependent virion binding, fusion, and infectivity | [173,174,175,176,177] |
Gallium nanoparticles | HIV | Suppressed co-infection of HIV and tuberculosis. Inhibition of viral protease | [178,179,180] |
Gold nanoparticles combined with Azidothymidine | HIV | Inhibition of early stages of viral replication | [181,182] |
Gold nanoparticles conjugated with raltegravir | HIV | Good anti-HIV activity | [183] |
Gold nanoparticles | HIV | Inhibition of viral entry | [184] |
Carbohydrate-coated gold nanoparticles conjugated with abacavir and lamivudine | HIV | The nanoparticles inhibited HIV viral replication | [185,186] |
Peptide triazoles conjugated onto gold nanoparticle | HIV | Potent antiviral effects against HIV-1 | [187] |
Tin nanoparticles | Herpes | Trapped HSV-1 before entry into the host cell | [188,189,190] |
Silver nanoparticles | Herpes | Virus replication was inhibited | [191] |
Tannic acid modified with silver nanoparticles | Herpes | reduced HSV-2 infection | [192] |
Silver nanoparticles | Herpes | Inhibition of viral entry into the cell and prevention of subsequent infection | [193] |
Polyurethane condom coated with silver nanoparticles | Herpes | Inhibition of HSV-1 and 2 infections | [194,195] |
Zinc oxide | Herpes | Prevented viral entry and infection | [196,197] |
Gold nanoparticle | Herpes | Inhibited viral attachment and penetration into the cells thereby preventing infections | [198,199] |
Silver nanoparticles | Hepatitis | Interaction with the HBV viral particles resulting in the inhibition of the production of HBV RNA and extracellular virions | [200,201] |
Iron oxide nanoparticles | Hepatitis | Induced the knockdown of hepatitis C virus gene, NS3. HCV NS3 gene encodes helicase and protease which are useful for viral replication | [202] |
Cuprous nanoparticle | Hepatitis | Inhibited the entry of virus which included genotypes such as, 1a, 1b, and 2a thereby hindering viral replication | [203] |
Gold nanoparticle loaded with interferon α | Hepatitis | Targeted delivery of interferon α | [204,205] |
Gold and silver nanoparticles | Influenza | Effective against influenza A virus | [206,207] |
Silver nanoparticles | Influenza | Effective against influenza viruses resulting in damage to their morphological structure. Inhibiting the host receptor binding sites of the virus | [208,209,210,211,212,213] |
Nanoparticles | Infection | Therapeutic Outcome | References |
---|---|---|---|
Silver nanoparticles | Malaria | Inhibition of the growth of P. falciparum in vivo and in vitro | [216,217,218,219] |
Metal oxide nanoparticles (Fe3O4, MgO, ZrO2, Al2O3 and CeO2) | Malaria | Good to moderate antiplasmodial activity against P. falciparum | [220] |
Gold nanoparticles | Malaria | Moderate delayed parasitemia rise in vivo, moderate antiplasmodial activity against P. falciparum | [221,222] |
Silver nanoparticles | Leishmaniasis | Inhibition of proliferation and metabolic activity of promastigotes. Good antileishmanial activity in vitro and in vivo | [223,224,225,226,227,228,229] |
Kaempferol-stabilized gold nanoparticles | Leishmaniasis | Effective against both wild and drug resistant strains | [230,231] |
Metal-oxide nanoparticles (titanium dioxide nanoparticles, zinc oxide nanoparticles and magnesium oxide nanoparticles) | Leishmaniasis | Enhanced cytotoxic effects on promastigotes of L. major via induction of apoptosis | [232,233] |
Silver nanoparticles | Helminth infections | Enhanced anthelmintic activity against worm | [234,235,236,237] |
Gold nanoparticles | Helminth infections | Affected the physiological functioning of the parasite causing paralysis and subsequent death | [238] |
Zinc oxide nanoparticles | Helminth infection | Disruption of the electron transport system inhibiting ATP production and the contractile movement of the parasite | [239] |
Zinc oxide and iron oxide nanoparticles | Helminth infection | The anthelmintic activity of the metal oxides nanoparticles was via induction of oxidative stress | [240] |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aderibigbe, B.A. Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules 2017, 22, 1370. https://doi.org/10.3390/molecules22081370
Aderibigbe BA. Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules. 2017; 22(8):1370. https://doi.org/10.3390/molecules22081370
Chicago/Turabian StyleAderibigbe, Blessing Atim. 2017. "Metal-Based Nanoparticles for the Treatment of Infectious Diseases" Molecules 22, no. 8: 1370. https://doi.org/10.3390/molecules22081370
APA StyleAderibigbe, B. A. (2017). Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules, 22(8), 1370. https://doi.org/10.3390/molecules22081370