Quantification and Confirmation of Fifteen Carbamate Pesticide Residues by Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes via LC-MS/MS QTRAP System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Sample Preparation
2.2. Optimization of Mass Spectrometry and Chromatographic Conditions
2.3. Fragmentation Manner of Carbamate Pesticides
2.4. Method Validation
2.4.1. Matrix Effect
2.4.2. Linearity and Analytical Limits
2.4.3. Accuracy and Precision
2.5. Sample Analyses
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentation
3.3. Sample Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carbamate. Available online: https://en.wikipedia.org/wiki/Carbamate#Carbamate_insecticides (accessed on 15 August 2018).
- Fukuto, T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Persp. 1990, 87, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Richard, D. Insecticides. Action and Metabolism. Bull. Entomol. Soc. Ameri. 1968, 14, 258–259. [Google Scholar] [CrossRef]
- Geoffrey, M.C.; Wayne, T.S.; Margot, B.; Jerome, M.B.; Louise, N.M. Surveillance of pesticide-related illness and injury in humans. In Handbook of Pesticide Toxicology, 2nd ed.; Robert, K., Ed.; Academic Press: Cambridge, MA, USA, 2001; Volume 1, pp. 603–641. [Google Scholar]
- Michal, R.; Shlomo, A. Evaluation of the decarbamylation process of cholinesterase during assay of enzyme activity. Clin. Chim. Acta 1995, 240, 107–116. [Google Scholar] [CrossRef]
- Announcement of Food Safety Inspection. Qinhai Food and Drug Administration. No. 68, 2018. Available online: http://www.sdaqh.gov.cn/html/201896/n140026114.html (accessed on 10 September 2018).
- Tsiplakou, E.; Anagnostopoulos, C.J.; Liapis, K.; Haroutounian, S.A.; Zervas, G. Pesticides residues in milks and feedstuff of farm animals drawn from Greece. Chemosphere 2010, 80, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Daphne, B.M. Public health impacts of organophosphate and carbamates. In Toxicology of Organophosphate & Carbamate Compounds; Gupta, R.C., Ed.; Academic Press: London, UK, 2005; pp. 599–601. [Google Scholar]
- Marina, P.G.; Margarita, L.D.; Rajnarayanan, R.V. Carbamate Insecticides Target Human Melatonin Receptors. Chem. Res. Toxicol. 2017, 30, 574–582. [Google Scholar] [CrossRef]
- Pinto, M.I.; Gerhard, S.; Bernardino, R.J.; Noronha, J.P. Pesticides in water and the performance of the liquid-phase microextraction based techniques. A review. Microchem. J. 2010, 96, 225–237. [Google Scholar] [CrossRef]
- María, A.R.; Javier, H.B.; Teresa, M.B.M.; Miguel, Á.R.D. Ionic liquid-dispersive liquid-liquid microextraction for the simultaneous determination of pesticides and metabolites in soils using high-performance liquid chromatography and fluorescence detection. J. Chromatogr. A 2011, 1218, 4808–4816. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, K.; Tech, K.; Brown, D. Multiresidue Pesticide Analysis of Ginseng Powders Using Acetonitrile- or Acetone-Based Extraction, Solid-Phase Extraction Cleanup, and Gas Chromatography-Mass Spectrometry/Selective Ion Monitoring (GC-MS/SIM) or -Tandem Mass Spectrometry (GC-MS/MS). J. Agric. Food Chem. 2010, 58, 5884–5896. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Scherbaum, E.; Tasdelen, B.; Stajnbaher, D. Recent Developments in QuEChERS Methodology for Pesticide Multiresidue Analysis. In Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety; Ohkawa, H., Miyagawa, H., Lee, P.W., Eds.; Wiley-VCH: Weinheim, Germany, 2007; pp. 439–458. [Google Scholar]
- Wilkowska, A.; Biziuk, M. Determination of pesticides residues in food matrices using the QuEChERS methology. Food Chem. 2011, 125, 803–812. [Google Scholar] [CrossRef]
- Rao, T.N.; Loo, B.H.; Sarada, B.V.; Terashima, C.; Fujishima, A. Electrochemical Detection of Carbamate Pesticides at Conductive Diamond Electrodes. Anal. Chem. 2002, 74, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Su, H.; Qu, X.; Ju, P.; Lin, C.; Ai, S. Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide-gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens. Actuators B Chem. 2011, 160, 1255–1261. [Google Scholar] [CrossRef]
- Rajendra, P.; Niraj, U.; Vijay, K. Simultaneous determination of seven carbamate pesticide residues in gram, wheat, lentil, soybean, fenugreek leaves and apple matrices. Microchem. J. 2013, 111, 91–96. [Google Scholar] [CrossRef]
- Sanchez, B.C.; Albero, B.; Tadeo, J.L. High-performance liquid chromatography multiresidue method for the determination of N-methyl carbamates in fruit and vegetable juices. J. Food Prot. 2004, 67, 2565–2569. [Google Scholar] [CrossRef]
- Tsumura, Y.; Ujita, K.; Tonogai, Y.; Ito, Y. Simultaneous determination of aldicarb, ethiofencarb, methiocarb and their oxidized metabolites in grains, fruits and vegetables by high performance liquid chromatography. J. Food Prot. 1995, 58, 217–222. [Google Scholar] [CrossRef]
- Bernal, J.L.; Nozal, M.J.; Torlblo, L.; Jlmenez, J.J.; Atienza, J. High-performance liquid chromatographic determination of benomyl and carbendazim residues in apiarian samples. J. Chromatogr. A 1997, 787, 129–136. [Google Scholar] [CrossRef]
- Sandahl, M.; Mathiasson, L.; Jonsson, J.A. Determination of thiophanate-methyl and its metabolites at trace level in spiked natural water using the supported liquid membrane extraction and the microporous membrane liquid-liquid extraction techniques combined on-line with high-performance liquid chromatography. J. Chromatogr. A 2000, 893, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Vandecasteele, K.; Gaus, I.; Debreuck, W.; Walraevens, K. Identification and quantification of 77 pesticides in groundwater using solid phase coupled to liquid–liquid microextraction and reversed-phase liquid chromatography. Anal. Chem. 2000, 72, 3093–3101. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, B.C.; Albero, B.; Tadeo, J.L. Multiresidue analysis of carbamate pesticides in soil by sonication-assisted extraction in small columns and liquid chromatography. J. Chromatogr. A 2003, 1007, 85–91. [Google Scholar] [CrossRef]
- Gou, Y.; Eisert, R.; Pawliszyn, J. In-tube solid-phase microextraction coupled to capillary LC for carbamate analysis in water samples. Anal. Chem. 2000, 72, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Rami, A.; Wolfgang, S. Effect of bromine oxidation on high-performance thin-layer chromatography multi-enzyme inhibition assay detection of organophosphates and carbamate insecticides. J. Chromatogr. A 2011, 1218, 2775–2784. [Google Scholar] [CrossRef]
- Sabala, A.; Portillo, J.L.; Broto-Puig, F.; Comellas, L. Development of a new high-performance liquid chromatography method to analyse N-methylcarbamate insecticides by a simple post-column derivatization system and fluorescence detection. J. Chromatogr. A 1997, 778, 103–110. [Google Scholar] [CrossRef]
- Waters Technologies Ltd. Waters ACQUITY UPLC H-Class FLR System for Carbamate Analysis Method Guide; Waters Technologies Ltd.: Shanghai, China, 2010. [Google Scholar]
- Huang, D.F. Quantitative Analysis of 15 Carbamates in Vegetables Using DisQuE Cleanup and UHPLC with Mass Detection; Waters Technologies Ltd.: Shanghai, China, 2008. [Google Scholar]
- Fernández, M.; Picó, Y.; Mañes, J. Determination of carbamate residues in fruits and vegetables by matrix solid-phase dispersion and liquid chromatography-mass spectrometry. J. Chromatogr. A 2000, 871, 43–56. [Google Scholar] [CrossRef]
- Chen, L.; Song, F.; Liu, Z.; Zheng, Z.; Xing, J.; Liu, S. Multi-residue method for fast determination of pesticide residues in plants used in traditional Chinese medicine by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2012, 1225, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.G.; Frenich, A.G.; Vidal, J.L.M. Multiresidue method for fast determination of pesticides in fruit juices by ultra performance liquid chromatography coupled to tandem mass spectrometry. Talanta 2008, 76, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Didier, O.; Patrick, E.; Claude, C. Multiresidue analysis of 74 pesticides in fruits and vegetables by liquid chromatography-electrospray-tandem mass spectrometry. Anal. Chim. Acta 2004, 520, 33–45. [Google Scholar] [CrossRef]
- Anderson, N.L.; Hunter, C.L. Quantitative Mass Spectrometric Multiple Reaction Monitoring Assays for Major Plasma Proteins. Mol. Cell Proteom. 2006, 5, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Multiple Quadrupoles, Hybrids and Variations. Available online: https://en.wikipedia.org/wiki/Quadrupole_mass_analyzer#Multiple_quadrupoles,_hybrids_and_variations (accessed on 28 August 2018).
- Iwona, M.Z.; Barbara, W.; Andrzej, P. Comparison of the Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes for Confirmation of Stilbenes in Bovine Urine Samples Using LC–MS/MS QTRAP® System. Chromatographia 2016, 79, 1003–1012. [Google Scholar] [CrossRef]
- Sun, H.; Chai, Y.; Pan, Y. Dissociative Benzyl Cation Transfer versus Proton Transfer: Loss of Benzene from Protonated N-Benzylaniline. J. Org. Chem. 2012, 77, 7098–7102. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Yue, L.; Guo, M.; Pan, Y. Elimination of Benzene from Protonated N-Benzylindoline: Benzyl Cation/Proton Transfer or Direct Proton Transfer? J. Am. Soc. Mass Spectrom 2013, 24, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, X.; Zhang, H.; Jiang, K. Gas-phase fragmentation of the protonated benzyl ester of proline: Intramolecular electrophilic substitution versus hydride transfer. J. Mass Spectrom. 2013, 48, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Guo, C.; Chai, Y.; Yin, X.; Pan, Y. Gas-phase reaction: Alkyl cation transfer in the dissociation of protonated pyridyl carbamates in mass spectrometry. Tetrahedron 2014, 70, 9500–9505. [Google Scholar] [CrossRef]
- Bo, H.B.; Wang, J.H.; Guo, C.H. Determination of Strobilurin Fungicide Residues in Food by Gas Chromatography-Mass Spectrometry. Chin. J. Anal. Chem. 2008, 36, 1471–1475. [Google Scholar]
- Chen, F.; Huber, C.; May, R.; Schröder, P. Metabolism of oxybenzone in a hairy root culture: Perspectives for phytoremediation of a widely used sunscreen agent. J. Hazard. Mater. 2016, 306, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Commission of the European Communities. Commission Decision 2002/657/EC Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results; Commission of the European: Brussels, Belgium, 2002. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Target | Object | Sample Pretreatment | Instrumental Analysis | Analysis Limits | Disadvantage | Ref. |
---|---|---|---|---|---|---|
Carbaryl | soil | ionic liquid-dispersive liquid–liquid microextraction | HPLC-FD(fluorescence detector) | 0.63–4.0 ng g−1 | Ionic liquids are not commercially available No confirmation spectra | [11] |
Seven carbamates | gram, wheat, lentil, soybean, fenugreek leaves apple | column chromatography | HPLC-UV | 0.08–1.16 mg L−1 | Large amount of Solvents Lack of sensitivity No confirmation spectra | [17] |
Seven carbamates | / | / | HPLC post-column derivatization and fluorescence detection | 0.2–0.7 ng | No application No confirmation spectra | [26] |
Eleven carbamates | / | / | HPLC post-column derivatization and fluorescence detection | 0.5 ng mL−1 | The tempestuously hydrolyzation of standards in dilute hydrochloric acid solution No confirmation spectra | [27] |
Fifteen carbamates | corn, cabbage, tomato | QuEChERS method | LC-MS (QDa) | 1 µg mL−1 | Lack of sensitivity; expensive No confirmation spectra | [28] |
Thirteen carbamates | orange, grape, onion, tomatoes | Matrix solid-phase dispersion (concentration) | LC-MS (ESI/APCI) | 0.001–0.01 mg kg−1 | No confirmation spectra | [29] |
Thirteen carbamates | Traditional Chinese Medicine | QuEChERS method | UPLC-MS (MRM) | 5.0–10.0 µg kg−1 | No confirmation spectra | [30] |
No. | Compound | Retention Time (min) | 1 CAS No. | Precursor Ion (m/z) | Product Ion (m/z) | Declustering Potential (V) | Collision Energy (eV) |
---|---|---|---|---|---|---|---|
1 | Aldicarb-sulfoxide | 3.81 | 1646-87-3 | 206.9 | 132.0 89.0 * | 130 130 | 8 17 |
2 | Aldicarb-sulfone | 4.17 | 1646-88-3 | 222.8 | 166.1 * 148.0 | 140 140 | 11 18 |
3 | Pirimicarb | 5.45 | 23103-98-2 | 239.1 | 182.1 * 72.0 | 80 80 | 20 30 |
4 | Carbofuran-3-hydroxy | 5.57 | 16655-82-6 | 237.8 | 181.0* 163.0 | 150 150 | 15 19 |
5 | Methomyl | 5.58 | 16752-77-5 | 162.8 | 135.0 106.0 * | 180 180 | 26 28 |
6 | Oxamyl | 5.59 | 23135-22-0 | 220.0 | 72.0 163.1 * | 40 40 | 18 10 |
7 | Aldicarb | 6.40 | 116-06-3 | 212.7 | 89.0 * 156.0 | 150 150 | 18 19 |
8 | Tsumacide | 6.60 | 1129-41-5 | 166.0 | 109.0 * | 50 | 13 |
9 | Propoxur | 6.87 | 114-26-1 | 210.0 | 168.0 * 153.0 | 60 60 | 18 10 |
10 | Carbofuran | 6.98 | 1563-66-2 | 221.7 | 165.0 * 123.0 | 120 120 | 15 27 |
11 | Carbaryl | 7.04 | 63-25-2 | 202.0 | 145.0 * 117.0 | 60 80 | 12 35 |
12 | Isoprocarb | 7.18 | 2631-40-5 | 194.0 | 95.0 137.0 * | 100 100 | 19 11 |
13 | Methiocarb | 7.33 | 2032-65-7 | 226.0 | 169.0 * 121.0 | 55 55 | 12 24 |
14 | Fenobucarb | 7.84 | 3766-81-2 | 208.0 | 95.0 * 152.0 | 70 70 | 19 11 |
15 | Banol | 8.29 | 671-04-5 | 214.1 | 157.1 * 121.2 | 60 60 | 12 16 |
Compound | Matrix Effects/% (n = 3; 2, 20, 200 ng mL−1) | |||||||
---|---|---|---|---|---|---|---|---|
Pak Choi | Chinese Celery | Loofah | Eggplant | Cowpea | Apple | Mushroom | Tea | |
Aldicarb-sulfoxide | 98.6 | 98.5 | 96.3 | 98.8 | 96.0 | 95.4 | 96.6 | 97.6 |
Aldicarb-sulfone | 97.8 | 96.5 | 98.3 | 99.1 | 95.7 | 96.2 | 98.4 | 96.9 |
Pirimicarb | 105.1 | 102.0 | 98.0 | 98.7 | 96.3 | 98.9 | 101.2 | 99.2 |
Carbofuran-3-hydroxy | 102.3 | 101.3 | 103.5 | 107.5 | 101.2 | 102.5 | 101.0 | 105.4 |
Methomyl | 110.2 | 108.6 | 107.2 | 108.1 | 105.4 | 111.2 | 105.7 | 109.2 |
Oxamyl | 102.5 | 98.6 | 105.2 | 106.3 | 102.0 | 102.1 | 105.2 | 106.2 |
Aldicarb | 107.5 | 102.1 | 100.2 | 101.3 | 100.8 | 103.2 | 100.5 | 102.3 |
Tsumacide | 105.0 | 100.9 | 102.3 | 98.6 | 97.9 | 99.0 | 102.6 | 102.7 |
Propoxur | 102.3 | 105.4 | 102.7 | 104.9 | 101.8 | 102.4 | 103.1 | 101.5 |
Carbofuran | 102.5 | 105.9 | 106.2 | 103.1 | 98.7 | 99.2 | 97.4 | 98.5 |
Carbaryl | 102.3 | 104.1 | 106.5 | 104.5 | 101.7 | 102.4 | 106.9 | 107.4 |
Isoprocarb | 102.3 | 104.6 | 102.5 | 104.8 | 101.2 | 107.5 | 108.4 | 101.8 |
Methiocarb | 105.9 | 104.1 | 102.4 | 106.2 | 107.1 | 105.1 | 106.3 | 105.1 |
Fenobucarb | 102.1 | 105.2 | 102.6 | 107.8 | 110.0 | 108.4 | 107.6 | 106.8 |
Banol | 105.6 | 104.2 | 102.9 | 104.1 | 103.2 | 102.5 | 102.3 | 101.1 |
Compound | Linear Range (ng mL−1) | Linear Equation | R (1/X2) | LOD (μg kg−1) | LOQ (μg kg−1) |
---|---|---|---|---|---|
Aldicarb-sulfoxide | 0.05–200 | Y = 2.42 × 104X + 812.9 | 0.9963 | 0.2 | 0.5 |
Aldicarb-sulfone | 0.50–200 | Y = 1.44 × 104X + 10,476 | 0.9972 | 2.0 | 5.0 |
Pirimicarb | 0.05–200 | Y = 5.49 × 105X + 15,110.0 | 0.9968 | 0.2 | 0.5 |
Carbofuran-3-hydroxy | 0.10–200 | Y = 1.75 × 104X + 457.2 | 0.9964 | 0.3 | 1.0 |
Methomyl | 0.05–200 | Y = 2.91 × 104X + 102,771 | 0.9962 | 0.2 | 0.5 |
Oxamyl | 0.05–200 | Y = 8.38 × 104X + 2287.1 | 0.9965 | 0.2 | 0.5 |
Aldicarb | 0.05–200 | Y = 1.96 × 104X + 7283.2 | 0.9973 | 0.2 | 0.5 |
Tsumacide | 0.05–200 | Y = 6.64 × 104X + 3330.4 | 0.9967 | 0.2 | 0.5 |
Propoxur | 0.05–200 | Y = 1.27 × 105X + 3441.9 | 0.9963 | 0.2 | 0.5 |
Carbofuran | 0.20–200 | Y = 6.31 × 104X + 543.2 | 0.9982 | 0.3 | 1.0 |
Carbaryl | 0.05–200 | Y = 6.01 × 104X + 4445.6 | 0.9968 | 0.2 | 0.5 |
Isoprocarb | 0.05–200 | Y = 9.33 × 104X + 15,304 | 0.9957 | 0.2 | 0.5 |
Methiocarb | 0.05–200 | Y = 9.86 × 104X + 6565.0 | 0.9965 | 0.2 | 0.5 |
Fenobucarb | 0.05–200 | Y = 1.24 × 105X + 7436.7 | 0.9962 | 0.2 | 0.5 |
Banol | 0.05–200 | Y = 1.01 × 105X + 2436.7 | 0.9971 | 0.2 | 0.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Guan, J.; Gao, W.; Lv, S.; Ge, M. Quantification and Confirmation of Fifteen Carbamate Pesticide Residues by Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes via LC-MS/MS QTRAP System. Molecules 2018, 23, 2496. https://doi.org/10.3390/molecules23102496
Zhou Y, Guan J, Gao W, Lv S, Ge M. Quantification and Confirmation of Fifteen Carbamate Pesticide Residues by Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes via LC-MS/MS QTRAP System. Molecules. 2018; 23(10):2496. https://doi.org/10.3390/molecules23102496
Chicago/Turabian StyleZhou, Ying, Jian Guan, Weiwei Gao, Shencong Lv, and Miaohua Ge. 2018. "Quantification and Confirmation of Fifteen Carbamate Pesticide Residues by Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes via LC-MS/MS QTRAP System" Molecules 23, no. 10: 2496. https://doi.org/10.3390/molecules23102496
APA StyleZhou, Y., Guan, J., Gao, W., Lv, S., & Ge, M. (2018). Quantification and Confirmation of Fifteen Carbamate Pesticide Residues by Multiple Reaction Monitoring and Enhanced Product Ion Scan Modes via LC-MS/MS QTRAP System. Molecules, 23(10), 2496. https://doi.org/10.3390/molecules23102496