Recent Advances in the Catalytic Asymmetric Reactions of Oxaziridines
Abstract
:1. Introduction
2. Asymmetric Oxidation of Oxaziridines
2.1. Olefin Epoxidation
2.2. Sulfoxidation
2.3. Enolate Oxidation
2.4. Rubottom Oxidation
3. Asymmetric Amination of Oxaziridines
4. Asymmetric Cycloaddition of Oxaziridines
5. Deracemization
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Emmons, W.D. The synthesis of oxaziridines. J. Am. Chem. Soc. 1956, 78, 6208–6209. [Google Scholar] [CrossRef]
- Gao, H.; Zhou, Z.; Kwon, D.-H.; Coombs, J.; Jones, S.; Behnke, N.E.; Ess, D.H.; Kürti, L. Rapid heteroatom transfer to arylmetals utilizing multifunctional reagent scaffolds. Nat. Chem. 2017, 9, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.A.; Chen, B.-C. Asymmetric hydroxylation of enolates with N-sulfonyloxaziridines. Chem. Rev. 1992, 92, 919–934. [Google Scholar] [CrossRef]
- Davis, F.A.; Reddy, R.T.; Han, W.; Reddy, R.E. Asymmetric synthesis using N-sulfonyloxaziridines. Pure Appl. Chem. 1993, 65, 633–640. [Google Scholar] [CrossRef]
- Davis, F.A.; Chen, B.-C. Formation of C-O bonds by oxygenation of enolates. In Stereoselective Synthesis; Helmchen, G., Hoffman, R.W., Mulzer, J., Schaumann, E., Eds.; Georg Thieme Verlag: Stuttgart, Germany, 1995; Volume E21e, p. 4497. [Google Scholar]
- Davis, F.A.; Reddy, R.T. Oxaziridines and oxazirines. In Comprehensive Heterocyclic Chemistry II; Padwa, A., Ed.; Elsevier: Oxford, UK, 1996; Volume 1, pp. 365–413. [Google Scholar]
- Petrov, V.A.; Resnati, G. Polyfluorinated oxaziridines: Synthesis and reactivity. Chem. Rev. 1996, 96, 1809–1824. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.A.; Jenkins, R.H. Synthesis and utilization of compounds with chiral nitrogen centers. In Asymmetric Synthesis; Morrison, J.D., Ed.; Academic Press: Cambridge, MA, USA, 1984; Volume 4, Chapter 4; pp. 313–353. [Google Scholar]
- Smith, A.M.R.; Hii, K.K. Transition metal catalyzed enantioselective α-heterofunctionalization of carbonyl compounds. Chem. Rev. 2011, 111, 1637–1656. [Google Scholar] [CrossRef] [PubMed]
- Williamson, K.S.; Michaelis, D.J.; Yoon, T.P. Advances in the chemistry of oxaziridines. Chem. Rev. 2014, 114, 8016–8036. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.; Damestoy, S.; Guy, L.; Hannachi, J.-C.; Aubry, A.; Collet, A. N-Alkyloxycarbonyl-3-aryloxaziridines: Their preparation, structure, and utilization as electrophilic amination reagents. Chem. Eur. J. 1997, 3, 1691–1709. [Google Scholar] [CrossRef]
- Armstrong, A.; Cooke, R.S. Efficient amination of sulfides with a ketomalonate-derived oxaziridine: Application to [2,3]-sigmatropic rearrangements of allylic sulfimides. Chem. Commun. 2002, 904–905. [Google Scholar] [CrossRef]
- Armstrong, A.; Cooke, R.S.; Shanahan, S.E. Amination and [2,3]-sigmatropic rearrangement of propargylic sulfides using a ketomalonate-derived oxaziridine: Synthesis of N-allenylsulfenimides. Org. Biomol. Chem. 2003, 1, 3142–3143. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Challinor, L.; Cooke, R.S.; Moir, J.H.; Treweeke, N.R. Oxaziridine-mediated amination of branched allylic sulfides: Stereospecific formation of allylic amine derivatives via [2,3]-sigmatropic rearrangement. J. Org. Chem. 2006, 71, 4028–4030. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.; Challinor, L.; Moir, J.H. Exploiting Organocatalysis: Enantioselective Synthesis of Vinyl Glycines by Allylic Sulfimide [2,3] Sigmatropic Rearrangement. Angew. Chem. Int. Ed. 2007, 46, 5369–5372. [Google Scholar] [CrossRef] [PubMed]
- Aubé, J.; Wang, Y.; Ghosh, S.; Langhans, K.L. Expansions of substituted cyclobutanones: Synthesis of (−)-γ-amino-β-hydroxybutyric acid (GABOB). Synth. Commun. 1991, 21, 693–701. [Google Scholar] [CrossRef]
- Gioia, M.L.D.; Leggio, A.; Pera, A.L.; Liguori, A.; Siciliano, C. Optically pure N-hydroxy-O-triisopropylsilyl-α-l-amino acid methyl esters from AlCl3-assisted ring opening of chiral oxaziridines by nitrogen containing nucleophiles. J. Org. Chem. 2005, 70, 10494–10501. [Google Scholar] [CrossRef] [PubMed]
- Sochaka, E.; Fratczak, I. Efficient desulfurization of 2-thiopyrimidine nucleosides to the corresponding 4-pyrimidinone analogues using trans-2-(phenylsulfonyl)-3-phenyloxaziridine. Tetrahedron Lett. 2004, 45, 6729–6731. [Google Scholar] [CrossRef]
- Peng, X.; Zhu, Y.; Ramirez, T.A.; Zhao, B.; Shi, Y. New reactivity of oxaziridine: Pd(II)-catalyzed aromatic C-H ethoxycarbonylation via C-C bond cleavage. Org. Lett. 2011, 13, 5244–5247. [Google Scholar] [CrossRef] [PubMed]
- Lykke, L.; Rodríguez-Escrich, C.; Jørgensen, K.A. Catalytic enantioselective oxaziridination. J. Am. Chem. Soc. 2011, 133, 14932–14935. [Google Scholar] [CrossRef] [PubMed]
- Uraguchi, D.; Tsutsumi, R.; Ooi, T. Catalytic asymmetric Payne oxidation under the catalysis of P-spiro chiral triaminoiminophosphorane: Application to the synthesis of N-sulfonyl oxaziridines. Tetrahedron 2014, 70, 1691–1701. [Google Scholar] [CrossRef]
- Hanquet, G.; Lusinchi, X.; Milliet, P. Acid catalyzed oxygen transfer from an oxaziridine to a thioether. Tetrahedron Lett. 1988, 29, 2817–2818. [Google Scholar] [CrossRef]
- Davis, F.A.; Billmers, J.M.; Gosciniak, D.J.; Towson, J.C. Chemistry of Oxaziridines. 7. Kinetics and Mechanism of the Oxidation of Sulfoxides and Alkenes by 2-Sulfonyloxaziridines. Relationship to the Oxygen-Transfer Reactions of Metal Peroxides. J. Org. Chem. 1986, 51, 4240–4245. [Google Scholar] [CrossRef]
- Sandrinelli, F.; Perrio, S.; Beslin, P. Oxaziridine-mediated oxidation reaction of thiolates to give sulfonates: The first one-pot synthesis of sulfoxides from thiols. J. Org. Chem. 1997, 62, 8626–8627. [Google Scholar] [CrossRef]
- Grandclaudon, C.; Toullec, P.Y. Phase-transfer-catalyzed oxaziridine-mediated hydroxylative phenol and naphthol dearomatization. Eur. J. Org. Chem. 2016, 2016, 260–264. [Google Scholar] [CrossRef]
- Wagner, W.R.; Spero, D.M.; Rastetter, W.H. Oxygen Transfer from Oxaziridines: A Chemical Model for Flavin-Dependent Monooxygenases. J. Am. Chem. Soc. 1984, 106, 1476–1480. [Google Scholar] [CrossRef]
- Davis, F.A.; Reddy, R.T. Asymmetric oxidation of simple selenides to selenoxides in high enantiopurity. stereochemical aspects of the allyl selenoxide/allyl selenenate rearrangement. J. Org. Chem. 1992, 57, 2599–2606. [Google Scholar] [CrossRef]
- Brodsky, B.H.; Bois, J.D. Oxaziridine-mediated catalytic hydroxylation of unactivated 3° C-H bonds. J. Am. Chem. Soc. 2005, 127, 15391–15393. [Google Scholar] [CrossRef] [PubMed]
- Litvinas, N.D.; Brodsky, B.H.; Bois, J.D. C-H hydroxylation using a heterocyclic catalyst and aqueous H2O2. Angew. Chem. Int. Ed. 2009, 48, 4513–4516. [Google Scholar] [CrossRef] [PubMed]
- Motiwala, H.F.; Gulgeze, B.; Aubé, J. Copper-catalyzed oxaziridine-mediated oxidation of C-H bonds. J. Org. Chem. 2012, 77, 7005–7022. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.M.; Bois, J.D. Organocatalytic C-H hydroxylation with Oxone enabled by an aqueous fluoroalcohol solvent system. Chem. Sci. 2014, 5, 656–659. [Google Scholar] [CrossRef]
- Millet, P.; Picot, A.; Lusinchi, X. Formation d’un sel d’oxaziridinium quaternaire par methylation d’un oxaziranne-mise en evidence de ses proprieties oxydantes. Tetrahedron Lett. 1976, 17, 1573–1576. [Google Scholar] [CrossRef]
- Picot, A.; Milliet, P.; Lusinchi, X. Action de l’acide p-nitroperbenzoïque et de l’eau oxygénée sur un sel d’immonium hétérocyclique stéroïdique et sur l’énamine correspondante. Tetrahedron Lett. 1976, 17, 1577–1580. [Google Scholar] [CrossRef]
- Page, P.C.B.; Bartlett, C.J.; Chan, Y.; Day, D.; Parker, P.; Buckely, B.R.; Rassias, G.A.; Slawin, A.M.Z.; Allin, S.M.; Lacour, J.; et al. Asymmetric epoxidation using iminium salt organocatalysts featuring dynamically controlled atropoisomerism. J. Org. Chem. 2012, 77, 6128–6138. [Google Scholar] [CrossRef] [PubMed]
- Page, P.C.B.; Appleby, L.F.; Chan, Y.; Day, D.P.; Buckely, B.R.; Slawin, A.M.Z.; Allin, S.M.; McKenzie, M.J. Kinetic resolution in asymmetric epoxidation using iminium salt catalysis. J. Org. Chem. 2013, 78, 8074–8082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, F.A.; McCauley, J.P.; Chattopadhyay, S.; Harakal, M.E.; Towson, J.C.; Watson, W.H.; Tavanaiepour, I. Chemistry of oxaziridines. 8. Asymmetric oxidation of nonfunctionalized sulfides to sulfoxides with high enantioselectivity by 2-sulfamyloxaziridines. The influence of the oxaziridine C-aryl group on the asymmetric induction. J. Am. Chem. Soc. 1987, 109, 3370–3377. [Google Scholar] [CrossRef]
- Davis, F.A.; Reddy, R.T.; Han, W.; Carroll, P.J. Chemistry of oxaziridines. 17. N-(phenylsulfonyl)(3,3-dichlorocamphoryl)oxaziridine: A highly efficient reagent for the asymmetric oxidation of sulfides to sulfoxides. J. Am. Chem. Soc. 1992, 114, 1428–1437. [Google Scholar]
- Wang, C.-C.; Li, J.J.; Huang, H.-C.; Lee, L.F.; Reitz, D.B. A highly enantioselective benzothiepine synthesis. J. Org. Chem. 2000, 65, 2711–2715. [Google Scholar] [CrossRef] [PubMed]
- Page, P.C.B.; Heer, J.P.; Bethell, D.; Collington, E.W.; Andrews, D.M. Asymmetric sulfoxidation using [(3,3-dimethoxycamphoryl)sulfonyl]oxaziridine. Tetrahedron Asymmetry 1995, 6, 2911–2914. [Google Scholar] [CrossRef]
- Bethell, D.; Page, P.C.B.; Vahedi, H. Catalytic asymmetric oxidation of sulfides to sulfoxides mediated by chiral 3-substituted-1,2-benzisothiazole 1,1-dioxides. J. Org. Chem. 2000, 65, 6756–6760. [Google Scholar] [CrossRef] [PubMed]
- Bohé, L.; Luscinchi, M.; Lusinchi, X. Oxygen atom transfer from a chiral N-alkyl oxaziridine promoted by acid. The asymmetric oxidation of sulfides to sulfoxides. Tetrahedron 1999, 55, 155–166. [Google Scholar] [CrossRef]
- Del Rio, R.E.; Wang, B.; Achab, S.; Bohé, L. Highly enantioselective oxidation of sulfides to sulfoxides by a new oxaziridinium salt. Org. Lett. 2007, 9, 2265–2268. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.A.; Abdul-Malik, N.F.; Awad, S.B.; Harakal, M.E. Epoxidation of olefins by oxaziridines. Tetrahedron Lett. 1981, 22, 917–920. [Google Scholar] [CrossRef]
- Davis, F.A.; Harakal, M.E.; Awad, S.B. Chemistry of oxaziridines. 4. Asymmetric epoxidation of unfunctionalized alkenes using chiral 2-sulfonyloxaziridines: Evidence for a planar transition state geometry. J. Am. Chem. Soc. 1983, 105, 3123–3126. [Google Scholar] [CrossRef]
- Davis, F.A.; Vishwakarma, L.C.; Billmers, J.M.; Finn, J. Synthesis of α-hydroxycarbonyl compounds (acyloins): Direct oxidation of enolates using 2-sulfonyloxaziridines. J. Org. Chem. 1984, 49, 3241–3243. [Google Scholar] [CrossRef]
- Davis, F.A.; Sheppard, A.C.; Chen, B.-C.; Haque, M.S. Chemistry of oxaziridines. 14. Asymmetric oxidation of ketone enolates using enantiomerically pure (camphorylsulfonyl)oxaziridine. J. Am. Chem. Soc. 1990, 112, 6679–6690. [Google Scholar] [CrossRef]
- Davis, F.A.; Clark, C.; Kumar, A.; Chen, B.-C. Asymmetric synthesis of the AB ring segments of daunomycin and 4-demethoxydaunomycin. J. Org. Chem. 1994, 59, 1184–1190. [Google Scholar] [CrossRef]
- Davis, F.A.; Reddy, G.V.; Chen, B.-C.; Kumar, A.; Haque, M.S. Enantioselective synthesis of 2-methyl-2-hydroxy-y-butyrolactone and its application in the asymmetric synthesis of frontalin and mevalonolactone. J. Org. Chem. 1995, 60, 6148–6153. [Google Scholar] [CrossRef]
- Davis, F.A.; Reddy, R.E.; Kasu, P.V.N.; Portonovo, P.S.; Carroll, P.J. Synthesis and reactions of exo-camphorylsulfonyloxaziridine. J. Org. Chem. 1997, 62, 3625–3630. [Google Scholar] [CrossRef]
- Davis, F.A.; Weismiller, M.C.; Murphy, C.K.; Reddy, R.T.; Chen, B.-C. Chemistry of oxaziridines. 18. Synthesis and enantioselective oxidations of the [(8,8-dihalocamphoryl)sulfonyl]oxaziridines. J. Org. Chem. 1992, 57, 7274–7285. [Google Scholar] [CrossRef]
- Davis, F.A.; Kumar, A.; Reddy, R.E.; Chen, B.-C.; Wade, P.A.; Shah, S.W. Hydroxylation of dihydroisoxazoles using N-sulfonyloxaziridines. J. Org. Chem. 1993, 58, 7591–7593. [Google Scholar] [CrossRef]
- Pogatchnik, D.M.; Wiemer, D.F. Enantioselective synthesis of α-hydroxy phosphonates via oxidation with (camphorsulfonyl)oxaziridines. Tetrahedron Lett. 1997, 38, 3495–3498. [Google Scholar] [CrossRef]
- Toullec, P.Y.; Bonaccorsi, C.; Mezzetti, A.; Togni, A. Expanding the scope of asymmetric electrophilic atom-transfer reactions: Titanium- and ruthenium-catalyzed hydroxylation of β-ketoesters. Proc. Natl. Acad. Sci. USA 2004, 101, 5810–5814. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.-J.; Huang, J.; Wang, D.; Zhao, M.-X.; Wang, F.-J.; Shi, M. Cu(I)-catalyzed asymmetric α-hydroxylation of β-keto esters in the presence of chiral phosphine-Schiff base-type ligands. Tetrahedron Asymmetry 2010, 21, 794–799. [Google Scholar] [CrossRef]
- Cao, S.-H.; Shi, M. Axially chiral C2-symmetric N-heterocyclic carbene (NHC) palladium complex-catalyzed asymmetric α-hydroxylation of β-keto esters. Tetrahedron Asymmetry 2010, 21, 2675–2680. [Google Scholar] [CrossRef]
- Smith, A.M.R.; Rzepa, H.S.; White, A.J.P.; Billen, D.; Hii, K.K.M. Delineating origins of stereocontrol in asymmetric Pd-catalyzed α-hydroxylation of 1,3-ketoesters. J. Org. Chem. 2010, 75, 3085–3096. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, G.; Wang, Z.; Zhang, R.; Zhang, X.; Ding, K. Spiro-2,2′-bichroman-based bisoxazoline (SPANbox) ligands for ZnII-catalyzed enantioselective hydroxylation of β-keto esters and 1,3-diester group. Chem. Sci. 2011, 2, 1141–1144. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Y.; Xu, Z.-J.; Che, C.-M. Iron(III)–salan complexes catalysed highly enantioselective fluorination and hydroxylation of β-keto esters and N-Boc oxindoles. Chem. Commun. 2014, 50, 7870–7873. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.S.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T. A dynamic kinetic asymmetric transformation in the α-hydroxylation of racemic malonates and its application to biologically active molecules. Angew. Chem. Int. Ed. 2009, 48, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Takechi, S.; Kumagai, N.; Shibasaki, M. Catalytic asymmetric hydroxylation of α-alkoxycarbonyl amides with a Pr(OiPr)3/amide-based ligand catalyst. Tetrahedron Lett. 2011, 52, 2140–2143. [Google Scholar] [CrossRef]
- Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.; Kanemasa, S. Lewis acid-catalyzed enantioselective hydroxylation reactions of oxindoles and β-keto esters using DBFOX ligand. J. Am. Chem. Soc. 2006, 128, 16488–16489. [Google Scholar] [CrossRef] [PubMed]
- Naganawa, Y.; Aoyama, T.; Nishiyama, H. Cu(II)-catalyzed enantioselective oxygen atom transfer from oxaziridine to oxindole derivatives with chiral phenanthroline. Org. Biomol. Chem. 2015, 13, 11499–11506. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xu, Z.-J.; Han, J. Chiral iminophosphoranes organocatalyzed asymmetric hydroxylation of 3-substituted oxindoles with oxaziridines. Tetrahedron Lett. 2018, 59, 2412–2417. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, Y.; Liu, X.; Xu, X.; Lin, L.; Feng, X. Catalytic asymmetric hydroxylative dearomatization of 2-naphthols: Synthesis of lacinilene derivatives. Chem. Sci. 2017, 8, 6645–6649. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Wang, B.; Mu, H.; Zhang, H.; Song, Y.; Qu, J. Development of tartaric acid derived chiral guanidines and their application to catalytic enantioselective α-hydroxylation of β-dicarbonyl compounds. Org. Lett. 2013, 15, 3106–3109. [Google Scholar] [CrossRef] [PubMed]
- Novacek, J.; Izzo, J.A.; Vetticatt, M.J.; Waser, M. Bifunctional ammonium salt catalyzed asymmetric α-hydroxylation of β-ketoesters by simultaneous resolution of oxaziridines. Chem. Eur. J. 2016, 22, 17339–17344. [Google Scholar] [CrossRef] [PubMed]
- Witten, M.R.; Jacobsen, E.N. A simple primary amine catalyst for enantioselective α-hydroxylations and α-fluorinations of branched aldehydes. Org. Lett. 2015, 17, 2772–2775. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Tsutsumi, R.; Uraguchi, D.; Ooi, T. N-Sulfonyl α-imino ester-derived chiral oxaziridines: Catalytic asymmetric synthesis and application as a modular chiral organic oxidant. Chem. Commun. 2017, 53, 6999–7002. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.P.; Benkovics, T.; Turek, A.K.; Yoon, T.P. Oxaziridine-mediated intramolecular amination of sp3-hybridized C-H bonds. J. Am. Chem. Soc. 2009, 131, 12560–12561. [Google Scholar] [CrossRef] [PubMed]
- Blanc, S.; Bordogna, C.A.C.; Buckley, B.R.; Elsegood, M.R.J.; Page, P.C.B. New stable N-H oxaziridine—Synthesis and reactivity. Eur. J. Org. Chem. 2010, 882–889. [Google Scholar] [CrossRef]
- Ghoraf, M.; Vidal, J. Electrophilic amination of diorganozinc reagents by oxaziridines. Tetrahedron Lett. 2008, 49, 7383–7385. [Google Scholar] [CrossRef]
- Armstrong, A.; Edmonds, I.D.; Swarbrick, M.E.; Treweeke, N.R. Electrophilic amination of enolates with oxaziridines: Effects of oxaziridine structure and reaction conditions. Tetrahedron 2005, 61, 8423–8442. [Google Scholar] [CrossRef]
- Armstrong, A.; Jones, L.H.; Knight, J.D.; Kelsey, R.D. Oxaziridine-mediated amination of primary amines: Scope and application to a one-pot pyrazole synthesis. Org. Lett. 2005, 7, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Hannachi, J.-C.; Vidal, J.; Mulatier, J.-C.; Collet, A. Electrophilic amination of amino acids with N-Boc-oxaziridines: Efficient preparation of N-orthogonally diprotected hydrazino acids and piperazic acid derivatives. J. Org. Chem. 2004, 69, 2367–2373. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.; Guy, L.; Stérin, S.; Collet, A. Electrophilic amination: Preparation and use of N-Boc-3-(4-cyanophenyl)oxaziridine, a new reagent that transfers a N-Boc group to N- and C-nucleophiles. J. Org. Chem. 1993, 58, 4791–4793. [Google Scholar] [CrossRef]
- Lin, S.; Yang, X.; Jia, S.; Weeks, A.M.; Hornsby, M.; Lee, P.S.; Nichiporuk, R.V.; Iavarone, A.T.; Wells, J.A.; Toste, F.D.; et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 2017, 355, 597–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, J.; Hannachi, J.-C.; Hourdin, G.; Mulatier, J.-C.; Collet, A. N-Boc-3-trichloromethyloxaziridine: A new, powerful reagent for electrophilic amination. Tetrahedron Lett. 1998, 39, 8845–8848. [Google Scholar] [CrossRef]
- Emmons, W.D. Salts of N-tert-butylhydroxylamine. U.S. Patent 6,512,143, 28 January 2003. [Google Scholar]
- Enders, D.; Poiesz, C.; Joseph, R. Enantioselective synthesis of protected α-aminoketones via electrophilic amination of α-silylketones with an oxaziridine. Tetrahedron Asymmetry 1998, 9, 3709–3716. [Google Scholar] [CrossRef]
- Ghosh, A.; Mandal, S.; Chattaraj, P.K.; Banerjee, P. Ring expansion of donor-acceptor cyclopropane via substituent controlled selective N-transfer of oxaziridine: Synthetic and mechanistic insights. Org. Lett. 2016, 18, 4940–4943. [Google Scholar] [CrossRef] [PubMed]
- Mithani, S.; Drew, D.M.; Rydberg, E.H.; Taylor, N.J.; Mooibroek, S.; Dmitrienko, G.I. An anomalous reaction of 2-benzenesulfonyl-3-aryloxaziridines (Davis reagents) with indoles: Evidence for a stepwise reaction of the Davis reagent with a π-bond. J. Am. Chem. Soc. 1997, 119, 1159–1160. [Google Scholar] [CrossRef]
- Michaelis, D.J.; Shaffer, C.J.; Yoon, T.P. Copper(II)-catalyzed aminohydroxylation of olefins. J. Am. Chem. Soc. 2007, 129, 1866–1867. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, D.J.; Ischay, M.A.; Yoon, T.P. Activation of N-sulfonyl oxaziridines using copper(II) catalysts: Aminohydroxylations of styrenes and 1,3-dienes. J. Am. Chem. Soc. 2008, 130, 6610–6615. [Google Scholar] [CrossRef] [PubMed]
- DePorter, S.M.; Jacobsen, A.C.; Partridge, K.M.; Williamson, K.S.; Yoon, T.P. N-Nosyl oxaziridines as terminal oxidants in copper(II)-catalyzed olefin oxyaminations. Tetrahedron Lett. 2010, 51, 5223–5225. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, D.J.; Williamson, K.S.; Yoon, T.P. Oxaziridine-mediated enantioselective aminohydroxylation of styrenes catalyzed by copper(II) bis(oxazoline) complexes. Tetrahedron 2009, 65, 5118–5124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharpless, K.B.; Chong, A.O.; Oshima, J. Osmium-catalyzed vicinal oxyamination of olefins by Chloramine-T. J. Org. Chem. 1976, 41, 177–179. [Google Scholar] [CrossRef]
- Benkovics, T.; Du, J.; Guzei, I.A.; Yoon, T.P. Anionic halocuprate(II) complexes as catalysts for the oxaziridine-mediated aminohydroxylation of olefins. J. Org. Chem. 2009, 74, 5545–5552. [Google Scholar] [CrossRef] [PubMed]
- Benkovics, T.; Guzei, I.A.; Yoon, T.P. Oxaziridine-mediated oxyamination of indoles: An approach to 3-aminoindoles and enantiomerically enriched 3-aminopyrroloindolines. Angew. Chem. Int. Ed. 2010, 49, 9153–9157. [Google Scholar] [CrossRef] [PubMed]
- Williamson, K.S.; Yoon, T.P. Iron catalyzed asymmetric oxyamination of olefins. J. Am. Chem. Soc. 2012, 134, 12370–12373. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.-L.; Chen, X.-Y.; Ye, S. Formal [3+2] cycloaddition of ketenes and oxaziridines catalyzed by chiral Lewis bases: Enantioselective synthesis of oxazolin-4-ones. Angew. Chem. Int. Ed. 2010, 49, 8412–8416. [Google Scholar] [CrossRef] [PubMed]
- Kerr, R.W.F.; Greenhalgh, M.D.; Slawin, A.M.Z.; Arnold, P.L.; Smith, A.D. Enantioselective N-heterocyclic carbene catalyzed formal [3+2] cycloaddition using α-aroyloxyaldehydes and oxaziridines. Tetrahedron Asymmetry 2017, 28, 125–134. [Google Scholar] [CrossRef]
- Smith, S.R.; Fallan, C.; Taylor, J.E.; McLennan, R.; Daniels, D.S.B.; Morrill, L.C.; Slawin, A.M.Z.; Smith, A.D. Asymmetric isothiourea-catalysed formal [3+2] cycloadditions of ammonium enolates with oxaziridines. Chem. Eur. J. 2015, 21, 10530–10536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, S.; Lui, X.; Zhu, Y.; He, P.; Lin, L.; Feng, X. Organocatalytic oxyamination of azlactones: Kinetic resolution of oxaziridines and asymmetric synthesis of oxazolin-4-ones. J. Am. Chem. Soc. 2013, 135, 10026–10029. [Google Scholar] [CrossRef] [PubMed]
- Fabio, M.; Ronzini, L.; Troisi, L. Synthesis of new 3,5-diarylisoxazolidines by cycloaddition of oxaziridines and alkenes. Tetrahedron 2007, 63, 12896–12902. [Google Scholar] [CrossRef]
- Fabio, M.; Ronzini, L.; Troisi, L. Synthesis of stable isoxazolines by [3+2] cycloaddition of oxaziridines with alkynes. Tetrahedron 2008, 64, 4979–4984. [Google Scholar] [CrossRef]
- Kivrak, A.; Larock, R.C. Synthesis of dihydrobenzisoxazoles by the [3+2] cycloaddition of arynes and oxaziridines. J. Org. Chem. 2010, 75, 7381–7387. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.S.; Lee, J.; Seo, J.; Woo, S.K. Synthesis of 4-isoxazolines via visible-light photoredox-catalyzed [3+2] cycloaddition of oxaziridines with alkynes. Org. Lett. 2017, 19, 6448–6451. [Google Scholar] [CrossRef] [PubMed]
- Nosek, V.; Míšek, J. Chemoenzymatic deracemization of chiral sulfoxides. Angew. Chem. Int. Ed. 2018, 57, 9849–9852. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Q.; Yang, W.; Lan, Y.; Qin, X.; He, Y.; Yuan, L. Recent Advances in the Catalytic Asymmetric Reactions of Oxaziridines. Molecules 2018, 23, 2656. https://doi.org/10.3390/molecules23102656
Ren Q, Yang W, Lan Y, Qin X, He Y, Yuan L. Recent Advances in the Catalytic Asymmetric Reactions of Oxaziridines. Molecules. 2018; 23(10):2656. https://doi.org/10.3390/molecules23102656
Chicago/Turabian StyleRen, Qiao, Wen Yang, Yunfei Lan, Xurong Qin, Youzhou He, and Lujiang Yuan. 2018. "Recent Advances in the Catalytic Asymmetric Reactions of Oxaziridines" Molecules 23, no. 10: 2656. https://doi.org/10.3390/molecules23102656
APA StyleRen, Q., Yang, W., Lan, Y., Qin, X., He, Y., & Yuan, L. (2018). Recent Advances in the Catalytic Asymmetric Reactions of Oxaziridines. Molecules, 23(10), 2656. https://doi.org/10.3390/molecules23102656