α-Glucosidase Inhibition and Antibacterial Activity of Secondary Metabolites from the Ecuadorian Species Clinopodium taxifolium (Kunth) Govaerts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Compounds 1–6
2.2. Essential Oil Analysis
2.3. Hypoglycemic Effect and Antibacterial Activity
3. Materials and Methods
3.1. General Information
3.2. Plant Material
3.3. Extraction and Isolation of Metabolites
3.4. Distillation and Analysis of the Essential Oil
3.5. Minimum Inhibitory Concentration (MIC) Determination
3.6. α-Glucosidase Inhibition Assay
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhuo, R.; Liu, H.; Liu, N.; Wang, Y. Ligand fishing: A remarkable strategy for discovering bioactive compounds from complex mixture of natural products. Molecules 2016, 21, 1516. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- INEC. Diabetes, Segunda Causa de Muerte Después de las Enfermedades Isquémicas del Corazón. Available online: http://www.ecuadorencifras.gob.ec/documentos/web-inec/Inforgrafias-INEC/2017/Diabetes.pdf (accessed on 3 January 2018).
- Properzi, A.; Angelini, P.; Bertuzzi, G.; Venanzoni, R. Some biological activities of essential oils. Med. Aromat. Plants 2013, 2, 2–5. [Google Scholar]
- Zhong, M.; Sun, G.; Zhang, X.; Sun, G.; Xu, X.; Yu, S. A new prenylated naphthoquinoid from the aerial parts of Clinopodium chinense (Benth.) O. Kuntze. Molecules 2012, 17, 13910–13916. [Google Scholar] [CrossRef] [PubMed]
- Beatriz, M.; Saltos, V.; Fabiola, B.; Puente, N.; Malafronte, N.; Braca, A. Phenolic Compounds from Clinopodium tomentosum (Kunth) Govaerts (Lamiaceae). J. Braz. Chem. Soc. 2014, 25, 2121–2124. [Google Scholar]
- Miyase, T.; Matsushima, Y. Saikosaponin homologues from Clinopodium spp. The structures of clinoposaponins XII–XX. Chem. Pharm. Bull. 1997, 45, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Sasaki, K.; Sato, K.; Yoshizaki, F.; Yamada, H.; Mutoh, H.; Umehara, K.; Miyase, T.; Warashina, T.; Aoshima, H.; et al. Matrix metalloproteinase-2 inhibitors from Clinopodium chinense var. parviflorum. J. Nat. Prod. 2009, 72, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Cheng, J.; Cheng, D.; Gao, L. Chemical constituents from Clinopodium urticifolium. J. Chin. Chem. Soc. 2004, 51, 1043–1049. [Google Scholar] [CrossRef]
- Niu, D.Y.; Li, Y.-K.; Wu, X.-X.; Shi, Y.-D.; Hu, Q.-F.; Gao, X.-M. Pterocarpan derivatives from Clinopodium urticifolium and their cytotoxicity. Asian J. Chem. 2013, 25, 9672–9674. [Google Scholar]
- De la Torre, L.; Navarrete, H.; Muriel, M.P.; Marcía, M.; Balslev, H. (Eds.) Enciclopedia de las Plantas Útiles del Ecuador; Herbario QCA & Herbario AAU: Quito, Ecuador; Aarhus, Denmark, 2008; Volume 1, pp. 1–3. [Google Scholar]
- Ikeda, Y.; Murakami, A.; Ohigashi, H. Ursolic acid: An anti- and pro- inflammatory triterpenoid. Mol. Nutr. Food Res. 2008, 52, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Jesus, J.A.; Lago, J.H.G.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F.D. Antimicrobial activity of oleanolic and ursolic acids: An update. Evid.-Based Complement. Altern. Med. 2015, 2015, 620472. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Peng, Z. Anti-HIV triterpenoid components. J. Chem. Pharm. Res. 2014, 6, 438–443. [Google Scholar]
- Vasconcelos, M.A.L.; Royo, V.A.; Ferreira, D.S.; Miller Crotti, A.E.; Andrade E Silva, M.L.; Carvalho, J.C.T.; Bastos, J.K.; Cunha, W.R. In vivo analgesic and anti-inflammatory activities of ursolic acid and oleanoic acid from Miconia albicans (Melastomataceae). Z. Naturforsch. C J. Biosci. 2006, 61, 477–482. [Google Scholar] [CrossRef]
- Freitas, P.C.M.; Pucci, L.L.; Vieira, M.S.; Lino, R.S.; Oliveira, C.M.A.; Cunha, L.C.; Paula, J.R.; Valadares, M.C. Diuretic activity and acute oral toxicity of Palicourea coriacea (Cham.) K Schum. J. Ethnopharmacol. 2011, 134, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Oleanolic acid and ursolic acid: Research perspectives. J. Ethnopharmacol. 2005, 100, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, G.; Dhanapal, C.K. Evaluation of antidiabetic activity of ursolic acid acetate isolated from Coleus vettiveroides (Jacob) in streptozotocin-induced diabetic rats. World J. Pharm. Pharm. Sci. 2015, 4, 1316–1331. [Google Scholar]
- Benalla, W.; Bellahcen, S.; Bnouham, M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Curr. Diabetes Rev. 2010, 6, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.P.; Zhang, K.; Lu, Y.J.; He, P.; Zhao, S.Q. In vitro and in vivo evaluation of the antidiabetic activity of ursolic acid derivatives. Eur. J. Med. Chem. 2014, 80, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Chhipa, H.; Kaushik, N. Fungal and bacterial diversity isolated from Aquilaria malaccensis tree and soil, induces agarospirol formation within 3 months after artificial infection. Front. Microbiol. 2017, 8, 1286. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Dehingia, M.; Talukdar, N.C.; Khan, M. Chemometric analysis reveals links in the formation of fragrant bio-molecules during agarwood (Aquilaria malaccensis) and fungal interactions. Sci. Rep. 2017, 7, 44406. [Google Scholar] [CrossRef] [PubMed]
- Monggoot, S.; Popluechai, S.; Gentekaki, E.; Pripdeevech, P. Fungal endophytes: An alternative source for production of volatile compounds from agarwood oil of Aquilaria subintegra. Microb. Ecol. 2017, 74, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Sefidkon, F.; Jamzad, Z. Chemical composition of the essential oil of Gontscharovia popovii from Iran. Flavour Fragr. J. 2006, 21, 619–621. [Google Scholar] [CrossRef]
- Guichard, E.; Souty, M. Comparison of the relative quantities of aroma compounds found in fresh apricot (Prunus armeniaca) from six different varieties. Z. Lebensm. Unters. Forsch. 1988, 186, 301–307. [Google Scholar] [CrossRef]
- Adams, R.P.; González Elizondo, M.S.; Elizondo, M.G.; Slinkman, E. DNA fingerprinting and terpenoid analysis of Juniperus blancoi var. huehuentensis (Cupressaceae), a new subalpine variety from Durango, Mexico. Biochem. Syst. Ecol. 2006, 34, 205–211. [Google Scholar] [CrossRef]
- Adams, R.P.; Morris, J.A.; Pandey, R.N.; Schwarzbach, A.E. Cryptic speciation between Juniperus deltoides and Juniperus oxycedrus (Cupressaceae) in the Mediterranean. Biochem. Syst. Ecol. 2005, 33, 771–787. [Google Scholar] [CrossRef]
- Arze, J.B.L.; Collin, G.; Garneau, F.-X.; Jean, F.-I.; Gagnon, H. Essential oils from Bolivia II. Asteraceae: Ophryosporus heptanthus (Wedd.) H. Rob. et King. J. Essent. Oil Res. 2004, 16, 374–376. [Google Scholar] [CrossRef]
- Choi, H.-S. Character impact odorants of Citrus hallabong [(C. unshiu Marcov × C. sinensis Osbeck) × C. reticulata Blanco] cold-pressed peel oil. J. Agric. Food Chem. 2003, 51, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Miri, R.; Ramezani, M.; Javidnia, K.; Ahmadi, L. Composition of the volatile oil of Thymus transcaspicus Klokov from Iran. Flavour Fragr. J. 2002, 17, 245–246. [Google Scholar] [CrossRef]
- Araújo, E.C.C.; Silveira, E.R.; Lima, M.A.S.; Neto, M.A.; de Andrade, I.L.; Lima, M.A.A.; Santiago, G.M.P.; Mesquita, A.L.M. Insecticidal activity and chemical composition of volatile oils from Hyptis martiusii Benth. J. Agric. Food Chem. 2003, 51, 3760–3762. [Google Scholar] [CrossRef] [PubMed]
- Rezazadeh, S.; Hamedani, M.P.; Dowlatabadi, R.; Yazdani, D.; Shafiee, A. Chemical composition of the essential oils of Stachys schtschegleevii Sosn. and Stachys balansae Boiss & Kotschy from Iran. Flavour Fragr. J. 2006, 21, 290–293. [Google Scholar]
- Blázquez, M.A.; Pérez, I.; Boira, H. Essential oil analysis of Teucrium libanitis and T. turredanum by GC and GC–MS. Flavour Fragr. J. 2003, 18, 497–501. [Google Scholar] [CrossRef]
- Tellez, M.R.; Khan, I.A.; Schaneberg, B.T.; Crockett, S.L.; Rimando, A.M.; Kobaisy, M. Steam distillation-solid-phase microextraction for the detection of Ephedra sinica in herbal preparations. J. Chromatogr. A 2004, 1025, 51–56. [Google Scholar] [CrossRef]
- Ishihara, M.; Tsuneya, T.; Uneyama, K. Components of the volatile concentrate of agarwood. J. Essent. Oil Res. 1993, 5, 283–289. [Google Scholar] [CrossRef]
- Woźniak, Ł.; Skąpska, S.; Marszałek, K. Ursolic acid—A pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 2015, 20, 20614–20641. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Song, S.; Zou, Z.; Feng, M.; Wang, D.; Wang, Y.; Li, X.; Ye, X. The Hypoglycemic and Synergistic Effect of Loganin, Morroniside, and Ursolic Acid Isolated from the Fruits of Cornus officinalis. Phyther. Res. 2016, 30, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Holetz, F.B.; Pessini, G.L.; Sanches, N.R.; Cortez, D.A.; Nakamura, C.V.; Filho, B.P. Screening of some plants used in the brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 2002, 97, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento, P.G.G.; Lemos, T.L.G.; Bizerra, A.M.C.; Arriaga, Â.M.C.; Ferreira, D.A.; Santiago, G.M.P.; Braz-filho, R.; Costa, J.G.M. Antibacterial and antioxidant activities of ursolic acid. Molecules 2014, 19, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, A.; Zerin, T.; Kim, T.; Hwang, T.; Sik, W.; Nam, K.; Song, H. Pulmonary Pharmacology & Therapeutics In vitro effect of ursolic acid on the inhibition of Mycobacterium tuberculosis and its cell wall mycolic acid. Pulm. Pharmacol. Ther. 2015, 33, 17–24. [Google Scholar] [PubMed]
- Fiori, G.M.L.; Bonato, P.S.; Pereira, M.P.M.; Contini, S.H.T.; Pereira, A.M.S. Determination of thymol and carvacrol in plasma and milk of dairy cows using solid-phase microextraction. J. Braz. Chem. Soc. 2013, 24, 837–846. [Google Scholar] [CrossRef]
- Biswas, S.M.; Chakraborty, N. Shedded Artocarpus leaves—Good plant sources of natural squalene with potent antioxidant and antimicrobial activity—Alternative to marine animals. J. Nat. Pharm. 2013, 4, 21. [Google Scholar] [CrossRef]
- Abbass, H.; Ragab, E.; Mohammed, A.E.-S.; El-Hela, A. Phytochemical and biological investigation of Ficus mysorensis cultivated in Egypt. J. Pharm. Chem. Biol. Sci. 2015, 3, 396–407. [Google Scholar]
- Liao, C.R.; Kuo, Y.H.; Ho, Y.L.; Wang, C.Y.; Yang, C.S.; Lin, C.W.; Chang, Y.S. Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii Maxim. In non-small cell lung cancer A549 cells. Molecules 2014, 19, 9515–9534. [Google Scholar] [CrossRef] [PubMed]
- Seebacher, W.; Simic, N.; Weis, R.; Saf, R.; Kunert, O. Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn. Reson. Chem. 2003, 41, 636–638. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Dec. Kratz, P. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept”. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of alpha-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 2013, 27, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.-I.; Lee, S.R.; Kim, K.H. Antioxidant and α-glucosidase inhibitory activities of constituents from Euonymus alatus twigs. Ind. Crops Prod. 2015, 76, 1055–1060. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Compound | Calculated LRI * | Literature LRI * | 2015 | 2016 | Mean Values on Two Years | Reference Literature for LRI | |||
---|---|---|---|---|---|---|---|---|---|
% FID | σ | % FID | σ | % FID | σ | ||||
α-Pinene | 947 | 939 | 0.77 | 0.33 | 0.90 | 0.35 | 0.84 | 0.31 | [24] |
Sabinene | 981 | 975 | 0.71 | 0.27 | 0.32 | 0.28 | 0.51 | 0.33 | [24] |
Alpha terpinene | 1014 | 1017 | 0.16 | 0.04 | 0.18 | 0.07 | 0.17 | 0.06 | [24] |
p-Cymene | 1020 | 1024 | 2.57 | 0.85 | 4.85 | 111 | 3.71 | 1.53 | [24] |
γ-Terpinene | 1049 | 1059 | 0.73 | 0.19 | 0.92 | 0.35 | 0.83 | 0.27 | [24] |
Trans-sabinene hydrate | 1059 | 1070 | 0.27 | 0.09 | 0.38 | 0.03 | 0.32 | 0.08 | [24] |
Linalool | 1091 | 1096 | 0.15 | 0.05 | Trace | - | 0.08 | 0.09 | [24] |
Pinocarvone | 1148 | 1160 | 0.10 | 0.01 | Trace | - | 0.05 | 0.06 | [25] |
3-Pinanone | 1164 | 1168 | 3.82 | 1.11 | 1.84 | 1.73 | 2.83 | 1.69 | [26] |
4-Carvomenthenol | 1170 | 1177 | 0.24 | 0.11 | 0.23 | 0.06 | 0.23 | 0.08 | [27] |
Dihydro carveol | 1186 | 1194 | 0.43 | 0.14 | 0.29 | 0.10 | 0.36 | 0.13 | [24] |
Thymol methyl ether | 1227 | 1235 | 0.93 | 0.29 | 1.30 | 0.40 | 1.11 | 0.37 | [28] |
Carvacrol methyl ether | 1248 | 1244 | 18.87 | 3.89 | 23.35 | 5.66 | 21,11 | 4.99 | [24] |
Methyl carvacrol | 1254 | 1248 | Trace | - | 0.13 | 0.05 | 0.06 | 0.08 | [29] |
Piperitone | 1248 | 1252 | 0.25 | 0.10 | Trace | - | 0.13 | 0.15 | [24] |
Methylbenzoate | 1268 | 1271 | 0.12 | 0.03 | Trace | - | 0.06 | 0.07 | [30] |
Endobornyl acetate | 1281 | 1285 | 0.21 | 0.04 | Trace | - | 0.10 | 0.12 | [24] |
trans-pinocarvyl acetato | 1294 | 1298 | 2.13 | 0.46 | 0.66 | 0.91 | 1.39 | 1.03 | [24] |
Carvacrol | 1308 | 1299 | 13.81 | 2.01 | 16.26 | 0.65 | 15.04 | 1.89 | [24] |
Myrtenyl acetate | 1325 | 1326 | 0.91 | 0.16 | 0.42 | 0.19 | 0.66 | 0.31 | [24] |
Piperitenone | 1334 | 1343 | 0.16 | 0.02 | Trace | - | 0.08 | 0.09 | [24] |
δ-Elemene | 1337 | 1338 | 1.10 | 0.17 | Trace | - | 0.55 | 0.61 | [24] |
Unidentified | 1353 | - | Trace | - | 1.40 | 0.29 | 0.70 | 0.79 | - |
Carvacryl acetate | 1373 | 1371 | 11.35 | 1.42 | 14.82 | 1.66 | 13.08 | 2.35 | [31] |
β-Bourbonene | 1379 | 1388 | 0.22 | 0.06 | 0.27 | 0.05 | 0.25 | 0.05 | [24] |
Unidentified | 1387 | - | Trace | - | 0.07 | 0.06 | 0.04 | 0.06 | - |
β-Elemene | 1389 | 1390 | 0.21 | 0.05 | 0.12 | 0.01 | 0.16 | 0.06 | [24] |
Z-caryophyllene | 1414 | 1419 | 3.21 | 0.54 | 3.05 | 0.27 | 3.13 | 0.40 | [24] |
Unidentified | 1428 | - | 0.09 | 0.03 | 0.11 | 0.02 | 0.10 | 0.02 | - |
α-humulene | 1448 | 1449 | Trace | - | 0.12 | 0.01 | 0.06 | 0.06 | [32] |
Aromadendrene | 1452 | 1447 | 0.11 | 0.01 | 0.12 | 0.01 | 0.12 | 0.01 | [33] |
Unidentified | 1455 | - | 0.09 | 0.02 | Trace | - | 0.04 | 0.05 | - |
trans-β-farnesene | 1458 | 1456 | 0.09 | 0.02 | Trace | - | 0.04 | 0.05 | [24] |
Unidentified | 1468 | - | Trace | - | Trace | - | Trace | - | - |
Germacrene D | 1474 | 1484 | 1.59 | 0.27 | 1.81 | 0.16 | 1.70 | 0.23 | [24] |
β-selinene | 1480 | 1486 | Trace | - | Trace | - | Trace | - | [34] |
Ledene | 1484 | 1496 | Trace | - | Trace | - | Trace | - | [24] |
Unidentified | 1487 | - | 0.73 | 0.08 | 0.79 | 0.07 | 0.76 | 0.08 | - |
Unidentified | 1492 | - | Trace | - | 0.44 | 0.09 | 0.22 | 0.25 | [24] |
γ-cadinene | 1505 | 1513 | Trace | - | Trace | - | Trace | - | [27] |
Unidentified | 1508 | - | Trace | - | Trace | - | Trace | - | - |
δ-Cadinene | 1513 | 1523 | 0.61 | 0.14 | 0.65 | 0.01 | 0.63 | 0.09 | [24] |
Cadina-1,4-diene | 1524 | 1534 | Trace | - | Trace | - | Trace | - | [24] |
Selina-3,7(11)-dien | 1530 | 1537 | Trace | - | Trace | - | Trace | - | [35] |
Elemol | 1546 | 1549 | 9.05 | 2.60 | 4.79 | 1.24 | 6.92 | 2.96 | [24] |
Unidentified | 1566 | - | 0.35 | 0.10 | 0.23 | 0.09 | 0.29 | 0.11 | - |
Unidentified | 1577 | - | 0.79 | 0.28 | 0.55 | 0.22 | 0.67 | 0.26 | - |
Unidentified | 1592 | - | 2.34 | 1.12 | Trace | - | 1.17 | 1.46 | [24] |
Guaiol | 1601 | 1600 | 1.36 | 1.25 | 0.40 | 0.14 | 0.88 | 0.96 | [24] |
Agarospirol | 1620 | 1631 | 8.02 | 3.89 | Trace | - | 4.01 | 5.03 | [36] |
β-Panasinsene | 1626 | 1623 | Trace | - | Trace | - | Trace | - | [24] |
Alpha eudesmol | 1635 | 1632 | 5.34 | 0.87 | 2.31 | 0.74 | 3.83 | 1.81 | [24] |
Hinesol | 1644 | 1641 | Trace | - | 0.53 | 0.07 | 0.26 | 0.29 | [24] |
Selina-3,11-dien-6-a-ol | 1650 | 1644 | Trace | - | 5.30 | 0.81 | 2.65 | 2.95 | [24] |
Hydrocarbon monoterpenes | 4.93 | 7.18 | 6.06 | ||||||
Oxygenated monoterpenes | 53.62 | 59.67 | 56.64 | ||||||
Hydrocarbon sesquiterpenes | 7.14 | 6.13 | 6.64 | ||||||
Oxygenated sesquiterpenes | 23.77 | 7.50 | 15.64 | ||||||
Unidentified | 2.05 | 1.68 | 1.87 | ||||||
Others | 2.46 | 7.74 | 5.10 | ||||||
TOTAL | 93.98 | 89.91 | 91.94 |
No. | Extract/Compound | α-Glucosidase |
---|---|---|
IC50 † | ||
1 | Hexane extract | 228.7 ± 1.3 |
2 | EtOAc extract | 24.9 ± 0.8 |
3 | MeOH extract | 431.3 ± 2.5 |
4 | Squalene | >1000 |
5 | Ursolic acid | 72.7 ± 0.9 |
6 | Uvaol | 521.0 ± 2.7 |
7 | Salvigenin | >1000 |
8 | Acarbose * | 377.0 ± 1.9 |
Microorganims ATCC® | HEX. (mg/mL) | EtOAc (μg/mL) | MeOH (μg/mL) | Essential Oil 2015 (μg/mL) | Essential Oil 2016 |
---|---|---|---|---|---|
Staphylococcus aureus 25923 † | - | - | - | 5.00 | 5.00 |
Enterococcus faecalis 19433 ‡ | - | - | - | 10.00 | 10.00 |
Escherichia coli O157:H7 † | - | - | - | 1.95 | - |
Klebsiella pneumoniae 9997 † | 0.25 | - | 0.50 | 1.95 | - |
Proteus vulgaris 8427 † | - | - | - | 15.62 | - |
Pseudomonas aeruginosa 27853 † | - | 1.00 | - | 15.62 | - |
Micrococcus luteus 10240 † | - | - | - | 5.00 | 5.00 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morocho, V.; Valle, A.; García, J.; Gilardoni, G.; Cartuche, L.; Suárez, A.I. α-Glucosidase Inhibition and Antibacterial Activity of Secondary Metabolites from the Ecuadorian Species Clinopodium taxifolium (Kunth) Govaerts. Molecules 2018, 23, 146. https://doi.org/10.3390/molecules23010146
Morocho V, Valle A, García J, Gilardoni G, Cartuche L, Suárez AI. α-Glucosidase Inhibition and Antibacterial Activity of Secondary Metabolites from the Ecuadorian Species Clinopodium taxifolium (Kunth) Govaerts. Molecules. 2018; 23(1):146. https://doi.org/10.3390/molecules23010146
Chicago/Turabian StyleMorocho, Vladimir, Andrea Valle, Jessica García, Gianluca Gilardoni, Luis Cartuche, and Alírica I. Suárez. 2018. "α-Glucosidase Inhibition and Antibacterial Activity of Secondary Metabolites from the Ecuadorian Species Clinopodium taxifolium (Kunth) Govaerts" Molecules 23, no. 1: 146. https://doi.org/10.3390/molecules23010146
APA StyleMorocho, V., Valle, A., García, J., Gilardoni, G., Cartuche, L., & Suárez, A. I. (2018). α-Glucosidase Inhibition and Antibacterial Activity of Secondary Metabolites from the Ecuadorian Species Clinopodium taxifolium (Kunth) Govaerts. Molecules, 23(1), 146. https://doi.org/10.3390/molecules23010146