Chemical Composition and Evaluation of the Biological Properties of the Essential Oil of the Dietary Phytochemical Lippia citriodora
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition
2.2. Antimicrobial Activitys
2.3. Antioxidant Activity
2.4. Genotoxic or Cytoprotective (Against H2O2-Induced Oxidative Damage) Activity
2.5. Antiproliferative Activity
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Essential Oil Extraction and GC/MS Analysis
3.4. Microbial Strains
3.5. Antimicrobial Assays
3.6. Antioxidant Activity
3.6.1. DPPH Assay
3.6.2. ABTS Assay
3.7. Cell Lines and Cell Cultures
3.8. Single Cell Gel Electrophoresis Assay (Comet Assay)
3.9. Cell Viability Assays
3.9.1. SRB Assay
3.9.2. XTT Assay
3.10. Data Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- González-Vallinas, M.; González-Castejón, M.; Rodríguez-Casado, A.; Ramírez de Molina, A. Dietary phytochemicals in cancer prevention and therapy: A complementary approach with promising perspectives. Nutr. Rev. 2013, 71, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; Snyder, D.C. Phytochemicals and cancer risk: A review of the epidemiological evidence. Nutr. Clin. Pract. 2012, 27, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Stagos, D.; Amoutzias, G.D.; Matakos, A.; Spyrou, A.; Tsatsakis, A.M.; Kouretas, D. Chemoprevention of liver cancer by plant polyphenols. Food Chem. Toxicol. 2012, 50, 2155–2170. [Google Scholar] [CrossRef] [PubMed]
- Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef] [PubMed]
- Quirantes-Piné, R.; Herranz-López, M.; Funes, L.; Borrás-Linares, I.; Micol, V.; Segura Carretero, A.; Fernández-Gutiérrez, A. Phenylpropanoids and their metabolites are the major compounds responsible for blood-cell protection against oxidative stress after administration of Lippia citriodora in rats. Phytomedicine 2013, 20, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Mothana, R.A.; Abdo, S.A.; Hasson, S.; Althawab, F.M.; Alaghbari, S.A.; Lindequist, U. Antimicrobial, antioxidant and cytotoxic activities and phytochemical screening of some Yemeni medicinal plants. Evid. Based Complement. Altern. Med. 2010, 7, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Portmann, E.; Nigro, M.M.; Reides, C.G.; Llesuy, S.; Ricco, R.A.; Wagner, M.L.; Gurni, A.A.; Carballo, M.A. Aqueous extracts of Lippia turbinata and Aloysia citriodora (Verbenaceae): Assessment of antioxidant capacity and DNA damage. Int. J. Toxicol. 2012, 31, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Valentão, P.; Fernandes, E.; Carvalho, F.; Andrade, P.B.; Seabra, R.M.; de Lourdes Basto, M. Studies on the antioxidant activity of Lippia citriodora infusion: Scavenging effect on superoxide radical, hydroxyl radical and hypochlorous acid. Biol. Pharm. Bull. 2002, 25, 1324–1327. [Google Scholar] [CrossRef] [PubMed]
- Linde, J.; Combrinck, S.; Regnier, T.; Virijevic, S. Chemical composition and antifungal activity of the essential oils of Lippia rehmannii from South Africa. S. Afr. J. Bot. 2010, 76, 37–42. [Google Scholar] [CrossRef]
- Chorianopoulos, N.; Lambert, R.J.W.; Skandamis, P.N.; Evergetis, E.T.; Haroutounian, S.A.; Nychas, G.J.E. A newly developed assay to study the minimum inhibitory concentration of Satureja spinosa essential oil. J. Appl. Microbiol. 2006, 100, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Lambert, R.J.W.; Lambert, R. A model for the efficacy of combined inhibitors. J. Appl. Microbiol. 2003, 95, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Vamvakias, M.; Bardouki, H.; Panayiotidis, M.Ι.; Galanis, A.; Kourkoutas, Y.; Chlichlia, K.; et al. Phytochemical Profile and Evaluation of the Biological Activities of Essential Oils Derived from the Greek Aromatic Plant Species Ocimum basilicum, Mentha spicata, Pimpinella anisum and Fortunella margarita. Molecules 2016, 21, 1069. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.F.; El-Beltagi, H.S.; Nasr, N.F. Evaluation of antioxidant and antimicrobial activity of Aloysia triphylla. Electron. J. Environ. Agric. Food Chem. 2011, 10, 3044–3053. [Google Scholar]
- Koohsari, H.; Ghaemi, E.A.; Poli, M.S.S.; Sadegh, A. Evaluation of antibacterial activity of Lemon verbena (Lippia citriodora) leaves. Ann. Biol. Res. 2013, 4, 52–55. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M.A.; Elfeki, A.; Talarmin, H. Biological properties of citral and its potential protective effects against cytotoxicity caused by aspirin in the IEC-6 cells. Biomed. Pharmacother. 2017, 87, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Fortuné Randriana, R.; Rasoanaivo, P.; Nicoletti, M.; Quassinti, L.; Bramucci, Μ.; Lupidi, G.; Petrelli, D.; Vitali, L.A.; Papa, F.; et al. Chemical composition and in vitro biological activities of the essential oil of Vepris macrophylla (BAKER) I. Verd. endemic to Madagascar. Chem. Biodivers. 2013, 10, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhao, X.; Liu, Z.; Meng, R.; Chen, X.; Guo, N. Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-l-lysine and citral, alone or in combination. Food Nutr. Res. 2016, 60, 31891. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Olszowy, M. Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components. Nat. Prod. Res. 2014, 28, 1952–1963. [Google Scholar] [CrossRef] [PubMed]
- Bendif, H.; Boudjeniba, M.; Miara, M.D.; Biqiku, L.; Bramucci, M.; Lupidi, G.; Quassinti, L.; Maggi, F. Essential oil of Thymus munbyanus subsp. coloratus from Algeria: Chemotypification and in vitro biological activities. Chem. Biodivers. 2016, 14. [Google Scholar] [CrossRef]
- Osuna-Ruiz, I.; López-Saiz, C.M.; Burgos-Hernández, A.; Velázquez, C.; Nieves-Soto, M.; Hurtado-Oliva, M.A. Antioxidant, antimutagenic and antiproliferative activities in selected seaweed species from Sinaloa, Mexico. Pharm. Biol. 2016, 54, 2196–2210. [Google Scholar] [CrossRef] [PubMed]
- Bayala, B.; Bassole, I.H.; Gnoula, C.; Nebie, R.; Yonli, A.; Morel, L.; Figueredo, G.; Nikiema, J.B.; Lobaccaro, J.M.; Simpore, J. Chemical composition, antioxidant, anti-inflammatory and antiproliferative activities of essential oils of plants from Burkina Faso. PLoS ONE 2014, 9, e92122. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Haley, S.; Perret, J.; Harris, M.; Wilson, J.; Qian, M. Free radical scavenging propertiesof wheat extracts. J. Agric. Food Chem. 2002, 50, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Quintero Ruiz, N.; Córdoba Campo, Y.; Stashenko, E.E.; Fuentes, J.L. Antigenotoxic Effect Against Ultraviolet Radiation-induced DNA Damage of the Essential Oils from Lippia Species. Photochem. Photobiol. 2017, 93, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Sanches, L.J.; Marinello, P.C.; Panis, C.; Fagundes, T.R.; Morgado-Díaz, J.A.; de-Freitas Junior, J.C.; Cecchini, R.; Cecchini, A.L.; Luiz, R.C. Cytotoxicity of citral against melanoma cells: The involvement of oxidative stress generation and cell growth protein reduction. Tumour Biol. 2017, 39, 1010428317695914. [Google Scholar] [CrossRef] [PubMed]
- Gomes-Carneiro, M.R.; Felzenszwalb, I.; Paumgartten, F.J. Mutagenicity testing (+/−)camphor,1,8 cineole, citral, citronellal, (−)-menthol and terpineol with the Salmonella/microsome assay. Mutat. Res. 1998, 416, 129–136. [Google Scholar] [CrossRef]
- López, M.A.; Stashenko, E.E.; Fuentes, J.L. Chemical composition and antigenotoxic properties of Lippia alba essential oils. Genet. Mol. Biol. 2011, 34, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Jothiramajayam, M.; Ghosh, M.; Mukherjee, A. Evaluation of toxicity of essential oils palmarosa, citronella, lemongrass and vetiver in human lymphocytes. Food Chem. Toxicol. 2014, 68, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Escobar, P.; Milena Leal, S.; Herrera, L.V.; Martinez, J.R. Stashenko, E. Chemical composition and antiprotozoal activities of Colombian Lippia spp essential oils and their major components. Mem. Inst. Oswaldo Cruz 2010, 105, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Oukerrou, M.A.; Tilaoui, M.; Mouse, H.A.; Leouifoudi, I.; Jaafari, A.; Zyad, A. Chemical Composition and Cytotoxic and Antibacterial Activities of the Essential Oil of Aloysia citriodora Palau Grown in Morocco. Adv. Pharmacol. Sci. 2017, 7801924. [Google Scholar] [CrossRef] [PubMed]
- Chaouki, W.; Leger, D.Y.; Liagre, B.; Beneytout, J.L.; Hmamouchi, M. Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF-7 cells. Fundam. Clin. Pharmacol. 2009, 23, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Mitropoulou, G.; Fitsiou, E.; Stavropoulou, E.; Papavassilopoulou, E.; Vamvakias, M.; Pappa, A.; Oreopoulou, A.; Kourkoutas, Y. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil. Microb. Ecol. Health Dis. 2015, 6, 26543. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Panayiotidis, M.; Tsolas, Ο.; Galaris, D. Glucose oxidase-produced H2O2 induces Ca2+ Dependent DNA damage in human peripheral blood lymphocytes. Free Radic. Biol. Med. 1999, 26, 548–556. [Google Scholar] [CrossRef]
- Roehm, N.W.; Rodgers, G.H.; Hatfield, S.M.; Glasebrook, A.L. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J. Immunol. Methods 1991, 142, 257–265. [Google Scholar] [CrossRef]
Sample Availability: Samples of the Lippia citriodora essential oil is available from the authors. |
KRI* | Compounds | % Area |
---|---|---|
795 | trans-hex-2-enal | 0.024 |
805 | cis-hex-3-enol | 0.084 |
819 | trans-hex-2-enol | 0.013 |
920 | α-pinene | 0.041 |
946 | oct-1-en-3-one | 0.072 |
954 | 6-methyl-hept-5-en-2-noe | 2.278 |
956 | oct-1-en-3-ol | 1.434 |
971 | octan-3-ol | 0.079 |
972 | myrcene | 0.100 |
978 | cis-hex-3-enyl acetate | 0.071 |
1008 | 1,8-cineol | 3.150 |
1010 | limonene | 2.166 |
1019 | cis-b-ocimene | trace |
1030 | trans-b-ocimene | 0.386 |
1043 | sabinenehydrate | 0.267 |
1077 | nonanal | 0.053 |
1080 | linalol | 0.396 |
1137 | cis-isocitral | 0.485 |
1165 | a-terpineol | 1.119 |
1212 | nerol | 8.047 |
1215 | cis-citral | 17.160 |
1219 | piperitone | 0.193 |
1241 | geraniol | 5.720 |
1246 | trans-citral | 26.404 |
1278 | thymol or carvacrol | 0.462 |
1324 | eugenol | 0.190 |
1340 | geranic acid | 0.195 |
1360 | geranyl acetate | 0.999 |
1366 | a-copaene | 0.263 |
1367 | methyl eugenol | 0.129 |
1373 | b-bourbonene | 0.199 |
1400 | a-cedrene | 0.283 |
1405 | caryophyllene | 1.439 |
1462 | d-germacrene | 1.150 |
1464 | ar-curcumene | 2.098 |
1479 | zingiberene | 0.536 |
1479 | bicyclogermacrene | 1.750 |
1504 | cubenol A | 0.215 |
1543 | nerolidol | 0.753 |
1551 | spathulenol | 3.279 |
1554 | caryophyllene oxide | 1.375 |
1607 | iso-spathulenol | 0.452 |
1611 | T-cadinol | 0.558 |
Lippia citriodora Essential Oil | Citral | |||
---|---|---|---|---|
Initial Inoculum | ||||
Microbial Species | 5 log cfu/mL | 7 log cfu/mL | 5 log cfu/mL | 7 log cfu/mL |
Salmonella Enteritidis | 0 | 0 | 10 ± 0.5 | 7 ± 0.3 |
Salmonella typhimurium | 0 | 0 | 10 ± 0.3 | 8 ± 0.5 |
Escherichia coli | 0 | 0 | 11 ± 0.7 | 7 ± 0.5 |
Listeria monocytogenes | 12 ± 0.7 | 10 ± 0.3 | 20 ± 0.3 | 15 ± 0.5 |
Staphylococcus epidermidis | 20 ± 0.25 | 16 ± 0.3 | 25 ± 0.5 | 19 ± 0.3 |
Staphylococcus aureus | 13 ± 0.5 | 11 ± 0.7 | 23 ± 0.5 | 19 ± 0.3 |
Pseudomonas fragi | 0 | 0 | 10 ± 0.5 | 7 ± 0.3 |
Saccharomyces cerevisiae | 20 ± 0.5 | 12 ± 0.7 | 25 ± 0.7 | 18 ± 0.3 |
Lippia Citriodora Essential Oil | Citral * | Ciproxin (Data Reproduced by Fitsiou et al. [12]) | ||||
---|---|---|---|---|---|---|
Microbial species | MIC | NIC | MIC | NIC | MIC | NIC |
Salmonella Enteritidis | - | - | 7051 ± 26 | 6393 ± 18 | 0.976 ± 0.001 | 0.957 ± 0.001 |
Salmonella typhimurium | - | - | 7603 ± 26 | 6121 ± 9 | 0.979 ± 0.001 | 0.964 ± 0.001 |
Escherichia coli | - | - | 7024 ± 9 | 6340 ± 18 | 0.984 ± 0.001 | 0.956 ± 0.002 |
Listeria monocytogenes | 1794 ± 9 | 179 ± 9 | 6919 ± 18 | 4981 ± 18 | 0.979 ± 0.001 | 0.968 ± 0.001 |
Staphylococcus epidermidis | 1758 ± 11 | 538 ± 19 | 6954 ± 18 | 5779 ± 9 | 0.979 ± 0.002 | 0.957 ± 0.002 |
Staphylococcus aureus | 923 ± 19 | 98 ± 9 | 6901 ± 18 | 4972 ± 9 | 0.982 ± 0.002 | 0.963 ± 0.003 |
Pseudomonas fragi | - | - | 7112 ± 27 | 5235 ± 9 | 0.955 ± 0.001 | 0.940 ± 0.002 |
DPPH | ABTS | ||
---|---|---|---|
IC50 (mg/mL) | IC50 (mg/mL) | (μmolesEΑ/g) * | |
Lippia citriodora oil | 6.3 ± 0.25 | 3.08 ± 0.3 | 3115.2 |
Citral | n.d. | n.d. | 773.7 |
Ascorbic acid | 0.0054 ± 0.00035 | 0.0054 ± 0.00041 | - |
EC50 (μg/mL) | |||||
---|---|---|---|---|---|
HepG2 | Caco2 | MCF-7 | THP-1 | A375 | |
Lippia citriodora oil | 74 ± 2.8 | 71 ± 2.6 | 89 ± 1.4 | 111 ± 3.6 | 9.1 ± 0.6 |
Citral | 7 ± 0.35 | 3.7 ± 0.21 | 1.3 ± 0.19 | - | - |
Etoposide | 0.60 ± 0.06 | 7.3 ± 0.63 | 1.67 ± 0.41 | 0.45 ± 0.013 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitsiou, E.; Mitropoulou, G.; Spyridopoulou, K.; Vamvakias, M.; Bardouki, H.; Galanis, A.; Chlichlia, K.; Kourkoutas, Y.; Panayiotidis, M.Ι.; Pappa, A. Chemical Composition and Evaluation of the Biological Properties of the Essential Oil of the Dietary Phytochemical Lippia citriodora. Molecules 2018, 23, 123. https://doi.org/10.3390/molecules23010123
Fitsiou E, Mitropoulou G, Spyridopoulou K, Vamvakias M, Bardouki H, Galanis A, Chlichlia K, Kourkoutas Y, Panayiotidis MΙ, Pappa A. Chemical Composition and Evaluation of the Biological Properties of the Essential Oil of the Dietary Phytochemical Lippia citriodora. Molecules. 2018; 23(1):123. https://doi.org/10.3390/molecules23010123
Chicago/Turabian StyleFitsiou, Eleni, Gregoria Mitropoulou, Katerina Spyridopoulou, Manolis Vamvakias, Haido Bardouki, Alex Galanis, Katerina Chlichlia, Yiannis Kourkoutas, Mihalis Ι. Panayiotidis, and Aglaia Pappa. 2018. "Chemical Composition and Evaluation of the Biological Properties of the Essential Oil of the Dietary Phytochemical Lippia citriodora" Molecules 23, no. 1: 123. https://doi.org/10.3390/molecules23010123
APA StyleFitsiou, E., Mitropoulou, G., Spyridopoulou, K., Vamvakias, M., Bardouki, H., Galanis, A., Chlichlia, K., Kourkoutas, Y., Panayiotidis, M. Ι., & Pappa, A. (2018). Chemical Composition and Evaluation of the Biological Properties of the Essential Oil of the Dietary Phytochemical Lippia citriodora. Molecules, 23(1), 123. https://doi.org/10.3390/molecules23010123