Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in miRNA Expression Associated with Mitochondrial CPT2-Deficiency in Primary Human Fibroblasts
2.2. RSV-Induced Changes in miRNA Expression in Control and CPT2-Deficient Primary Human Fibroblasts
2.3. Mirna Whose Expression Changed in CPT2-Deficient Primary Fibroblasts, Regardless of RSV Treatment, Target Pathways Involved in Fatty Acid Oxidation
3. Materials and Methods
3.1. Primary Human Fibroblasts and Cell Treatments
3.2. RNA Extraction, Purification, and Micro RNAs Screening and Analysis
3.3. RNA Labeling and Micro-Arrays
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Latruffe, N.; Rifler, J.-P. Bioactive polyphenols from grape and wine. Curr. Pharm. Des. 2013, 19, 6053–6063. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Delaunois, B.; Conreux, A.; Donnez, D.; Nuzzo, V.; Cordelier, S.; Clément, C.; Courot, E. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors 2010, 36, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Hébrard, C.; Deville, M.A.; Cordelier, S.; Dorey, S.; Aziz, A.; Crouzet, J. Deciphering the role of phytoalexins in plant-microorganism interactions and human health. Molecules 2014, 19, 18033–18056. [Google Scholar] [CrossRef] [PubMed]
- Tili, E.; Michaille, J.J.; Adair, B.; Alder, H.; Limagne, E.; Taccioli, C.; Ferracin, M.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 2010, 31, 1561–1566. [Google Scholar] [CrossRef] [PubMed]
- Limagne, E.; Lançon, A.; Delmas, D.; Cherkaoui-Malki, M.; Latruffe, N. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages. Nutrients 2016, 8, 280. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Y.; Delmas, D.; Vang, O.; Hsieh, T.C.; Lin, S.; Cheng, G.Y.; Chiang, H.L.; Chen, C.E.; Tang, H.Y.; Crawford, D.R.; et al. Mechanisms of ceramide-induced COX-2-dependent apoptosis in human ovarian cancer OVCAR-3 cells partially overlapped with resveratrol. J. Cell. Biochem. 2013, 114, 1940–1954. [Google Scholar] [CrossRef] [PubMed]
- Bastin, J.; Lopes-Costa, A.; Djouadi, F. Exposure to resveratrol triggers pharmacological correction of fatty acid utilization in human fatty acid oxidation-deficient fibroblasts. Hum. Mol. Genet. 2011, 20, 2048–2057. [Google Scholar] [CrossRef] [PubMed]
- Karius, T.; Schnekenburger, M.; Dicato, M. MicroRNAs in cancer management and their modulation by dietary agents. Biochem. Pharmacol. 2012, 83, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, D.; Wang, Z.; Sarkar, F.H. Regulation of microRNAs by natural agents: An emerging field in chemoprevention and chemotherapy research. Pharm. Res. 2010, 27, 1027–1041. [Google Scholar] [CrossRef] [PubMed]
- Milenkovic, D.; Jude, B.; Morand, C. MiRNA as molecular target of polyphenols underlying their biological effects. Free Radic. Biol. Med. 2013, 64, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Lançon, A.; Kaminski, J.; Tili, E.; Michaille, J.J.; Latruffe, N. Control of MicroRNA expression as a new way for resveratrol to deliver its beneficial effects. J. Agric. Food Chem. 2012, 60, 8783–8789. [Google Scholar] [CrossRef] [PubMed]
- Lançon, A.; Michaille, J.J.; Latruffe, N. Effects of dietary phytophenols on the expression of microRNAs involved in mammalian cell homeostasis. J. Sci. Food Agric. 2013, 93, 3155–3164. [Google Scholar] [CrossRef] [PubMed]
- Latruffe, N.; Lançon, A.; Frazzi, R.; Aires, V.; Delmas, D.; Michaille, J.J.; Djouadi, F.; Bastin, J.; Cherkaoui, J.; Malki, M. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Ann. N. Y. Acad. Sci. 2015, 1348, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Tili, E.; Michaille, J.J.; Alder, H.; Volinia, S.; Delmas, D.; Latruffe, N.; Croce, C.M. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem. Pharmacol. 2010, 80, 2057–2065. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Rimando, A.M.; Levenson, A.S. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann. N. Y. Acad. Sci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Cui, L. Resveratrol suppresses melanoma by inhibiting NF-κB/miR-221 and inducing TFG expression. Arch. Dermatol. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Venkatadri, R.; Muni, T.; Iyer, A.K.; Yakisich, J.S.; Azad, N. Role of apoptosis-related miRNAs in resveratrol-induced breast cancer cell death. Cell Death Dis. 2016, 7, e2104. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Dong, D.S.; Pei, L. Synergistic antitumor activity of resveratrol and miR-200c in human lung cancer. Oncol. Rep. 2014, 31, 2293–2297. [Google Scholar] [CrossRef] [PubMed]
- Gracia, A.; Miranda, J.; Fernández-Quintela, A.; Eseberri, I.; Garcia-Lacarte, M.; Milagro, F.I.; Martínez, J.A.; Aguirre, L.; Portillo, M.P. Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue. Food Funct. 2016, 7, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Gracia, A.; Fernández-Quintela, A.; Miranda, J.; Eseberri, I.; González, M.; Portillo, M.P. Are miRNA-103, miRNA-107 and miRNA-122 Involved in the Prevention of Liver Steatosis Induced by Resveratrol? Nutrients 2017, 9, 360. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Wang, Y.; Shen, A.; Cai, W. Resveratrol upregulates SOCS1 production by lipopolysaccharide-stimulated RAW264.7 macrophages by inhibiting miR-155. Int. J. Mol. Med. 2017, 39, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Tili, E.; Michaille, J.J. Promiscuous Effects of Some Phenolic Natural Products on Inflammation at Least in Part Arise from Their Ability to Modulate the Expression of Global Regulators, Namely microRNAs. Molecules 2016, 21, 1263. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.H.; Zhang, J.L.; Duan, Y.L.; Zhang, Q.S.; Li, G.F.; Zheng, D.L. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed. Pharmacother. 2015, 74, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.W.; Han, Y.X.; Cong, L.; Liang, D.; Tu, G.J. Resveratrol prevents osteoporosis in ovariectomized rats by regulating microRNA-338-3p. Mol. Med. Rep. 2015, 12, 2098–2106. [Google Scholar] [CrossRef] [PubMed]
- Aires, V.; Delmas, D.; Le Bachelier, C.; Latruffe, N.; Schlemmer, D.; Benoit, J.F.; Djouadi, F.; Bastin, J. Stilbenes and resveratrol metabolites improve mitochondrial fatty acid oxidation defects in human fibroblasts. Orphanet J. Rare Dis. 2014, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Lopes Costa, A.; Le Bachelier, C.; Mathieu, L.; Rotig, A.; Boneh, A.; De Lonlay, P.; Tarnopolsky, M.A.; Thorburn, D.R.; Bastin, J.; Djouadi, F. Beneficial effects of resveratrol on respiratory chain defects in patients’ fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling. Hum. Mol. Genet. 2014, 23, 2106–2119. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, L.; Costa, A.L.; Le Bachelier, C.; Slama, A.; Lebre, A.S.; Taylor, R.W.; Bastin, J.; Djouadi, F. Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency: Involvement of SIRT3. Free Radical Biol. Med. 2016, 96, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Brenmoehl, J.; Hoeflich, A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 2013, 13, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ramiro, I.; Vauzour, D.; Minihane, A.M. Polyphenols and non-alcoholic fatty liver disease: Impact and mechanisms. Proc. Nutr. Soc. 2016, 75, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Price, N.L.; Gomes, A.P.; Ling, A.J.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012, 15, 675–690. [Google Scholar] [CrossRef] [PubMed]
- Bastin, J.; Djouadi, F. Resveratrol and Myopathy. Nutrients 2016, 8, 254. [Google Scholar] [CrossRef] [PubMed]
- Yanga, Z.; Cappelloa, T.; Wang, L. Emerging role of microRNAs in lipid metabolism. Acta Pharm. Sin. B 2015, 5, 145–150. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Resveratrol commercially available. |
miRNAs | Fold Change | Increasing Parametric p Value |
---|---|---|
miRNAs upregulated in CPT2-deficient fibroblasts: | ||
483 | 3.1 | 1.6 × 10−6 |
301 | 11.43 | 4.1 × 10−6 |
449b | 1.99 | 2.79 × 10−6 |
206 | 3.38 | 9.39 × 10−6 |
550-1 | 2.83 | 0.000171 |
539 | 2.04 | 0.0002213 |
661 | 2.79 | 0.0004408 |
371 | 2.65 | 0.0005968 |
10b | 2.75 | 0.0011091 |
9 | 4.4 | 0.0014253 |
550-2 | 2.1 | 0.0016581 |
651 | 2.87 | 0.0019172 |
196a-2 | 2.09 | 0.0019172 |
miRNAs downregulated in CPT2-deficient fibroblasts: | ||
let-7d | 0.16 | <1 × 10−7 |
211 | 0.14 | 4 × −10−7 |
let-7a3 | 0.22 | 1.2 × 10−6 |
198 | 0.14 | 2.8 × 10−6 |
141 | 0.28 | 4.6 × 10−6 |
136 | 0.31 | 5.1 × 10−6 |
203 | 0.24 | 5.7 × 10−6 |
127 | 0.23 | 7.7 × 10−6 |
181c | 0.26 | 1.85 × 10−5 |
496 | 0.3 | 2.5 × 10−5 |
126-5p | 0.14 | 3.64 × 10−5 |
144 | 0.097 | 3.8 × 10−5 |
let-7g | 0.48 | 4.14 × 10−5 |
181a2 | 0.44 | 4.42 × 10−5 |
618 | 0.48 | 4.47 × 10−5 |
41 | 0.15 | 4.5 × 10−5 |
299-5p | 0.14 | 4.73 × 10−5 |
1 | 0.41 | 4.88 × −10−5 |
145 | 0.32 | 4.94 × 10−5 |
25 | 0.26 | 6.37 × 10−5 |
123 | 0.31 | 6.67 × 10−5 |
200b | 0.27 | 8.33 × 10−5 |
325 | 0.44 | 8.51 × 10−5 |
593 | 0.42 | 9.19 × 10−5 |
24-5p/189 | 0.14 | 0.0001524 |
125b2 | 0.1 | 0.0002071 |
123 | 0.25 | 0.0002196 |
154-5p | 0.3 | 0.0002281 |
184 | 0.43 | 0.0002499 |
199b | 0.47 | 0.0005099 |
22 | 0.25 | 0.0006033 |
363-3p | 0.37 | 0.0006076 |
338 | 0.24 | 0.0007282 |
146a | 0.42 | 0.0008154 |
212 | 0.28 | 0.0008813 |
196a-1 | 0.34 | 0.0008916 |
500 | 0.29 | 0.0013401 |
563 | 0.47 | 0.0016458 |
Control Fibroblasts | CPT2-Deficient Fibroblasts | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Upregulation by RSV | Downregulation by RSV | Upregulation by RSV | Downregulation by RSV | ||||||||
miRNA | Fold Change | Increasing Parametric p Value | miRNA | Fold Change | Increasing Parametric p Value | miRNA | Fold Change | Increasing Parametric p Value | miRNA | Fold Change | Increasing Parametric p Value |
321 | 3.67 | 0.0003277 | 35 | 0.47 | 0.0011099 | 219 | 1.81 | 0.00028111 | 101-1/2 | 0.51 | 0.000758 |
594 | 3.33 | 0.000695 | 548a-1 | 0.28 | 0.0011964 | 299-5p | 1.94 | 0.00037058 | 181d | 0.45 | 0.00021178 |
550-2 | 2.65 | 0.0026216 | 566 | 0.49 | 0.0014556 | 193a | 1.96 | 0.00074255 | 16-1 | 0.48 | 0.00022522 |
565 | 2.87 | 0.0066109 | 620 | 0.49 | 0.0031365 | 199a1-5p | 1.8 | 0.035782 | 21 | 0.47 | 0.00023066 |
611 | 2.18 | 0.0100121 | 92b | 0.24 | 0.003498 | 548a1 | 2.3 | 0.041391 | 99a* | 0.27 | 0.00041291 |
483 | 2.29 | 0.0118661 | 378-5p | 0.41 | 0.0070053 | 337 | 1.89 | 0.0488272 | 20b | 0.47 | 0.00053956 |
335 | 2.69 | 0.0158687 | 579 | 0.19 | 0.020456 | let-7d | 0.46 | 0.00071834 | |||
550-1 | 2.35 | 0.0182839 | 136 | 0.46 | 0.0206073 | 17-5p | 0.43 | 0.0007255 | |||
449b-1 | 1.99 | 0.021485 | let-7f | 0.44 | 0.0220297 | 146a | 0.27 | 0.0110431 | |||
661 | 2.45 | 0.0256413 | 211 | 0.24 | 0.0220881 | 566 | 0.5 | 0.012436 | |||
326 | 3.58 | 0.0315627 | 376a-2 | 0.42 | 0.024334 | 376b | 0.47 | 0.012361 | |||
196a-1 | 3.45 | 0.0369082 | 193a | 0.23 | 0.0255173 | 26a | 0.46 | 0.0130816 | |||
29a | 0.47 | 0.0265262 | 103-1 | 0.35 | 0.0166397 | ||||||
199b | 0.44 | 0.0294717 | let-7c | 0.28 | 0.0192349 | ||||||
141 | 0.26 | 0.029536 | 423 | 0.14 | 0.0231317 | ||||||
204 | 0.33 | 0.0295895 | 23a | 0.18 | 0.0257826 | ||||||
216 | 0.3 | 0.0311748 | |||||||||
let-7a3 | 0.29 | 0.0323893 | |||||||||
618 | 0.44 | 0.0361713 | |||||||||
198 | 0.43 | 0.0375283 | |||||||||
22 | 0.39 | 0.0379847 | |||||||||
126-5p | 0.26 | 0.0463448 | |||||||||
23b | 0.49 | 0.0469568 | |||||||||
144 | 0.26 | 0.0496528 |
Genes | Proteins | MiRNAs * |
---|---|---|
Putative target transcripts of miRNAs upregulated in CPT2-deficient fibroblasts: | ||
SIRT1 | SIRT1 | 2 × 449b/539/9/651/ |
STK11 | LKB1 | 483/ |
PRKAA1 | AMPK subunit | 301/449b/539/371/9/651/ |
PRKAA2 | AMPK subunit | 483/301/2 × 449b/206/4 × 371/3 × 10b/3 × 651/ |
PRKAB1 | AMPK subunit | 483/301/9/ |
PPARGC1A | PGC-1 α | 2 × 301/539/196a-2/ |
ALDH7A1 | PDE | 2 × 483/449b/2 × 371 2 × 10b/651/ |
ESR1 | ER | 483/3 × 301/2 × 206/ 371/2 × 9/196a-2/ |
ESRRA | ERR α | 449b/ |
NRF1 | NRF1 | 483/449b/2 × 539/3 × 371/9/ |
NFE2L2 | NRF2 | 651/ |
TFAM | TFAM | 483/206/539/2 × 371/10b/9/651/ |
Putative target transcripts of miRNAs downregulated in CPT2-deficient fibroblasts: | ||
SIRT1 | SIRT1 | 211/141/136/181a2,c/496/126-5p/ |
STK11 | LKB1 | - |
PRKAA1 | AMPK subunit | 496/126-5p/144/ |
PRKAA2 | AMPK subunit | let-7a3,d,g/2 × 141/203/3 × 181a2,c/4 × 126-5p/144/9/ |
PRKAB1 | AMPK subunit | 2 × 141/2 × 203/181a2,c/ |
PPARGC1A | PGC-1 α | let-7a3,d,g/211/141/136/203/496/3 × 126-5p/144/ |
ALDH7A1 | PDE | 141/2 × 136/203/ |
ESR1 | ER | 211/136/203/181a2,c/496/ |
ESRRA | ERR α | - |
NRF1 | NRF1 | 2 × 211/181a2,c/ |
NFE2L2 | NRF2 | 181a2,c/496/ |
TFAM | TFAM | 211/4 × 141/2 × 136/2 × 203/181a2,c/496/4 × 126-5p/4 × 144/ |
Putative target transcripts of miRNAs upregulated after RSV treatment of CPT2-deficient fibroblasts: | ||
SIRT1 | SIRT1 | 199a1-5p/ |
STK11 | LKB1 | 199a1-5p/ |
PRKAA1 | AMPK subunit | - |
PRKAA2 | AMPK subunit | 219/2 × 299/193a/199a1-5p/2 × 337/ |
PRKAB1 | AMPK subunit | 193a/ |
PPARGC1A | PGC-1 α | 219/193a/2 × 199a1-5p/ |
ALDH7A1 | PDE | 199a1-5p/2 × 337/ |
ESR1 | ER | 219/299/2 × 193a/337/ |
ESRRA | ERR α | - |
NRF1 | NRF1 | 199a1-5p/ |
NFE2L2 | NRF2 | 337/ |
TFAM | TFAM | 299-5p/2 × 193a/199a1-5p/2 × 337/ |
Putative target transcripts of miRNAs downregulated after RSV treatment of CPT2-deficient fibroblasts: | ||
SIRT1 | SIRT1 | 181d/23a/ |
STK11 | LKB1 | 20b/17-5p/ |
PRKAA1 | AMPK subunit | 2 × 101-1/2/16-1/21/26a/ |
PRKAA2 | AMPK subunit | 3 × 181d/21/20b/let-7c,d/17-5/2 × 146a/376b/26a/23a/ |
PRKAB1 | AMPK subunit | 181d/146a/ |
PPARGC1A | PGC-1α | 101-1/2/let-7d/376b/26a/2 × 23a/ |
ALDH7A1 | PDE | 16-1/2 × 20b/2 × 17-5p/146a/ |
ESR1 | ER | 181d/21/3 × 20b/3 × 17-5p/146a/2 × 26a/2 × 103-1/23a/ |
ESRRA | ERRα | 16-1/103-1/423/ |
NRF1 | NRF1 | 181d/2 × 21/ |
NFE2L2 | NRF2 | 181d/103-1/ |
TFAM | TFAM | 181d/3 × 20b/3 × 17-5p/2 × 376b/26a/23a/ |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aires, V.; Delmas, D.; Djouadi, F.; Bastin, J.; Cherkaoui-Malki, M.; Latruffe, N. Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency. Molecules 2018, 23, 7. https://doi.org/10.3390/molecules23010007
Aires V, Delmas D, Djouadi F, Bastin J, Cherkaoui-Malki M, Latruffe N. Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency. Molecules. 2018; 23(1):7. https://doi.org/10.3390/molecules23010007
Chicago/Turabian StyleAires, Virginie, Dominique Delmas, Fatima Djouadi, Jean Bastin, Mustapha Cherkaoui-Malki, and Norbert Latruffe. 2018. "Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency" Molecules 23, no. 1: 7. https://doi.org/10.3390/molecules23010007
APA StyleAires, V., Delmas, D., Djouadi, F., Bastin, J., Cherkaoui-Malki, M., & Latruffe, N. (2018). Resveratrol-Induced Changes in MicroRNA Expression in Primary Human Fibroblasts Harboring Carnitine-Palmitoyl Transferase-2 Gene Mutation, Leading to Fatty Acid Oxidation Deficiency. Molecules, 23(1), 7. https://doi.org/10.3390/molecules23010007