Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Samples
2.3. Samples
2.4. Preparation of Extracts
2.5. Quantitative Determinations of Total Bioactive Compounds
2.5.1. Total Phenolic Content
2.5.2. Total Flavonoid Content
2.5.3. Condensed Tannin Content
2.6. Phytochemical Analysis by LC-MS/MS
2.6.1. Identification and Quantification of Polyphenolic Compounds
2.6.2. Identification and Quantification of Phytosterols
2.7. Antioxidant Activity Assays
2.7.1. ABTS Radical Cation Scavenging Activity
2.7.2. DPPH Radical Scavenging Activity
2.7.3. FRAP Assay
2.8. Tyrosinase Inhibitory Activity
2.9. Identification of the Experimental Conditions to Obtain WS Extracts Rich in Phytochemicals
2.10. Statistical Analysis
3. Results and Discussion
3.1. Fitting of the Experimental Data with the Models
3.2. The Influence of Studied Variables on TPC, TFC, CTC, TAA, and Individual Bioactive Compounds
3.3. Quantitative Determinations of Total Bioactive Compounds
3.3.1. Total Phenolics
3.3.2. Total Flavonoids
3.3.3. Condensed Tannins
3.4. Identification and Quantification of Individual Polyphenols
3.5. Identification and Quantification of Phytosterols
3.6. Antioxidant Activity
3.6.1. ABTS Radical Cation Scavenging Activity Assay
3.6.2. DPPH Radical Scavenging Assay
3.6.3. FRAP (Ferric-Reducing Antioxidant Power) Assay
3.7. Tyrosinase Inhibitory Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soccol, C.R.; da Costa, E.S.F.; Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; de Souza Vandenberghe, L.P. Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Huang, J.; Lai, X.; Du, Y.; Liu, X.; Li, B.; Feng, R.; Yang, G. High-specificity quantification method for almond-by-products, based on differential proteomic analysis. Food Chem. 2016, 194, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Kempf, K.; Martin, S.; Döhring, C.; Dugi, K.; von Wolmar, C.W.; Haastert, B.; Schneider, M. The epidemiological Boehringer Ingelheim Employee study-part I: Impact of overweight and obesity on cardiometabolic risk. J. Obes. 2013. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Livingstone, M.B.E. Eating Frequency Is Positively Associated with Overweight and Central Obesity in US Adults. J. Nutr. 2015, 145, 2715–2724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschi, C.; Campisi, J. Chronic inflammation (Inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Leon-Cabrera, S.; Solís-Lozano, L.; Suárez-Álvarez, K.; González-Chávez, A.; Béjar, Y.L.; Robles-Díaz, G.; Escobedo, G. Hyperleptinemia is associated with parameters of low-grade systemic inflammation and metabolic dysfunction in obese human beings. Front. Integr. Neurosci. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.K.; Maurer, H.; Reed, K.; Selagamsetty, R. Diabetes and cancer: Two diseases with obesity as a common risk factor. Diabetes Obes. Metab. 2014, 16, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Bastien, M.; Poirier, P.; Lemieux, I.; Després, J.P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog. Cardiovasc. Dis. 2014, 56, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Divella, R.; De Luca, R.; Abbate, I.; Naglieri, E.; Daniele, A. Obesity and cancer: The role of adipose tissue and adipo-cytokines-induced chronic inflammation. J. Cancer 2016, 7, 2346–2359. [Google Scholar] [CrossRef] [PubMed]
- Mauland, K.K.; Eng, Ø.; Ytre-Hauge, S.; Tangen, I.L.; Berg, A.; Salvesen, H.B.; Salvesen, Ø.O.; Krakstad, C.; Trovik, J.; Hoivik, E.A.; et al. High visceral fat percentage is associated with poor outcome in endometrial cancer. Oncotarget 2017, 8, 105184–105195. [Google Scholar] [CrossRef] [PubMed]
- Gui, Y.; Pan, Q.; Chen, X.; Xu, S.; Luo, X.; Chen, L. The association between obesity related adipokines and risk of breast cancer: A meta-analysis. Oncotarget 2017, 8, 75389–75399. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Jordan, B.F. Gut microbiota-mediated inflammation in obesity: A link with gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Eibl, G.; Cruz-Monserrate, Z.; Korc, M.; Petrov, M.S.; Goodarzi, M.O.; Fisher, W.E.; Habtezion, A.; Lugea, A.; Pandol, S.J.; Hart, P.A.; et al. Diabetes Mellitus and Obesity as Risk Factors for Pancreatic Cancer. J. Acad. Nutr. Diet. 2018, 118, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Ferro, M.; Terracciano, D.; Buonerba, C.; Lucarelli, G.; Bottero, D.; Perdonà, S.; Autorino, R.; Serino, A.; Cantiello, F.; Damiano, R.; et al. The emerging role of obesity, diet and lipid metabolism in prostate cancer. Future Oncol. 2017, 13, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrick, J.; Freedman, N.; Demuth, J.; Yang, B.; Van Den Eeden, S.; Engel, L.; McGlynn, K. Obesity, diabetes, serum glucose, and risk of primary liver cancer by birth cohort, race/ethnicity, and sex: Multiphasic health checkup study. Cancer Epidemiol. 2016, 42, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Chen, Q.; Li, Z.-M.; Xu, X.-D.; Song, A.-F.; Wang, L.-S. Association of body mass index with mortality and postoperative survival in renal cell cancer patients, a meta-analysis. Oncotarget 2018, 9, 13959–13970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aravani, A.; Downing, A.; Thomas, J.D.; Lagergren, J.; Morris, E.J.A.; Hull, M.A. Obesity surgery and risk of colorectal and other obesity-related cancers: An English population-based cohort study. Cancer Epidemiol. 2018, 53, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.; Boffetta, P.; Greenwood, D.; Tonstad, S.; Vatten, L.; Riboli, E.; Norat, T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016, 14. [Google Scholar] [CrossRef] [PubMed]
- Hever, J.; Cronise, R.J. Plant-based nutrition for healthcare professionals: Implementing diet as a primary modality in the prevention and treatment of chronic disease. J. Geriatr. Cardiol. 2017, 14, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects-A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjørklund, G.; Chirumbolo, S. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition 2017, 33, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Smeriglio, A.; Denaro, M.; Barreca, D.; Calderaro, A.; Bisignano, C.; Ginestra, G.; Bellocco, E.; Trombetta, D. In vitro evaluation of the antioxidant, cytoprotective, and antimicrobial properties of essential oil from Pistacia vera L. Variety Bronte Hull. Int. J. Mol. Sci. 2017, 18, 1212. [Google Scholar] [CrossRef] [PubMed]
- do Prado, A.; da Silva, H.; da Silveira, S.; Barreto, P.; Vieira, C.; Maraschin, M.; Ferreira, S.; Block, J. Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell. Ind. Crop. Prod. 2014, 52, 552–561. [Google Scholar] [CrossRef]
- Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Vlase, L.; Popa, D.-S. Anti-aging potential of tree nuts with a focus on phytochemical composition, molecular mechanisms and thermal stability of major bioactive compounds. Food Funct. 2018, 9, 2554–2575. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, C.; Ciudad, C.J.; Noé, V.; Izquierdo-Pulido, M. Health benefits of walnut polyphenols: An exploration beyond their lipid profile. Crit. Rev. Food Sci. Nutr. 2017, 57, 3373–3383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.P.; Ferreira, O.; Ferreira, I.C.F.R. Optimization and comparison of maceration and microwave extraction systems for the production of phenolic compounds from Juglans regia L. for the valorization of walnut leaves. Ind. Crops Prod. 2017, 107, 341–352. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentão, P.; Andrade, P.B.; González-Álvarez, J.; Pereira, J.A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crop. Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Dehghani, F.; Mashhoody, T.; Panjehshahin, M. Effect of aqueous extract of walnut septum on blood glucose and pancreatic structure in streptozotocin-induced diabetic mouse. Iran. J. Pharmacol. Ther. 2012, 11, 10–14. [Google Scholar]
- Ramishvili, L.; Gordeziani, M.; Tavdishvili, E.; Bedineishvili, N.; Dzidziguri, D.; Kotrikadze, N. The effect of extract of greek walnut (Juglans regia L.) septa on some functional characteristics of erythrocytes. Georg. Med. News 2016, 261, 51–57. [Google Scholar]
- Ravanbakhsh, A.; Mahdavi, M.; Jalilzade-Amin, G.; Javadi, S.; Maham, M.; Mohammadnejad, D.; Rashidi, M.R. Acute and subchronic toxicity study of the median septum of Juglans regia in Wistar rats. Adv. Pharm. Bull. 2016, 6, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Christopoulos, M.; Tsantili, E. Storage of fresh walnuts (Juglans regia L.)-Low temperature and phenolic compounds. Postharvest Biol. Technol. 2012, 73, 80–88. [Google Scholar] [CrossRef]
- Mocan, A.; Zengin, G.; Simirgiotis, M.; Schafberg, M.; Mollica, A.; Vodnar, D.C.; Crişan, G.; Rohn, S. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: Phytochemical characterization, biological profile, and computational studies. J. Enzym. Inhib. Med. Chem. 2017, 32, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Schafberg, M.; Crisan, G.; Rohn, S. Determination of lignans and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-online TEAC: Contribution of individual components to overall antioxidant activity and comparison with traditional antioxidant assays. J. Funct. Foods 2016, 24, 579–594. [Google Scholar] [CrossRef]
- Price, M.L.; Van Scoyoc, S.; Butler, L.G. A Critical Evaluation of the Vanillin Reaction as an Assay for Tannin in Sorghum Grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Alasalvar, C.; Karamać, M.; Amarowicz, R.; Shahidi, F. Antioxidant and antiradical activities in extracts of hazelnut kernel (Corylus avellana L.) and hazelnut green leafy cover. J. Agric. Food Chem. 2006, 54, 4826–4832. [Google Scholar] [CrossRef] [PubMed]
- Meda, R.N.; Vlase, L.; Lamien-Meda, A.; Lamien, C.E.; Muntean, D.; Tiperciuc, B.; Oniga, I.; Nacoulma, O.G. Identification and quantification of phenolic compounds from Balanites aegyptiaca (L.) Del (Balanitaceae) galls and leaves by HPLC-MS. Nat. Prod. Res. 2011, 25, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Vlase, L.; Raita, O.; Hanganu, D.; Paltinean, R.; Dezsi, S.; Gheldiu, A.M.; Oprean, R.; Crisan, G. Comparative studies on antioxidant activity and polyphenolic content of Lycium barbarum L. and Lycium chinense Mill. leaves. Pak. J. Pharm. Sci. 2015, 28, 1511–1515. [Google Scholar] [CrossRef] [PubMed]
- Pop, C.E.; Pârvu, M.; Arsene, A.L.; Pârvu, A.E.; Vodnar, D.C.; Tarcea, M.; Toiu, A.M.; Vlase, L. Investigation of antioxidant and antimicrobial potential of some extracts from Hedera helix L. Farmacia 2017, 65, 624–629. [Google Scholar]
- Babotă, M.; Mocan, A.; Vlase, L.; Crisan, O.; Ielciu, I.; Gheldiu, A.M.; Vodnar, D.C.; Crişan, G.; Păltinean, R. Phytochemical analysis, antioxidant and antimicrobial activities of Helichrysum arenarium (L.) Moench. and Antennaria dioica (L.) Gaertn. flowers. Molecules 2018, 23, 409. [Google Scholar] [CrossRef] [PubMed]
- Vlase, L.; Parvu, M.; Parvu, E.A.; Toiu, A. Phytochemical analysis of Allium fistulosum L. and A. ursinum L. Dig. J. Nanomater. Biostruct. 2012, 8, 457–467. [Google Scholar]
- Toiu, A.; Mocan, A.; Vlase, L.; Pârvu, A.E.; Vodnar, D.C.; Gheldiu, A.M.; Moldovan, C.; Oniga, I. Phytochemical composition, antioxidant, antimicrobial and in vivo anti-inflammatory activity of traditionally used Romanian Ajuga laxmannii (Murray) Benth. (“Nobleman’s beard”-barba împăratului). Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Alasalvar, C.; Liyana-Pathirana, C.M. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food Chem. 2007, 55, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Fernandes, Â.; Barros, L.; Crişan, G.; Smiljković, M.; Soković, M.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of the wild mushroom: Polyporus squamosus (Huds.) Fr: A study with samples from Romania. Food Funct. 2018, 9, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Damiano, S.; Forino, M.; De, A.; Vitali, L.A.; Lupidi, G.; Taglialatela-Scafati, O. Antioxidant and antibiofilm activities of secondary metabolites from Ziziphus jujuba leaves used for infusion preparation. Food Chem. 2017, 230, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Fujita, N.; Odaka, Y.; Takeda, Y.; Yonemori, S.; Nakamoto, K.; Kuninaga, H. Tyrosinase inhibitory activity of ethanol extracts from medicinal and edible plants cultivated in okinawa and identification of a water-soluble inhibitor from the leaves of Nandina domestica. Biosci. Biotechnol. Biochem. 2007, 71, 2316–2320. [Google Scholar] [CrossRef] [PubMed]
- Hilbig, J.; Alves, V.R.; Müller, C.M.O.; Micke, G.A.; Vitali, L.; Pedrosa, R.C.; Block, J.M. Ultrasonic-assisted extraction combined with sample preparation and analysis using LC-ESI-MS/MS allowed the identification of 24 new phenolic compounds in pecan nut shell [Carya illinoinensis (Wangenh) C. Koch] extracts. Food Res. Int. 2018, 106, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W. Almond Polyphenols: Methods of Analysis, Contribution to Food Quality, and Health Promotion. Compr. Rev. Food Sci. Food Saf. 2017, 16, 346–368. [Google Scholar] [CrossRef]
- Esposito, T.; Sansone, F.; Franceschelli, S.; Del Gaudio, P.; Picerno, P.; Aquino, R.P.; Mencherini, T. Hazelnut (Corylus avellana L.) Shells Extract: Phenolic Composition, Antioxidant Effect and Cytotoxic Activity on Human Cancer Cell Lines. Int J. Mol. Sci. 2017, 18, 392. [Google Scholar] [CrossRef] [PubMed]
- Prgomet, I.; Gonçalves, B.; Domínguez-Perles, R.; Pascual-Seva, N.; Barros, A.I.R.N. Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules 2017, 22, 1774. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Prieto, M.A.; Vazquez, J.A.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Recovery of bioactive compounds from Arbutus unedo L. fruits: Comparative optimization study of maceration/microwave/ultrasound extraction techniques. Food Res. Int. 2018, 109, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; McKay, D.L.; Blumberg, J.B. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac. J. Clin. Nutr. 2010, 19, 117–123. [Google Scholar] [PubMed]
- Alasalvar, C.; Bolling, B. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.; Ferreira, P.J.; Mendes, V.S.; Silva, R.; Pereira, J.A.; Jerónimo, C.; Silva, B.M. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem. Toxicol. 2010, 48, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Akbari, V.; Jamei, R.; Heidari, R.; Esfahlan, J.A. Antiradical activity of different parts of Walnut (Juglans regia L.) fruit as a function of genotype. Food Chem. 2012, 135, 2404–2410. [Google Scholar] [CrossRef] [PubMed]
- Shah, U.N.; Mir, J.I.; Ahmed, N.; Jan, S.; Fazili, K.M. Bioefficacy potential of different genotypes of walnut Juglans regia L. J. Food Sci. Technol. 2018, 55, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Barros, L.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Leaves and decoction of Juglans regia L.: Different performances regarding bioactive compounds and in vitro antioxidant and antitumor effects. Ind. Crop. Prod. 2013, 51, 430–436. [Google Scholar] [CrossRef]
- Mocan, A.; Diuzheva, A.; Carradori, S.; Andruch, V.; Massafra, C.; Moldovan, C.; Sisea, C.; Petzer, J.P.; Petzer, A.; Zara, S.; et al. Development of novel techniques to extract phenolic compounds from Romanian cultivars of Prunus domestica L. and their biological properties. Food Chem. Toxicol. 2018. [Google Scholar] [CrossRef] [PubMed]
- de la Rosa, L.A.; Alvarez-Parrilla, E.; Shahidi, F. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis). J. Agric. Food Chem. 2011, 59, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.T.; Liu, S.C.; Hu, C.C.; Shyu, Y.S.; Hsu, C.Y.; Yang, D.J. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem. 2016, 190, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Lainas, K.; Alasalvar, C.; Bolling, B.W. Effects of roasting on proanthocyanidin contents of Turkish Tombul hazelnut and its skin. J. Funct. Foods 2016, 23, 647–653. [Google Scholar] [CrossRef]
- Chang, S.K.; Alasalvar, C.; Bolling, B.W.; Shahidi, F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits-A comprehensive review. J. Funct. Foods 2016, 26, 88–122. [Google Scholar] [CrossRef]
- Payne, M.J.; Hurst, W.J.; Miller, K.B.; Rank, C.; Stuart, D.A. Impact of fermentation, drying, roasting, and dutch processing on epicatechin and catechin content of cacao beans and cocoa ingredients. J. Agric. Food Chem. 2010, 58, 10518–10527. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.L.; Labuckas, D.O.; Lamarque, A.L.; Maestri, D.M. Walnut (Juglans regia L.): Genetic resources, chemistry, by-products. J. Sci. Food Agric. 2010, 90, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Schlörmann, W.; Birringer, M.; Böhm, V.; Löber, K.; Jahreis, G.; Lorkowski, S.; Müller, A.K.; Schöne, F.; Glei, M. Influence of roasting conditions on health-related compounds in different nuts. Food Chem. 2015, 180, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, F.; Marhuenda, J.; Zafrlla, P.; Martínez-Cachá, A.; Mulero, J.; Cerdá, B. Total phenolics content, bioavailability and antioxidant capacity of 10 different genotypes of walnut (Juglans regia L.). J. Food Nutr. Res. 2016, 55, 229–236. [Google Scholar]
- Alasalvar, C.; Karamać, M.; Kosińska, A.; Rybarczyk, A.; Shahidi, F.; Amarowicz, R. Antioxidant activity of hazelnut skin phenolics. J. Agric. Food Chem. 2009, 57, 4645–4650. [Google Scholar] [CrossRef] [PubMed]
- Taş, N.G.; Gökmen, V. Phenolic compounds in natural and roasted nuts and their skins: A brief review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- de la Rosa, L.A.; Vazquez-Flores, A.A.; Alvarez-Parrilla, E.; Rodrigo-García, J.; Medina-Campos, O.N.; Ávila-Nava, A.; González-Reyes, S.; Pedraza-Chaverri, J. Content of major classes of polyphenolic compounds, antioxidant, antiproliferative, and cell protective activity of pecan crude extracts and their fractions. J. Funct. Foods 2014, 7, 219–228. [Google Scholar] [CrossRef]
- Arcan, I.; Yemeniciog, A. Antioxidant activity and phenolic content of fresh and dry nuts with or without the seed coat. J. Food Compost. Anal. 2009, 22, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Delgado, T.; Malheiro, R.; Pereira, J.A.; Ramalhosa, E. Hazelnut (Corylus avellana L.) kernels as a source of antioxidants and their potential in relation to other nuts. Ind. Crop. Prod. 2010, 32, 621–626. [Google Scholar] [CrossRef]
- Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. HPLC-MSn identification and quantification of phenolic compounds in hazelnut kernels, oil and bagasse pellets. Food Res. Int. 2014, 64, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Panth, N.; Paudel, K.R.; Karki, R. Phytochemical profile and biological activity of Juglans regia. J. Integr. Med. 2016, 14, 359–373. [Google Scholar] [CrossRef]
- Christopoulos, M.V.; Tsantili, E. Effects of temperature and packaging atmosphere on total antioxidants and colour of walnut (Juglans regia L.) kernels during storage. Sci. Hort. 2011, 131, 49–57. [Google Scholar] [CrossRef]
- Chen, C.Y.; Blumberg, J.B. Phytochemical composition of nuts. Asia Pac. J. Clin. Nutr. 2008, 17, 329–332. [Google Scholar] [PubMed]
- Wong, W.H.; Lee, W.X.; Ramanan, R.N.; Tee, L.H.; Kong, K.W.; Galanakis, C.M.; Sun, J.; Prasad, K.N. Two level half factorial design for the extraction of phenolics, flavonoids and antioxidants recovery from palm kernel by-product. Ind. Crop. Prod. 2015, 63, 238–248. [Google Scholar] [CrossRef]
- Fu, M.; Qu, Q.; Yang, X.; Zhang, X. Effect of intermittent oven drying on lipid oxidation, fatty acids composition and antioxidant activities of walnut. LWT-Food Sci. Technol. 2016, 65, 1126–1132. [Google Scholar] [CrossRef]
- Zhang, Z.; Liao, L.; Moore, J.; Wu, T.; Wang, Z. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009, 113, 160–165. [Google Scholar] [CrossRef]
- Hooper, L.; Kay, C.; Abdelhamid, A.; Kroon, P.A.; Cohn, J.S.; Rimm, E.B.; Cassidy, A. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: A systematic review and meta-analysis of randomized trials. Am. J. Clin. Nutr. 2012, 95, 740–751. [Google Scholar] [CrossRef] [PubMed]
- Ellinger, S.; Reusch, A.; Stehle, P.; Helfrich, H.P. Epicatechin ingested via cocoa products reduces blood pressure in humans: A nonlinear regression model with a Bayesian approach. Am. J. Clin. Nutr. 2012, 95, 1365–1377. [Google Scholar] [CrossRef] [PubMed]
- Khalesi, S.; Sun, J.; Buys, N.; Jamshidi, A.; Nikbakht-Nasrabadi, E.; Khosravi-Boroujeni, H. Green tea catechins and blood pressure: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Nutr. 2014, 53, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Chen, A.; Zhao, L.; Cao, F.; Ding, G.; Xiao, W. One-pot synthesis of hyperoside by a three-enzyme cascade using a UDP-galactose regeneration system. J. Agric. Food Chem. 2017, 65, 6042–6048. [Google Scholar] [CrossRef] [PubMed]
- Biswas, R.; Mukherjee, P.K.; Chaudhary, S.K. Tyrosinase inhibition kinetic studies of standardized extract of Berberis aristata. Nat. Prod. Res. 2016, 30, 1451–1454. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Song, Y.H.; Park, C.; Lee, K.W.; Kim, J.Y.; Kim, D.W.; Kim, K.D.; Lee, K.W.; Curtis-Long, M.J.; Park, K.H. Highly potent tyrosinase inhibitor, neorauflavane from Campylotropis hirtella and inhibitory mechanism with molecular docking. Bioorg. Med. Chem. 2016, 24, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Malik, W.; Ahmed, D.; Izhar, S. Tyrosinase Inhibitory Activities of Carissa opaca Stapf ex Haines Roots Extracts and Their Phytochemical Analysis. Pharmacogn. Mag. 2017, 13, S544–S548. [Google Scholar] [CrossRef] [PubMed]
- Uysal, S.; Zengin, G.; Aktumsek, A.; Karatas, S. Chemical and biological approaches on nine fruit tree leaves collected from the Mediterranean region of Turkey. J. Funct. Foods 2016, 22, 518–532. [Google Scholar] [CrossRef]
- Quispe, Y.N.; Hwang, S.H.; Wang, Z.; Lim, S.S. Screening of Peruvian medicinal plants for tyrosinase inhibitory properties: Identification of tyrosinase inhibitors in Hypericum laricifolium Juss. Molecules 2017, 22, 402. [Google Scholar] [CrossRef] [PubMed]
- Savran, A.; Zengin, G.; Aktumsek, A.; Mocan, A.; Glamoćlija, J.; Ćirić, A.; Soković, M. Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: Potential sources of natural agents with health benefits. Food Funct. 2016, 7, 3252–3262. [Google Scholar] [CrossRef] [PubMed]
- Mocan, A.; Moldovan, C.; Zengin, G.; Bender, O.; Locatelli, M.; Simirgiotis, M.; Atalay, A.; Vodnar, D.C.; Rohn, S.; Crișan, G. UHPLC-QTOF-MS analysis of bioactive constituents from two Romanian Goji (Lycium barbarum L.) berries cultivars and their antioxidant, enzyme inhibitory, and real-time cytotoxicological evaluation. Food Chem. Toxicol. 2018, 115, 414–424. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the extracts are not available from the authors. |
Variables | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Independent variables (factors) | |||
Extraction method (X1) | Ultra-turrax | Maceration | |
Temperature (°C) (X2) | 20 | 30 | 40 |
Solvent (X3) | Acetone | Ethanol | |
Water in solvent (%, v/v) (X4) | 5 | 25 | 50 |
Dependent variables (responses) | |||
Total phenolic content (TPC, mg GAE/g dw 1) (Y1) | |||
Total flavonoid content (TFC, mg QE/g dw 2) (Y2) | |||
Condensed tannin content (CTC, mg CE/g dw 3) (Y3) | |||
Total antioxidant activity (TAA, mg TE/g dw 4) (Y4) |
Polyphenol | Monitored Ion (m/z) | Retention Time (min) | Calibration Range (n = 8) (µg/mL) | Coefficient of Linearity (R2) | Accuracy (Bias, %) |
---|---|---|---|---|---|
Epicatechin | 289 | 9.0 | 0.3–21.5 | 0.9922 | 90.7–112.1 |
Catechin | 289 | 6.0 | 0.3–21.5 | 0.9974 | 94.3–108.9 |
Gallic acid | 169 | 1.5 | 0.3–22.2 | 0.9987 | 96.4–108.6 |
Syringic acid | 197 | 8.4 | 0.3–21.0 | 0.9997 | 90.5–105.5 |
Protocatechuic acid | 153 | 2.8 | 0.3–23.9 | 0.9977 | 87.0–112.2 |
Vanillic acid | 167 | 6.7 | 0.3–21.1 | 0.9993 | 95.6–105.6 |
Sample Code | Run Order | Factorial Design with Coded Values | Determination (Experimental Results) | ||||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | Y1 (TPC) | Y2 (TFC) | Y3 (CTC) | Y4 (TAA) | ||
N1 | 9 | Ultra-turrax | 40 | Acetone | 5 | 32.60 ± 1.24 | 3.91 ± 0.18 | 126.70 ± 0.74 | 89.69 ± 0.48 |
N2 | 13 | Ultra-turrax | 20 | Acetone | 5 | 14.01 ± 1.53 | 1.85 ± 0.07 | 63.97 ± 0.63 | 39.55 ± 1.45 |
N3 | 17 | Ultra-turrax | 30 | Acetone | 25 | 50.51 ± 3.55 | 7.61 ± 0.64 | 181.74 ± 1.11 | 146.51 ± 2.40 |
N4 | 14 | Ultra-turrax | 30 | Acetone | 25 | 59.52 ± 10.99 | 9.76 ± 0.23 | 237.20 ± 3.22 | 174.28 ± 8.22 |
N5 | 10 | Ultra-turrax | 30 | Acetone | 25 | 61.75 ± 5.30 | 9.12 ± 1.11 | 227.71 ± 0.71 | 163.46 ± 4.42 |
N6 | 20 | Ultra-turrax | 30 | Acetone | 25 | 28.62 ± 1.20 | 4.04 ± 0.13 | 56.60 ± 0.56 | 55.51 ± 11.84 |
N7 | 18 | Ultra-turrax | 20 | Acetone | 50 | 34.80 ± 5.32 | 5.81 ± 0.07 | 74.04 ± 0.81 | 101.28 ± 2.58 |
N8 | 5 | Ultra-turrax | 40 | Acetone | 50 | 67.03 ± 9.76 | 8.99 ± 0.09 | 235.77 ± 7.47 | 168.62 ± 9.68 |
N9 | 6 | Ultra-turrax | 20 | Ethanol | 5 | 18.10 ± 1.46 | 4.08 ± 1.71 | 85.81 ± 0.16 | 61.14 ± 2.74 |
N10 | 19 | Ultra-turrax | 27 | Ethanol | 5 | 34.65 ± 0.96 | 4.79 ± 0.48 | 156.77 ± 0.14 | 102.77 ± 4.31 |
N11 | 15 | Ultra-turrax | 40 | Ethanol | 5 | 48.37 ± 3.90 | 7.05 ± 1.96 | 184.07 ± 1.36 | 122.35 ± 2.18 |
N12 | 4 | Ultra-turrax | 40 | Ethanol | 50 | 22.80 ± 1.89 | 2.40 ± 0.13 | 37.70 ± 0.03 | 41.53 ± 5.27 |
N13 | 16 | Ultra-turrax | 20 | Ethanol | 50 | 45.03 ± 2.64 | 6.51 ± 0.39 | 131.92 ± 0.22 | 120.18 ± 3.01 |
N14 | 22 | Maceration | 20 | Acetone | 5 | 13.29 ± 0.48 | 1.20 ± 0.04 | 2.98 ± 0.13 | 11.21 ± 0.61 |
N15 | 23 | Maceration | 40 | Acetone | 5 | 6.64 ± 4.26 | 0.82 ± 0.05 | 17.89 ± 0.11 | 17.67 ± 0.38 |
N16 | 8 | Maceration | 30 | Acetone | 25 | 24.37 ± 1.64 | 5.53 ± 0.06 | 16.60 ± 0.06 | 68.47 ± 1.66 |
N17 | 11 | Maceration | 40 | Acetone | 50 | 31.27 ± 5.24 | 7.11 ± 0.19 | 15.05 ± 0.52 | 77.68 ± 7.89 |
N18 | 3 | Maceration | 20 | Acetone | 50 | 13.97 ± 2.53 | 1.84 ± 0.04 | 55.14 ± 0.16 | 41.23 ± 0.14 |
N19 | 21 | Maceration | 40 | Ethanol | 5 | 17.27 ± 2.43 | 2.04 ± 0.42 | 1.14 ± 0.04 | 20.66 ± 3.47 |
N20 | 7 | Maceration | 20 | Ethanol | 5 | 25.04 ± 2.50 | 2.86 ± 0.24 | 86.90 ± 0.50 | 58.66 ± 1.52 |
N21 | 1 | Maceration | 40 | Ethanol | 33 | 14.30 ± 2.89 | 2.10 ± 0.06 | 28.09 ± 0.06 | 36.22 ± 0.59 |
N22 | 12 | Maceration | 20 | Ethanol | 50 | 29.08 ± 5.01 | 6.13 ± 0.15 | 18.18 ± 0.03 | 82.36 ± 1.49 |
N23 | 2 | Maceration | 40 | Ethanol | 50 | 16.63 ± 5.59 | 4.78 ± 2.75 | 2.26 ± 0.09 | 23.02 ± 3.38 |
Quantifiable Responses | Reproducibility | Source | Degrees of Freedom | Sum of Squares | Mean Square | F Value | p Value |
---|---|---|---|---|---|---|---|
Total phenolic content (Y1) (R2 = 0.75, Q2 = 0.52) | 0.86 | Regression | 8 | 4838.0 | 604.7 | 4.90 | 0.006 |
Lack of fit | 10 | 1481.1 | 148.1 | 3.60 | 0.159 | ||
Pure error | 3 | 123.2 | 41.05 | ||||
Total flavonoid content (Y2) (R2 = 0.61, Q2 = 0.37) | 0.88 | Regression | 7 | 97.52 | 13.93 | 3.26 | 0.028 |
Lack of fit | 11 | 57.09 | 5.19 | 5.79 | 0.087 | ||
Pure error | 3 | 2.68 | 0.89 | ||||
Condensed tannin content (Y3) (R2 = 0.80, Q2 = 0.63) | 0.82 | Regression | 7 | 112,775 | 16,110.8 | 8.29 | 0.001 |
Lack of fit | 11 | 23,769.4 | 2160.8 | 1.88 | 0.329 | ||
Pure error | 3 | 3435.2 | 1145.8 | ||||
Total antioxidant activity (Y4) (R2 = 0.75, Q2 = 0.59) | 0.92 | Regression | 7 | 41,969.5 | 5995.6 | 6.21 | 0.002 |
Lack of fit | 11 | 12,939.3 | 1176.3 | 6.18 | 0.080 | ||
Pure error | 3 | 570.4 | 190.1 |
Effect | Responses | |||
---|---|---|---|---|
Y1 (Total Phenolic Content) | Y2 (Total Flavonoid Content) | Y3 (Condensed Tannin Content) | Y4 (Total Antioxidant Activity) | |
Constant | 38.859 | 4.844 | 92.917 | 80.521 |
X1 (M) | −10.595 | −1.281 | −63.611 | −33.412 |
X1 (UTE) | 10.595 | 1.281 | 63.611 | 33.412 |
X2 (Temperature) | 1.551 | 0.2914 | 1.763 | 1.892 |
X3 (Acetone) | 1.737 | 0.4991 | 14.528 | 11.771 |
X3 (Ethanol) | −1.737 | −0.4991 | −14.528 | −11.771 |
X4 (Water %) | 5.534 | 1.196 | 5.550 | 14.822 |
X4 × X4 | −8.261 | - | - | - |
X1 (M) × X2 | - | - | −12.390 | - |
X1 (UTE) × X2 | - | - | 12.390 | - |
X2 × X3 (Acetone) | 4.818 | 0.7329 | - | 13.769 |
X2 × X3 (Ethanol) | −4.819 | −0.7329 | - | 13.769 |
X1 (M) × X3 (Acetone) | −3.291 | −0.6606 | −20.223 | −13.364 |
X1 (M) × X3 (Ethanol) | 3.291 | 0.6606 | 20.223 | 13.364 |
X1 (UTE) × X3 (Acetone) | 3.291 | 0.6606 | 20.223 | 13.364 |
X1 (UTE) × X3 (Ethanol) | −3.291 | −0.6606 | −20.223 | −13.364 |
X3 (Acetone) × X4 | 5.023 | 0.8522 | 26.089 | 15.728 |
X3 (Ethanol) × X4 | −5.023 | −0.8522 | −26.089 | −15.728 |
Variables | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Independent variables (factors) | |||
Temperature (°C) (X1) | 20 | 30 | 40 |
Solvent (%, v/v) (X2) | Acetone | Ethanol | |
Water in solvent (%, v/v) (X3) | 5 | 25 | 50 |
Dependent variables (responses) | |||
Epicatechin (μg/g dw) (Y1) | |||
Catechin (μg/g dw) (Y2) | |||
Syringic acid (μg/g dw) (Y3) | |||
Syringic acid (μg/g dw) (Y3) | |||
Gallic acid (μg/g dw) (Y4) | |||
Protocatechuic acid (μg/g dw) (Y5) | |||
Vanillic acid (μg/g dw) (Y6) | |||
Hyperoside (μg/g dw) (Y7) | |||
Isoquercitrin (μg/g dw) (Y8) | |||
Quercitrin (μg/g dw) (Y9) | |||
Campesterol (μg/g dw) (Y10) | |||
Beta-sitosterol (μg/g dw) (Y11) |
Sample Code | Run Order | Factorial Design with Coded Values | Determination (Experimental Results) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | Y11 | ||
N1 | 9 | 40 | Acetone | 5 | 6.091 | 288.29 | 2.392 | 29.074 | 3.441 | 2.229 | 32.726 | 71.290 | 583.86 | 106.22 | 9932.57 |
N2 | 13 | 20 | Acetone | 5 | 2.703 | 138.59 | 1.021 | 13.655 | 2.117 | 1.680 | 13.110 | 24.039 | 216.02 | 42.702 | 9080.36 |
N3 | 17 | 30 | Acetone | 25 | 10.493 | 447.67 | 4.215 | 55.240 | 13.388 | 6.219 | 46.858 | 99.334 | 980.69 | 131.36 | 26,461.16 |
N4 | 14 | 30 | Acetone | 25 | 11.463 | 468.62 | 5.010 | 61.002 | 11.575 | 8.881 | 43.083 | 109.42 | 894.89 | 140.26 | 19,546.42 |
N5 | 10 | 30 | Acetone | 25 | 8.540 | 408.01 | 5.154 | 48.422 | 12.845 | 7.173 | 40.641 | 94.494 | 852.79 | 162.52 | 22,146.69 |
N6 | 20 | 30 | Acetone | 25 | 10.093 | 396.95 | 7.111 | 148.16 | 28.108 | 8.905 | 35.702 | 68.449 | 694.32 | 36.067 | 5929.59 |
N7 | 18 | 20 | Acetone | 50 | 5.136 | 250.65 | 3.221 | 31.031 | 8.427 | 3.537 | 24.933 | 54.283 | 495.81 | ND | 1338.98 |
N8 | 5 | 40 | Acetone | 50 | 12.540 | 597.65 | 5.202 | 79.584 | 9.943 | 5.577 | 67.329 | 103.60 | 1073.04 | 292.07 | 31,018.16 |
N9 | 6 | 20 | Ethanol | 5 | 3.533 | 152.11 | 1.560 | 16.679 | 2.498 | 1.723 | 19.014 | 37.562 | 326.99 | 114.36 | 15,243.10 |
N10 | 19 | 26 | Ethanol | 5 | 6.861 | 273.05 | 2.381 | 27.903 | 4.400 | 3.022 | 36.926 | 75.113 | 629.22 | 162.84 | 22,277.34 |
N11 | 15 | 40 | Ethanol | 5 | 8.556 | 329.04 | 2.853 | 31.983 | 9.645 | 5.728 | 33.095 | 70.960 | 695.23 | 8.988 | 1175.42 |
N12 | 4 | 40 | Ethanol | 50 | 9.800 | 596.98 | 14.711 | 130.95 | 138.58 | 40.277 | 32.288 | 77.528 | 867.83 | 104.04 | 21,736.13 |
N13 | 16 | 20 | Ethanol | 50 | 3.238 | 79.930 | 6.860 | 63.446 | 86.115 | 11.476 | 28.768 | 49.137 | 449.96 | 171.06 | 28,934.75 |
Quantifiable Responses | Reproducibility | Source | Degrees of Freedom | Sum of Squares | Mean Square | F Value | p Value |
---|---|---|---|---|---|---|---|
Epicatechin (Y1) (R2 = 0.91, Q2 = 0.55) | 0.86 | Regression | 5 | 1.18 × 10−4 | 2.36 × 10−5 | 16.040 | 0.001 |
Lack of fit | 4 | 5.88 × 10−6 | 1.47 × 10−6 | 0.9956 | 0.523 | ||
Pure error | 3 | 4.43 × 10−6 | 1.48 × 10−6 | ||||
Catechin (Y2) (R2 = 0.94, Q2 = 0.65) | 0.95 | Regression | 5 | 3.09 × 10−1 | 6.19 × 10−2 | 24.345 | 0.001 |
Lack of fit | 4 | 1.44 × 10−2 | 3.60 × 10−3 | 3.1984 | 0.183 | ||
Pure error | 3 | 3.38 × 10−3 | 1.13 × 10−3 | ||||
Syringic acid (Y3) (R2 = 0.79, Q2 = 0.44) | 0.87 | Regression | 4 | 1.19 × 10−4 | 2.99 × 10−5 | 7.5251 | 0.008 |
Lack of fit | 5 | 2.72 × 10−5 | 5.44 × 10−6 | 3.5928 | 0.161 | ||
Pure error | 3 | 4.54 × 10−6 | 1.51 × 10−6 | ||||
Gallic acid (Y4) (R2 = 0.97, Q2 = 0.67) | 0.96 | Regression | 6 | 1.15 × 10−2 | 1.92 × 10−3 | 37.712 | 0.001 |
Lack of fit | 3 | 1.76 × 10−4 | 5.85 × 10−5 | 1.4762 | 0.428 | ||
Pure error | 2 | 7.93 × 10−5 | 3.97 × 10−5 | ||||
Protocatechuic acid (Y5) (R2 = 0.93, Q2 = 0.68) | 0.96 | Regression | 4 | 1.84 × 10−2 | 4.60 × 10−3 | 27.368 | 0.001 |
Lack of fit | 5 | 1.16 × 10−3 | 2.31 × 10−4 | 3.6946 | 0.156 | ||
Pure error | 3 | 1.88 × 10−4 | 6.26 × 10−5 | ||||
Vanillic acid (Y6) (R2 = 0.84, Q2 = 0.19) | 0.81 | Regression | 5 | 8.37 × 10−5 | 1.67 × 10−5 | 5.4394 | 0.043 |
Lack of fit | 3 | 1.18 × 10−5 | 3.92 × 10−6 | 2.1522 | 0.333 | ||
Pure error | 2 | 3.64 × 10−6 | 1.82 × 10−6 | ||||
Hyperoside (Y7) (R2 = 0.88, Q2 = 0.34) | 0.87 | Regression | 6 | 1.93 × 10−3 | 3.21 × 10−4 | 7.6743 | 0.013 |
Lack of fit | 3 | 1.86 × 10−4 | 6.19 × 10−5 | 2.8308 | 0.208 | ||
Pure error | 3 | 6.55 × 10−5 | 2.18 × 10−5 | ||||
Isoquercitrin (Y8) (R2 = 0.98, Q2 = 0.76) | 0.92 | Regression | 6 | 7.86 × 10−3 | 1.31 × 10−3 | 41.990 | 0.001 |
Lack of fit | 3 | 4.00 × 10−5 | 1.33 × 10−5 | 0.2295 | 0.870 | ||
Pure error | 2 | 1.16 × 10−4 | 5.80 × 10−5 | ||||
Quercitrin (Y9) (R2 = 0.92, Q2 = 0.63) | 0.78 | Regression | 5 | 7.32 × 10−1 | 1.46 × 10−1 | 16.425 | 0.001 |
Lack of fit | 4 | 1.92 × 10−2 | 4.80 × 10−3 | 0.3334 | 0.842 | ||
Pure error | 3 | 4.32 × 10−2 | 1.44 × 10−2 | ||||
Campesterol (Y10) (R2 = 0.91, Q2 = 0.34) | 0.95 | Regression | 6 | 6.34 × 10−2 | 1.06 × 10−2 | 8.6364 | 0.016 |
Lack of fit | 3 | 5.61 × 10−3 | 1.87 × 10−3 | 7.2591 | 0.123 | ||
Pure error | 2 | 5.15 × 10−4 | 2.57 × 10−4 | ||||
Beta-sitosterol (Y11) (R2 = 0.87, Q2 = 0.25) | 0.88 | Regression | 6 | 9.76 × 102 | 1.63 × 102 | 5.6232 | 0.039 |
Lack of fit | 3 | 1.20 × 102 | 40.1 | 3.2875 | 0.242 | ||
Pure error | 2 | 24.4 | 12.2 |
Effect | Response | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | Y11 | |
Epicatechin | Catechin | Syringic Acid | Gallic Acid | Protocatechuic Acid | Vanillic Acid | Hyper oside | Iso quercitrin | Quercitrin | Campesterol | Beta-sitosterol | |
Constant | 0.00936 | 0.0244 | 0.00489 | 0.0589 | 0.0279 | 0.007207 | 0.03906 | 0.0947 | 0.815 | 0.141 | 22.6 |
X1 (Temperature) | 0.00257 | 0.125 | 0.00127 | 0.0157 | 0.00618 | 0.00154 | 0.00968 | 0.02044 | 0.198 | 0.0277 | 2.13 |
X2 (Acetone) | 0.000325 | 0.0153 | −0.00115 | −0.008201 | −0.0223 | −0.00173 | 0.00214 | 0.00286 | 0.01066 | −0.000295 | −1.91 |
X2 (Ethanol) | −0.000325 | −0.0153 | 0.00115 | 0.008201 | 0.0223 | 0.00173 | −0.00214 | −0.00286 | −0.01066 | 0.000295 | 1.91 |
X3 (Water %) | 0.00117 | 0.0612 | 0.00197 | 0.0223 | 0.01902 | 0.00245 | 0.00623 | 0.00977 | 0.116 | 0.0295 | 5.31 |
X1 × X1 | −0.00199 | −0.0679 | - | −0.01015 | - | −0.00175 | −0.00522 | −0.0253 | −0.159 | −0.0275 | −6.206 |
X1 × X3 | - | 0.05056 | - | 0.00972 | - | - | - | - | - | 0.0285 | 3.75 |
X1 × X2 (Acetone) | - | - | - | - | - | - | 0.004901 | 0.00397 | - | 0.0593 | 5.77 |
X1 × X2 (Ethanol) | - | - | - | - | - | - | −0.004901 | −0.00397 | - | −0.0593 | −5.77 |
X2 (Acetone) × X3 | 0.000853 | - | −0.00133 | −0.00896 | −0.0219 | −0.00153 | 0.00461 | 0.00541 | 0.0576 | - | - |
X2 (Ethanol) × X3 | −0.000853 | - | 0.00133 | 0.00896 | 0.0219 | 0.00153 | −0.00461 | −0.00541 | −0.576 | - | - |
Evaluated | TPC 1 | TFC 2 | CTC 3 | TAA 4 | Epi- catechin | Catechin | Syringic Acid | Gallic Acid | Proto- catechuic Acid | Vanillic Acid | Hyper- oside | Iso- quercitrin | Quercitrin | Campesterol | Beta-sitosterol |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | 40 °C | 30 °C | 30 °C | 30 °C | 40 °C | 40 °C | 40 °C | 30 °C | 40 °C | 40 °C | 40 °C | 30 °C | 40 °C | 40 °C | 40 °C |
Solvent | Acetone | Acetone | Acetone | Acetone | Acetone | Acetone | Ethanol | Acetone | Ethanol | Ethanol | Acetone | Acetone | Acetone | Acetone | Acetone |
Water % | 50% | 25% | 25% | 25% | 50% | 50% | 50% | 25% | 50% | 50% | 50% | 25% | 50% | 50% | 50% |
Determined | 67.03 ± 9.76 | 9.76 ± 0.23 | 237.20 ± 3.22 | 174.28 ± 8.22 | 12.450 | 597.647 | 14.711 | 148.164 | 138.58 | 40.277 | 67.329 | 109.42 | 1073.04 | 292.07 | 31018.16 |
Sample Code/Bioactive Compound | Non-Hydrolyzed Sample | Hydrolyzed Samples | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Epicatechin | Catechin | Syringic Acid | Gallic Acid | Protocatechuic Acid | Vanillic Acid | Epicatechin | Catechin | Syringic Acid | Gallic Acid | Protocatechuic Acid | Vanillic Acid | |
N1 | 0.006 | 0.288 | 0.002 | 0.029 | 0.003 | 0.002 | 0.249 | 0.282 | 0.047 | 1.918 | 0.065 | 0.036 |
N2 | 0.003 | 0.139 | 0.001 | 0.014 | 0.002 | 0.002 | 0.097 | 0.089 | 0.031 | 1.084 | 0.037 | 0.027 |
N3 | 0.010 | 0.448 | 0.004 | 0.055 | 0.013 | 0.006 | 0.356 | 0.377 | 0.088 | 3.537 | 0.132 | 0.097 |
N4 | 0.011 | 0.469 | 0.005 | 0.061 | 0.012 | 0.009 | 0.134 | 0.083 | 0.096 | 4.194 | 0.100 | 0.092 |
N5 | 0.009 | 0.408 | 0.005 | 0.048 | 0.013 | 0.007 | 0.316 | 0.286 | 0.091 | 3.543 | 0.145 | 0.103 |
N6 | 0.010 | 0.397 | 0.007 | 0.148 | 0.028 | 0.009 | 0.247 | 0.244 | 0.099 | 3.814 | 0.168 | 0.128 |
N7 | 0.005 | 0.251 | 0.003 | 0.031 | 0.008 | 0.004 | 0.266 | 0.311 | 0.044 | 1.943 | 0.074 | 0.053 |
N8 | 0.013 | 0.598 | 0.005 | 0.080 | 0.010 | 0.006 | 0.544 | 0.555 | 0.108 | 4.436 | 0.140 | 0.071 |
N9 | 0.004 | 0.152 | 0.002 | 0.017 | 0.002 | 0.002 | 0.149 | 0.146 | 0.031 | 1.447 | 0.040 | 0.027 |
N10 | 0.007 | 0.273 | 0.002 | 0.028 | 0.004 | 0.003 | 0.227 | 0.215 | 0.063 | 2.484 | 0.090 | 0.056 |
N11 | 0.009 | 0.329 | 0.003 | 0.032 | 0.010 | 0.006 | 0.254 | 0.273 | 0.064 | 2.487 | 0.101 | 0.069 |
N12 | 0.010 | 0.597 | 0.015 | 0.131 | 0.139 | 0.040 | 0.141 | 0.156 | 0.110 | 2.738 | 0.277 | 0.130 |
N13 | 0.003 | 0.080 | 0.007 | 0.063 | 0.086 | 0.011 | 0.000 | 0.037 | 0.046 | 1.622 | 0.223 | 0.076 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Moldovan, C.; Popa, D.-S.; Tomuta, I.; Vlase, L. Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules 2018, 23, 2814. https://doi.org/10.3390/molecules23112814
Rusu ME, Gheldiu A-M, Mocan A, Moldovan C, Popa D-S, Tomuta I, Vlase L. Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules. 2018; 23(11):2814. https://doi.org/10.3390/molecules23112814
Chicago/Turabian StyleRusu, Marius Emil, Ana-Maria Gheldiu, Andrei Mocan, Cadmiel Moldovan, Daniela-Saveta Popa, Ioan Tomuta, and Laurian Vlase. 2018. "Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities" Molecules 23, no. 11: 2814. https://doi.org/10.3390/molecules23112814
APA StyleRusu, M. E., Gheldiu, A. -M., Mocan, A., Moldovan, C., Popa, D. -S., Tomuta, I., & Vlase, L. (2018). Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules, 23(11), 2814. https://doi.org/10.3390/molecules23112814