Synthesis, Molecular Docking and In Vitro Screening of Some Newly Synthesized Triazolopyridine, Pyridotriazine and Pyridine–Pyrazole Hybrid Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Silico Molecular Docking Screenings
2.3. Pharmacological Screening
2.3.1. Anti-Microbial Activity
2.3.2. Anti-Oxidant Activity Using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Scavenging
2.3.3. Examination of the Structural Activity Relationship (SAR)
3. Materials and Methods
3.1. General Information
3.2. Chemistry
3.2.1. 5-(3,4-Dimethylphenyl)-7-(thiophen-2-yl)-[1,2,4]triazolo[4,3-a]pyridine-8-carbonitrile (2)
3.2.2. 5-(3,4-Dimethylphenyl)-3-methyl-7-(thiophen-2-yl)-[1,2,4]triazolo[4,3-a]pyridine-8-carbonitrile (3)
3.2.3. 5-(3,4-Dimethylphenyl)-3-phenyl-7-(thiophen-2-yl)-[1,2,4]triazolo[4,3-a]pyridine-8-carbonitrile (4)
3.2.4. 5-(3,4-Dimethylphenyl)-7-(thiophen-2-yl)-3-thioxo-2,3-dihydro-[1,2,4]triazolo[4,3-a]pyridine-8-carbonitrile (5)
3.2.5. 5-(3,4-Dimethylphenyl)-7-(thiophen-2-yl)tetrazolo[1,5-a]pyridine-8-carbonitrile (6)
3.2.6. 6-(3,4-Dimethylphenyl)-3,4-dioxo-8-(thiophen-2-yl)-3,4-dihydro-2H-pyrido[2,1-c][1,2,4] triazine-9-carbonitrile (7)
3.2.7. 6-(3,4-Dimethylphenyl)-3-oxo-8-(thiophen-2-yl)-3,4-dihydro-2H-pyrido[2,1-c][1,2,4]triazine-9-carbonitrile (8)
3.2.8. 6-(3,4-Dimethylphenyl)-4-oxo-8-(thiophen-2-yl)-3,4-dihydro-2H-pyrido[2,1-c][1,2,4]triazine-9-carbonitrile (9)
3.2.9. 6-(3,4-Dimethylphenyl)-8-(thiophen-2-yl)-3,4-dihydro-2H-pyrido[2,1-c][1,2,4]triazine-9-carbonitrile (10)
3.2.10. 2-(3,5-Dimethyl-1H-pyrazol-1-yl)-6-(3,4-dimethylphenyl)-4-(thiophen-2-yl)nicotinonitrile (11)
3.2.11. 6-(3,4-Dimethylphenyl)-2-(3,5-dioxopyrazolidin-1-yl)-4-(thiophen-2-yl)nicotinonitrile (12)
3.2.12. 2-(5-Amino-3-oxo-2,3-dihydropyrazol-1-yl)-6-(3,4-dimethylphenyl)-4-(thiophen-2-yl)nicotinonitrile (13)
3.2.13. 6-(3,4-Dimethylphenyl)-2-(5-oxo-3-phenyl-4,5-dihydropyrazol-1-yl)-4-(thiophen-2-yl)nicotinonitrile (14)
3.2.14. 6-(3,4-Dimethylphenyl)-2-(3-methyl-5-oxo-4,5-dihydropyrazol-1-yl)-4-(thiophen-2-yl)nicotinonitrile (15)
3.3. In Silico Molecular Docking Screenings
3.4. In Vitro Anti-Microbial Screenings
3.5. DPPH Radical Scavenging Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Senderowicz, A.M. Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr. Opin. Cell Biol. 2004, 16, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Rashad, A.E.; Shamroukh, A.H.; El-Hashash, M.A.; El-Farargy, A.F.; Yousif, N.M.; Salama, M.A.; Mostafa, A.; El-Shahat, M. Synthesis and Anti-Avian Influenza Virus (H5N1) Evaluation of Some Novel Nicotinonitriles and Their N–Acylic Nucleosides. J. Heterocycl. Chem. 2012, 49, 1130–1135. [Google Scholar] [CrossRef]
- Tanifum, E.A.; Kots, A.Y.; Choi, B.K.; Murad, F.; Gilbertson, S.R. Novel pyridopyrimidine derivatives as inhibitors of stable toxin a (STa) induced cGMP synthesis. Bioorg. Med. Chem. Lett. 2009, 19, 3067–3071. [Google Scholar] [CrossRef] [PubMed]
- Rosowsky, A.; Mota, C.E.; Queener, S.F. Synthesis and antifolate activity of 2, 4-diamino-5,6,7,8-tetrahydropyrido [4,3-d] pyrimidine analogues of trimetrexate and piritrexim. J. Heterocycl. Chem. 1995, 32, 335–340. [Google Scholar] [CrossRef]
- Kotb, E.R.; Abbas, H.A.S.; Flefel, E.M.; Sayed, H.H.; Abdelwahed, N.A.M. Utility of Hantzsch ester in synthesis of some 3,5-bis-dihydropyridine derivatives and studying their biological evaluation. J. Heterocycl. Chem. 2015, 52, 1531–1539. [Google Scholar] [CrossRef]
- Flefel, E.M.; Abbas, H.A.S.; Abdel Magid, R.E.; Zaghary, W.A. Synthesis and Cytotoxic Effect of Some Novel 1,2-Dihydropyridine-3-Carbonitrile and Nicotinonitrile Derivatives. Molecules 2016, 21, 30. [Google Scholar] [CrossRef]
- El-Sayed, A.A.; Khaireldin, N.Y.; El-Shahat, M.; El-Hefny, E.A.; El-Saidi, M.M.T.; Ali, M.M.; Mahmoud, A.E. Antiproliferative Activity For Newly Heterofunctionalized Pyridine Analogues. Ponte 2016, 72, 106–118. [Google Scholar]
- Sayed, H.H.; Morsy, E.M.; Flefel, E.M. Synthesis and reactions of some novel Nicotinonitrile, thiazolotriazole, and Imidazolotriazole derivatives for Antioxidant evaluation. Synth. Commun. 2010, 40, 1360–1370. [Google Scholar] [CrossRef]
- Sayed, H.H.; Flefel, E.M.; Abd El-Fatah, A.M.; El-Sofany, W.I. Focus on the Synthesis and Reactions of Some New Pyridine Carbonitrile Derivatives as Antimicrobial and Antioxidant Agents. Egypt. J. Chem. 2010, 53, 17–35. [Google Scholar]
- Abdelhameed, R.M.; El-Sayed, H.A.; El-Shahat, M.; El-Sayed, A.A.; Darwesh, O.M. Novel triazolothiadiazole and triazolothiadiazine derivatives containing pyridine moiety: Design, synthesis, bactericidal and fungicidal activities. Curr. Bioact. Compd. 2018, 14, 169–179. [Google Scholar] [CrossRef]
- Abo-Ghalia, M.H.; Amr, A.E.G.E.; Abdalah, M.M. Synthesis of some new (Nα-dipicolinoyl)-bis-L-leucyl-DL-norvalyl linear tetra and cyclic octa bridged peptides as new antiinflammatory agents. Zeitschrift für Naturforschung B 2003, 58, 903–910. [Google Scholar] [CrossRef]
- Sondhi, S.M.; Dinodia, M.; Kumar, A. Synthesis, anti-inflammatory and analgesic activity evaluation of some amidine and hydrazone derivatives. Bioorg. Med. Chem. 2006, 14, 4657–4663. [Google Scholar] [CrossRef] [PubMed]
- Komoda, H.; Inoue, T.; Node, K. Anti-inflammatory properties of azelnidipine, a dihydropyridine-based calcium channel blocker. Clin. Exp. Hypertens. 2010, 32, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Flores, Y.K.; Campos-Aldrete, M.E.; Salgado-Zamora, H.; Correa-Basurto, J.; Meléndez-Camargo, M.E. Docking simulations, synthesis, and anti-inflammatory activity evaluation of 2-(N-alkyl) amino-3-nitroimidazo [1,2-a]pyridines. Med. Chem. Res. 2012, 21, 775–782. [Google Scholar] [CrossRef]
- Coburn, R.A.; Wierzba, M.; Suto, M.J.; Solo, A.J.; Triggle, A.M.; Triggle, D.J. 1, 4-Dihydropyridine antagonist activities at the calcium channel: a quantitative structure-activity relationship approach. J. Med. Chem. 1988, 31, 2103–2107. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.T.; Piazza, G.A.; Han, E.K.H.; Delohery, T.M.; Li, H.; Finn, T.S.; Gross, P.H. Sulindac derivatives inhibit growth and induce apoptosis in human prostate cancer cell lines. Biochem. Pharmacol. 1999, 58, 1097–1107. [Google Scholar] [CrossRef]
- Kotb, E.R.; El-Hashash, M.A.; Salama, M.A.; Kalf, H.S.; Abdel Wahed, N.A. Synthesis and reactions of some novel nicotinonitrile derivatives for anticancer and antimicrobial evaluation. Acta Chim. Slov. 2009, 56, 908–919. [Google Scholar]
- Al-Abdullah, E.S. Synthesis and anticancer activity of some novel tetralin-6-yl-pyrazoline, 2-thioxopyrimidine, 2-oxopyridine, 2-thioxo-pyridine and 2-iminopyridine derivatives. Molecules 2011, 16, 3410–3419. [Google Scholar] [CrossRef] [PubMed]
- Das, K.S.; Dey, S.K.; Maity, S.; Guha, P.; Choubey, M.; Bandyopadhyay, U. Antiplasmodial activity of [(aryl) arylsulfanylmethyl] pyridine. Antimicrob. Agents Chemother. 2008, 52, 705–715. [Google Scholar]
- Patel, N.B.; Agravat, S.N.; Shaikh, F.M. Synthesis and antimicrobial activity of new pyridine derivatives-I. Med. Chem. Res. 2011, 20, 1033–1041. [Google Scholar] [CrossRef]
- Kotb, E.R.; Anwar, M.M.; Abbas, H.A.S.; Abd, E.M.; SI, A. A concise synthesis and antimicrobial activity of a novel series of naphthylpyridine-3-carbonitrile compounds. Acta Pol. Pharm. 2013, 70, 667–679. [Google Scholar] [PubMed]
- Acharya, B.N.; Thavaselvam, D.; Kaushik, M.P. Synthesis and antimalarial evaluation of novel pyridine quinoline hybrids. Med. Chem. Res. 2008, 17, 487–494. [Google Scholar] [CrossRef]
- Mukai, A.; Nagai, A.; Inaba, S.; Takagi, M.; Shin-ya, K. JBIR-54, A new 4-pyridinone derivative isolated from Penicillium daleae Zaleski fE50. J. Antibiot. 2009, 62, 705–706. [Google Scholar] [CrossRef] [PubMed]
- Nigade, G.; Chavan, P.; Deodhar, M. Synthesis and analgesic activity of new pyridine-based heterocyclic derivatives. Med. Chem. Res. 2012, 21, 27–37. [Google Scholar] [CrossRef]
- Amr, A.E.G.E.; Sayed, H.H.; Abdulla, M.M. Synthesis and reactions of some new substituted pyridine and pyrimidine derivatives as analgesic, anticonvulsant and antiparkinsonian agents. Arch. Pharm. Chem. Life Sci. 2005, 338, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Worachartcheewan, A.; Prachayasittikul, S.; Pingaew, R.; Nantasenamat, C.; Tantimongcolwat, T.; Ruchirawat, S.; Prachayasittikul, V. Antioxidant, cytotoxicity, and QSAR study of 1-adamantylthio derivatives of 3-picoline and phenylpyridines. Med. Chem. Res. 2012, 21, 3514–3522. [Google Scholar] [CrossRef]
- Mu, J.X.; Shi, Y.X.; Wu, H.K.; Sun, Z.H.; Yang, M.Y.; Liu, X.H.; Li, B.J. Microwave assisted synthesis, antifungal activity, DFT and SAR study of 1,2,4-triazolo[4,3-a]pyridine derivatives containing hydrazone moieties. Chem. Cent. J. 2016, 10, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhai, Z.; Sun, Z.; Liu, X.; Tan, C.; Weng, J. Synthesis, Crystal Structure and Antifungal Activity of 8-Chloro-3-((4-chlorobenzyl)-thio)[1,2,4]triazolo[4,3-a] pyridine. Chin. J. Struct. Chem. 2016, 35, 651–655. [Google Scholar] [CrossRef]
- Zhai, Z.W.; Shi, Y.X.; Yang, M.Y.; Zhao, W.; Sun, Z.H.; Weng, J.Q.; Zhang, Y.G. Microwave assisted synthesis and antifungal activity of some novel thioethers containing 1,2,4-triazolo[4, 3-a] pyridine moiety. Lett. Drug Des. Discov. 2016, 13, 521–525. [Google Scholar] [CrossRef]
- Xu, F.Z.; Shao, J.H.; Zhu, Y.Y.; Liu, L.W.; Zhao, Y.H.; Shan, W.L.; Xue, W. Synthesis, antifungal and insecticidal activity of novel[1,2,4]triazolo[4, 3-a] pyridine derivatives containing a sulfide substructure. Chem. Pap. 2017, 71, 729–739. [Google Scholar] [CrossRef]
- Liu, X.H.; Xu, X.Y.; Tan, C.X.; Weng, J.Q.; Xin, J.H.; Chen, J. Synthesis, crystal structure, herbicidal activities and 3D-QSAR study of some novel 1,2,4-triazolo [4,3-a] pyridine derivatives. Pest Manag. Sci. 2015, 71, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.P.; Zhang, R.P.; Sun, Y.; Chang, Y.; Sui, X. Synthesis and studies on the anticonvulsant activity of 5-alkoxy-[1,2,4]triazolo[4,3-a]pyridine derivatives. Arzneimittelforschung 2012, 62, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Prakash, O.; Hussain, K.; Aneja, D.K.; Sharma, C.; Aneja, K.R. A facile iodine (III)-mediated synthesis of 3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-a]pyridines via oxidation of 2-((3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-1-(pyridin-2-yl)hydrazines and their antimicrobial evaluations. Org. Med. Chem. Lett. 2011, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sadana, A.K.; Mirza, Y.; Aneja, K.R.; Prakash, O. Hypervalent iodine mediated synthesis of 1-aryl/hetryl-1,2,4-triazolo [4,3-a] pyridines and 1-aryl/hetryl 5-methyl-1,2,4-triazolo [4,3-a] quinolines as antibacterial agents. Eur. J. Med. Chem. 2003, 38, 533–536. [Google Scholar] [CrossRef]
- Maqbool, M.; Manral, A.; Jameel, E.; Kumar, J.; Saini, V.; Shandilya, A.; Jayaram, B. Development of cyanopyridine–triazine hybrids as lead multitarget anti-Alzheimer agents. Bioorg. Med. Chem. 2016, 24, 2777–2788. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Abdel-Rahman, R.M.; Abdel-Halim, A.M.; Ibrahim, S.S.; Allimony, H.A. Synthesis, chemical reactivity and fungicidal activity of pyrido [1,2-b][1,2,4] triazine derivatives. J. Braz. Chem. Soc. 2009, 20, 1275–1286. [Google Scholar] [CrossRef]
- Ali, T.E.S.; Ibrahim, M.A. Synthesis and antimicrobial activity of chromone-linked 2-pyridone fused with 1,2,4-triazoles, 1,2,4-triazines and 1,2,4-triazepines ring systems. J. Braz. Chem. Soc. 2010, 21, 1007–1016. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, D.; Pawlak, K.; Chabielska, E.; Małyszko, J.; Takada, A.; Myśliwiec, M.; Buczko, W. A potent 5-hydroxytryptamine receptor (5-HT2A) antagonist, DV-7028, delays arterial thrombosis development in rats. Thromb. Res. 1998, 90, 259–270. [Google Scholar] [CrossRef]
- Pawlak, D.; Adamkiewicz, M.; Malyszko, J.; Takada, A.; Mysliwiec, M.; Buczko, W. Vascular and cardiac effects of DV-7028, a selective, 5-HT2-receptor antagonist in rats. J. Cardiovasc. Pharmacol. 1998, 32, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Usui, H.; Kobayashi, S.; Yoshiwara, H.; Shibano, T.; Tanaka, T.; Kanao, M. Syntheses and 5-HT2 antagonist activity of bicyclic 1,2,4-triazol-3(2H)-one and 1,3,5-triazine-2,4 (3H)-dione derivatives. J. Med. Chem. 1992, 35, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Nagai, K. Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. J. Med. Chem. 2004, 47, 3693–3696. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Abdel-Aziem, T. Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents. Bioorg. Med. Chem. 2004, 12, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.A.; Ashour, H.; Guemei, A.A. Novel Pyrazole Derivatives as Potential Promising Anti-inflammatory Antimicrobial Agents. Arch. Pharm. Chem. Life Sci. 2005, 338, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Bondock, S.; Fadaly, W.; Metwally, M.A. Synthesis and antimicrobial activity of some new thiazole, thiophene and pyrazole derivatives containing benzothiazole moiety. Eur. J. Med. Chem. 2010, 45, 3692–3701. [Google Scholar] [CrossRef] [PubMed]
- Gökhan-Kelekçi, N.; Yabanoğlu, S.; Küpeli, E.; Salgın, U.; Özgen, Ö.; Uçar, G.; Bilgin, A.A. A new therapeutic approach in Alzheimer disease: some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorg. Med. Chem. 2007, 15, 5775–5786. [Google Scholar] [CrossRef] [PubMed]
- Burguete, A.; Pontiki, E.; Hadjipavlou-Litina, D.; Villar, R.; Vicente, E.; Solano, B.; Monge, A. Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1, 4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4, 5-dihydro-(1H)-pyrazole analogues. Bioorg. Med. Chem Lett. 2007, 17, 6439–6443. [Google Scholar] [CrossRef] [PubMed]
- Manojkumar, P.; Ravi, T.; Subbuchettiar, G. Synthesis of coumarin heterocyclic derivatives with antioxidant activity and in vitro cytotoxic activity against tumour cells. Acta Pharm. 2009, 59, 159–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitulescu, G.M.; Draghici, C.; Missir, A.V. Synthesis of new pyrazole derivatives and their anticancer evaluation. Eur. J. Med. Chem. 2010, 45, 4914–4919. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.C.; Li, H.Q.; Sun, J.; Zhou, Y.; Zhu, H.L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg. Med. Chem. 2010, 18, 4606–4614. [Google Scholar] [CrossRef] [PubMed]
- Balbi, A.; Anzaldi, M.; Macciò, C.; Aiello, C.; Mazzei, M.; Gangemi, R.; Viale, M. Synthesis and biological evaluation of novel pyrazole derivatives with anticancer activity. Eur. J. Med. Chem. 2011, 46, 5293–5309. [Google Scholar] [CrossRef] [PubMed]
- Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Arulmoli, T.; Fun, H.K. Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arab. J. Chem. 2013, 6, 197–204. [Google Scholar] [CrossRef]
- Chmara, H.; Andruszkiewicz, R.; Borowski, E. Inactivation of glucosamine-6-phosphatesynthetase from Salmonella†typhimurium†LT2 SL 1027 by N-beta-fumarylcarboxyamido-l-2,3-diamino-propionic acid. Biochem. Biophys. Res. Commun. 1984, 120, 865–872. [Google Scholar] [CrossRef]
- Marshall, N.J.; Andruszkiewicz, R.; Gupta, S.; Milewski, S.; Payne, J.W. Structure activity relationships for a series of peptidomimetic antimicrobial prodrugs containing glutamine analogues. J. Antimicrob. Chemother. 2003, 51, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Borowski, E. Novel approaches in the rational design of antifungal agents of low toxicity. Farmaco 2000, 55, 206–208. [Google Scholar] [CrossRef]
- Magdy, M.Y.; Mohammed, A.A.; Mohamed, A.I. Synthesis, DNA affinity, and antimicrobial activity of 4-substituted phenyl-2,2′-bichalcophenes and aza-analogues. Med. Chem. Res. 2012, 21, 4074–4082. [Google Scholar]
- Hassan, A.E.; Ahmed, H.M.; Abd El-Fattah, Z.H.; Rajab, A.; El Sayed, H.E. Synthesis, antitumor and antimicrobial activities of 4-(4-chlorophenyl)-3-cyano-2-(β-O-glycosyloxy)-6-(thien-2-yl)- nicotinonitrile. Eur. J. Med. Chem. 2011, 46, 2948–2954. [Google Scholar]
- Umesh, D.P.; Ajay, P.N.; Pramod, S.N.; Pramod, P.M. Synthesis, antimicrobial and antifungal activity evaluation of 2,6-diaryl-4-SEC-aminonicotinonitriles and 4-sec-amino-6-aryl-2-(pyridin-2-yl)pyridine-3-carbonitriles i.e., Bipyridines and their docking study. J. Pharm. Res. 2012, 5, 1383–1386. [Google Scholar]
- Rashad, A.E.; Shamroukh, A.H.; Yousif, N.M.; Salama, M.A.; Ali, M.M.; Mahmoud, A.E.; El-Shahat, M. New Pyrimidinone and Fused Pyrimidinone Derivatives as Potential Anticancer Chemotherapeutics. Arch. Pharm. Chem. Life Sci. 2012, 345, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Shamroukh, A.H.; El-Shahat, M.; Drabowicz, J.; Ali, M.M.; Rashad, A.E. Anticancer evaluation of some newly synthesized N-nicotinonitrile derivative. Eur. J. Med. Chem. 2013, 69, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Flefel, E.M.; Tantawy, W.A.; El-Sofany, W.I.; El-Shahat, M.; El-Sayed, A.A.; Abd-Elshafy, D.N. Synthesis of Some New Pyridazine Derivatives for Anti-HAV Evaluation. Molecules 2017, 22, 148. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.A.; Khalil, A.M.; El-Shahat, M.; Khaireldin, N.Y.; Rabie, S.T. Antimicrobial activity of PVC-pyrazolone-silver nanocomposites. J. Macromol. Sci. Part A Pure Appl. Chem. 2016, 53, 346–353. [Google Scholar] [CrossRef]
- El-Shahat, M. Studies on the Synthesis and Chemical Reactions of Some Mixed and Non-Mixed Heterocyclic Compounds of Expected Biological Activity. Master’s Thesis, Zagazig University, Zagazig, Egypt, 2007. [Google Scholar]
- Hindler, J.A.; Howard, B.J.; Keiser, J.F. Antimicrobial agents and antimicrobial susceptibility testing. In Clinical and Pathogenic Microbiology, 2nd ed.; Mosby: St Louis, MO, USA, 1994. [Google Scholar]
- Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, K.R.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Noel, M.O.; Michael, B.; Craig, A.J.; Chris, M.; Tim, V.; Geoffrey, R.H. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [Green Version]
- Mouilleron, S.; Badet-Denisot, M.A.; Golinelli-Pimpaneau, B. Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel. J. Mol. Biol. 2008, 377, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
- Schüttelkopf, A.W.; Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Cryst. 2004, 60, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound Code | Minimum Binding Energy (kJ/mol) | Estimated Inhibition Constant, Ki = uM (micromol) |
---|---|---|
1 | −6.08 | 35 uM |
2 | −7.19 | 5.39 uM |
3 | −7.34 | 4.16 uM |
4 | −7.55 | 2.94 uM |
5 | −6.28 | 25.04 uM |
6 | −7.51 | 3.13 uM |
7 | −7.77 | 2.00 uM |
8 | −7.84 | 1.79 uM |
9 | −7.29 | 4.51 uM |
10 | −7.62 | 2.59 uM |
11 | −6.55 | 15.69 uM |
12 | −6.15 | 30.87 uM |
13 | −6.29 | 24.67 uM |
14 | −7.03 | 7.00 uM |
15 | −6.10 | 33.94 uM |
Sample Code Tested Microorganisms | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | Control |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FUNGI | Ketoconazole | |||||||||||||||
Aspergillus flavus (RCMB 002002) | NA | NA | NA | 7 | 12 | 8 | 9 | 11 | NA | 11 | 10 | 7 | 8 | 7 | NA | 16 |
Candida albicans RCMB 005003 (1) ATCC 10231 | 9 | NA | NA | NA | 12 | 11 | 10 | 12 | 13 | 15 | 17 | 10 | 9 | 10 | 9 | 20 |
Gram Positive Bacteria: | Gentamycin | |||||||||||||||
Staphylococcus aureus (RCMB010010) | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 10 | NA | 11 | 8 | 24 |
Bacillus subtilis RCMB 015 (1) NRRL B-543 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 26 |
Gram Negatvie Bacteria: | Gentamycin | |||||||||||||||
Escherichia coli (RCMB 010052) ATCC 25955 | 12 | 13 | 18 | NA | 8 | NA | 10 | 12 | NA | 13 | 9 | NA | NA | 11 | 12 | 30 |
Salmonella typhimurium RCMB 006 (1) ATCC 14028 | NA | NA | NA | NA | 15 | NA | NA | NA | NA | 7 | 8 | 10 | NA | NA | NA | 17 |
Compound Code | IC50 (μg/mL) |
---|---|
Tocopherol | 6.78 |
1 | 22.8 |
2 | >1000 |
3 | 252.7 |
4 | >1000 |
5 | 110.3 |
6 | 70.5 |
7 | 700 |
8 | - |
9 | 602.5 |
10 | - |
11 | 508.5 |
12 | 242.7 |
13 | 218.5 |
14 | 3.49 |
15 | 4.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flefel, E.M.; El-Sofany, W.I.; El-Shahat, M.; Naqvi, A.; Assirey, E. Synthesis, Molecular Docking and In Vitro Screening of Some Newly Synthesized Triazolopyridine, Pyridotriazine and Pyridine–Pyrazole Hybrid Derivatives. Molecules 2018, 23, 2548. https://doi.org/10.3390/molecules23102548
Flefel EM, El-Sofany WI, El-Shahat M, Naqvi A, Assirey E. Synthesis, Molecular Docking and In Vitro Screening of Some Newly Synthesized Triazolopyridine, Pyridotriazine and Pyridine–Pyrazole Hybrid Derivatives. Molecules. 2018; 23(10):2548. https://doi.org/10.3390/molecules23102548
Chicago/Turabian StyleFlefel, Eman M., Walaa I. El-Sofany, Mahmoud El-Shahat, Arshi Naqvi, and Eman Assirey. 2018. "Synthesis, Molecular Docking and In Vitro Screening of Some Newly Synthesized Triazolopyridine, Pyridotriazine and Pyridine–Pyrazole Hybrid Derivatives" Molecules 23, no. 10: 2548. https://doi.org/10.3390/molecules23102548
APA StyleFlefel, E. M., El-Sofany, W. I., El-Shahat, M., Naqvi, A., & Assirey, E. (2018). Synthesis, Molecular Docking and In Vitro Screening of Some Newly Synthesized Triazolopyridine, Pyridotriazine and Pyridine–Pyrazole Hybrid Derivatives. Molecules, 23(10), 2548. https://doi.org/10.3390/molecules23102548