Extraction and Analysis of Phenolic Compounds in Rice: A Review
Abstract
:1. Introduction
2. Extraction and Clean-Up
3. Analysis of the Quali-Quantitative Profile of Phenolic Compounds in Rice
4. Total Content of Polyphenols, Flavonoids, Proanthocyanidins, and Anthocyanins
5. Antioxidant Activity Assays
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Papademetriou, M.K. Rice production in the Asia-Pacific region: Issues and perspectives. In Bridging the Rice Yield Gap in the Asia-Pacific Region; Papademetriou, M.K., Dent, F.J., Herath, E.M., Eds.; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand, 2000; pp. 4–25. [Google Scholar]
- Shao, Y.; Bao, J. Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chem. 2015, 180, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Hallfrisch, J.; Scholfield, J.; Behall, K.M. Blood pressure reduced by whole grain diet containing barley or whole wheat and brown rice in moderately hypercholesterolemic men. Nutr. Res. 2003, 23, 1631–1642. [Google Scholar] [CrossRef]
- Sakamoto, S.; Hayashi, T. Pre-germinated brown rice could enhance maternal mental health and immunity during lactation. Eur. J. Nutr. 2007, 46, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Imam, M.U.; Azmi, N.H.; Bhanger, M.I.; Ismail, N.; Ismail, M. Antidiabetic properties of germinated brown rice: A systematic review. Evid.-Based Complement. Alternat. Med. 2012, 2012, 816501. [Google Scholar] [CrossRef] [PubMed]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Pedro, A.C.; Granato, D.; Rosso, N.V. Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modelling and assessing their reversibility and stability. Food Chem. 2016, 191, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.N.; Kuo, W.H.; Chiang, C.L.; Chiou, H.L.; Hsieh, Y.S.; Chu, S.C. Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chem.-Biol. Interact. 2006, 163, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Andrews, M.C.; Hu, Y.; Wang, D.; Qin, Y.; Zhu, Y.; Ni, H.; Ling, W. Anthocyanin Extract from Black Rice Significantly Ameliorates Platelet Hyperactivity and Hypertriglyceridemia in Dyslipidemic Rats Induced by High Fat Diets. J. Agric. Food Chem. 2011, 59, 6759–6764. [Google Scholar] [CrossRef] [PubMed]
- Gunaratne, A.; Wu, K.; Li, D.; Bentota, A.; Corke, H.; Cai, Y.Z. Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chem. 2013, 138, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Putnik, P.; Lorenzo, J.M.; Barba, F.J.; Roohinejad, S.; Jambrak, A.R.; Granato, D.; Montesano, D.; Bursać Kovačević, D. Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods 2018, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Bursać Kovačević, D.; Maras, M.; Barba, F.J.; Granato, D.; Roohinejad, S.; Mallikarjuan, K.; Montesano, D.; Lorenzo, J.M.; Putnik, P. Innovative technologies for the recoveries of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chem. 2018, 268, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.W.; Khong, N.M.H.; Iqbal, S.; Ismail, M. Isolation and atioxidative properties of phenolics-saponin rich fraction from defatted rice bran. J. Ceral Sci. 2013, 57, 480–485. [Google Scholar] [CrossRef]
- Sumczynski, D.; Kotàskovà, E.; Orsavovà, J.; Valàšek, P. Contribution of individual phenolics to antioxidant activity and in vitro digestibility of wild rices (Zizania aquatica L.). Food Chem. 2017, 218, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, J.; Zhang, R.; Wei, Z.; Deng, Y.; Guo, J.; Zhang, M. Effect of degree of milling on phnolic profiles and cellular antioxidant activity of whole brown rice. Food Chem. 2015, 185, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Pereira, J.; Figueiredo, N.; Oliveira, M.B.P.P.; Carranca, C.; Rosa, E.A.S.; Trindade, H. Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols, γ-oryzanol and antioxidant capacities of rice (Oryza sativa L.). J. Cereal Sci. 2014, 59, 15–24. [Google Scholar] [CrossRef]
- Ti, H.; Zhang, R.; Zhang, M.; Wei, Z.; Chi, J.; Deng, Y.; Zhang, Y. Effect of extrusion on phytochemical profiles in milled fraction of black rice. Food Chem. 2015, 178, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Karimi, E.; Mehrabanjoubani, P.; Keshavarzian, M.; Oskoueian, E.; Jaafar, H.Z.E.; Abdolzadeh, A. Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativa L.) and their antioxidant properties. J. Sci. Food. Agric. 2014, 94, 2324–2330. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Xu, F.; Sun, X.; Bao, J.; Beta, T. Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryoand endosperm of white, red and black rice kernels (Oryza sativa L.). J. Cereal Sci. 2014, 59, 211–218. [Google Scholar] [CrossRef]
- Rumruaytum, P.; Borompichaichartkul, C.; Kongpensook, V. Effect of drying involving fluidisation in superheated steam on physicochemical and antioxidant properties of Thai native rice cultivars. J. Food Eng. 2014, 123, 143–147. [Google Scholar] [CrossRef]
- Wanyo, P.; Meeso, N.; Siriamornpun, S. Effect of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem. 2014, 157, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Esa, N.M.; Kadir, K.K.A.; Amom, Z.; Azlan, A. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits. Food Chem. 2013, 141, 1306–1312. [Google Scholar]
- Chatthongpisut, R.; Schwartz, S.J.; Yongsawatdigul, J. Antioxidant activities and antiproliferative activity of Thai purple rice cooked by various methods on human color cancer cells. Food Chem. 2015, 188, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Chen, X.; Zhang, M.; Blanchard, C. Phenolics, flavonoids, proanthocyanidin and antioxidant activity of brown rice with different pericarp colors following storage. J. Stored Prod. Res. 2014, 59, 120–125. [Google Scholar] [CrossRef]
- Alves, G.H.; Ferreira, C.D.; Vivian, P.G.; Monks, J.L.F.; Elias, M.C.; Vanier, N.L.; de Oliveira, M. The revisited levels of free and bound phenolics in rice. Food Chem. 2016, 208, 116–123. [Google Scholar]
- Pitija, K.; Nakornriab, M.; Sriseadka, T.; Vanavichit, A.; Wongpornchai, S. Anthocyanin content and antioxidant capacity in bran extracts of some Thai black rice varieties. Int. J. Food Sci. Technol. 2013, 48, 300–308. [Google Scholar] [CrossRef]
- Bordiga, M.; Gomez-Alonso, S.; Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Hermosin-Gutierrez, I.; Arlorio, M. Phenolics characterization and antioxidant activity of six different pigmented Oryza sativa L. cultivars grown in Piedmont (Italy). Food Res. Int. 2014, 65, 282–290. [Google Scholar] [CrossRef]
- Sumczynski, D.; Kotàskovà, E.; Družbikovà, H.; Mlček, J. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oriza sativa L.). Food Chem. 2016, 211, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Mason, T.J.; Paniwnyk, L.; Lorimer, J.P. The uses of ultrasound in food technology. Ultrason. Sonochem. 1996, 3, S253–S260. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Piana, F.; Ciulu, M.; Quirantes-Piné, R.; Sanna, G.; Segura-Carretero, A.; Spano, N.; Mariani, A. Simple and rapid procedires for the extraction of bioactive compounds from Guayule leaves. Ind. Crop. Prod. 2018, 116, 162–169. [Google Scholar] [CrossRef]
- Rocchetti, G.; Lucini, L.; Chiodelli, G.; Giuberti, G.; Montesano, D.; Masoero, F.; Trevisan, M. Impact of boiling of on free and bound phenolic profile and antioxidant activity of commercial gluten-free pasta. Food Res. Int. 2017, 100, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Sirisena, S.; Zabaras, D.; Ng, K.; Ajilouni, S. Characterization of Date (Daglet Nour) seed and bound polyphenols by high-performance liquid chromatography-mass spectrometry. J. Food Sci. 2017, 82, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Setyaningsih, W.; Saputro, I.E.; Palma, M.; Barroso, C.G. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains. Food Chem. 2015, 169, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Santi Stefanello, F.; Obem dos Santos, C.; Caetano Bochi, V.; Burin Fruet, A.P.; Bromenberg Soquetta, M.; Dörr, A.C.; Nörnberg, J.L. Analysis of polyphenols in brewer’s spent grain and its comparison with corn silage and cereal brans commonly used for animal nutrition. Food Chem. 2018, 239, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; McClung, A.; Chen, M.H. Effect of hydrothermal processes on antioxidants in brown, purple and red bran whole grain rice (Oryza sativa L.). Food Chem. 2014, 159, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Gao, B.; Slavin, M.; Zhang, X.; Yang, F.; Bao, J.; Shi, H.; Xie, Z.; Yu, L. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT-Food Sci. Technol. 2013, 54, 521–527. [Google Scholar] [CrossRef]
- Fernandes Paiva, F.; Levien Vanier, N.; De Jesus Berrios, J.; Pan, J.; De Almeida Villanova, F.; Takeoka, G.; Cardoso Elias, M. Physicochemical and nutritional properties of pigmented rice subjected to different degrees of milling. J. Food Compos. Anal. 2014, 35, 10–17. [Google Scholar] [CrossRef]
- Ti, H.; Li, Q.; Zhang, R.; Zhang, M.; Deng, Y.; Wei, Z.; Chi, J.; Zhang, Y. Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Food Chem. 2014, 159, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Pereira, J.; Moutinho-Pereira, J.; Correia, C.M.; Figueiredo, N.; Carranca, C.; Rosa, E.A.S.; Trindade, H. Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ. Exp. Bot. 2014, 99, 28–37. [Google Scholar] [CrossRef]
- Phetpornpaisan, P.; Tippayawat, P.; Jay, M.; Sutthanut, K. A local Thai cultivar glutinous black rice bran: A source of functional compounds in immunomodulation, cell viability and collagen synthesis, and matrix metalloproteinase-2 and -9 inhibition. J. Funct. Food 2014, 7, 650–661. [Google Scholar] [CrossRef]
- Huang, Y.P.; Lai, H.M. Bioactive compounds and antioxidative activity of colored rice bran. J. Food Drug Anal. 2016, 24, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, J.; Zhang, J.; Peng, J.; Liu, T.; Xin, Z. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem. 2015, 171, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Park, S.Y.; Lim, S.H.; Yeo, Y.; Cho, H.S.; Ha, S.H. Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. J. Cereal Sci. 2013, 57, 14–20. [Google Scholar] [CrossRef]
- Yodpitak, S.; Sookwong, P.; Akkaravessapong, P.; Wongpornchai, S. Changes in antioxidant activity and antioxidative compounds of brown rice after pre-germination. J. Food Nutr. Res. 2013, 1, 132–137. [Google Scholar]
- ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. Available online: https://www.iso.org/standard/39883.html (accessed on 5 November 2018).
- Procedural Manual of the Codex Alimentarius Commission. Available online: http://www.fao.org/3/a-i5079e.pdf (accessed on 5 November 2018).
- Council Directive 93/99/EEC on the Subject of Additional Measures Concerning the Official Control of Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31997R0258:en:HTML (accessed on 5 November 2018).
- Xie, F.Y.; Bi, W.W.; Wang, X.J.; Zhang, X.L.; Zhang, X.N.; Zhao, G.X.; Liu, Q.Q. Extraction and identification of black rice polyphenolic compounds by reversed phase high performance liquid chromatography-electrospray ionization mass spectrometry. J. Food Process. Preserv. 2017, 41, 1–6. [Google Scholar] [CrossRef]
- Walter, M.; Marchesan, E.; Sachet Massoni, P.F.; Picolli da Silva, L.; Meneghetti Sarzi Sartori, G.; Bruck Ferreira, R. Antioxidant properties of rice grains with light brown, red and black pericarps colors and the effect of processing. Food Res. Int. 2013, 50, 698–703. [Google Scholar] [CrossRef]
- Ames, B. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 1983, 221, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, Y.; Bao, J.; Beta, T. Phenolic compounds and antioxidant properties of breeding lines between the white and black rice. Food Chem. 2015, 172, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Palombini, S.V.; Maruyama, S.A.; Claus, T.; Carbonera, F.; Souza, N.E.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Evaluation of antioxidant potential of Brazilian rice cultivars. Food Sci. Technol. 2013, 33, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.H.; McClung, A.M.; Bergman, C.J. Concentrations of oligomers and polymers of proanthocyanidins in red and purple rice bran and their relationships to total phenolics, flavonoids, antioxidant capacity and whole grain color. Food Chem. 2016, 208, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Anwar, F.; Zengin, G.; Alkharfy, K.M.; Marcu, M. Wild rice (Zizania sp.): A potential source of valkigabile ingredients for nutraceuticals and functional foods. Riv. Ital. Delle Sostanze Grasse 2017, 94, 81–89. [Google Scholar]
- Cáceres, P.J.; Martínez-Villaluenga, C.; Amigo, L.; Frias, J. Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chem. 2014, 152, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chromatographic Technique | Stationary Phase | Mobile Phase | Quantitative Analysis | Validation | Samples Origin | Target Analytes | Reference |
---|---|---|---|---|---|---|---|
HPLC-DAD | Kinetex C-18 (150 × 4.6 mm, 5 µm) | A: 0.1% Formic acid in water B: 0.1% Formic acid in acetonitrile C: 0.1% Formic acid in methanol | y | y | Rice from Brazil | Gallic acid; Protocatechuic acid; 4-Hydroxybenzoic acid; Catechin; Vanillic acid; Caffeic acid; Chlorogenic acid; Syringic acid; Epicatechin; p-Coumaric acid; trans-Ferulic acid; Sinapic acid; Kaempferol-3DGlp; Myricetin; Resveratrol, trans-Cinnamic acid; Quercetin; Kaempferol. | [35] |
HPLC-DAD | Zorbax SB-CN (150 × 3 mm, 3.5 µm) | A: 0.2% Phosphoric acid B: Water C: Acetonitrile | y | n | Kamlaing black rice from Thailand | Caffeic acid; p-Coumaric acid; Ferulic acid; Gallic acid; Protocatechuic acid; Hydroxybenzoic acid; Sinapic acid; Vanillic acid; Syringic acid; Cyanidin-3-glucoside; Cyanidin (aglycone) | [41] |
1. HPLC-ESI(+)-MS/MS (qualitative) 2. HPLC-APCI(+)-MS (quantitative) | Zorbax Eclipse (100 × 3 mm, 3.5 µm) | A: 0.5% Formic acid B: Methanol | y | n | Four varieties of black rice from Thailand | Cyanidin 3-glucoside; Peonidin 3-glucoside | [26] |
1. HPLC-ESI(−)-MS/MS (qualitative) 2. HPLC-DAD (quantitative) | Phenolic acids Zorbax Eclipse XDB C18 (150 × 4.6 mm, 5 µm) | Free phenolic acids A: 2.5% Methanol + 0.5% Formic acid in water B: Methanol Bound phenolic acids A: 50 mM Phosphoric acid at pH 2.5 B: Acetonitrile | y | n | Non-glutinous purple rice from Thailand | Protocatechuic acid; Vanillic acid; p-Coumaric acid; Ferulic acid; Gallic acid; p-Hydroxybenzoic acid | [23] |
1. HPLC-ESI(+)-MS/MS (qualitative) 2. HPLC-DAD (quantitative) | Anthocyanins Symmetry C18 column (75 × 4.6 mm, 3.5 µm) | Anthocyanins A: 5% Formic acid in water B: 5% Formic acid in acetonitrile | y | n | Cyanidin-3-glucoside; Peonidin-3-glucoside | ||
HPLC-DAD-APCI(+/−)-MS | Phenolic acids Zorbax SB-Aq (250 × 4.6 mm, 5 µm) | Phenolic acids A: 2.5% Formic acids in water B: Methanol | n | n | Eight red-grain and three light brown-grained rice varieties from Sri Lanka | Ferulic acid; p-Coumaric acid; Sinapic acid; Caffeic acid | [10] |
Proanthocyanidins Ascentis C18 (250 × 4.6 mm, 5 µm) | Proanthocyanidins A: 0.3% Formic acid in water B: 0.1% Formic acid in methanol | n | n | Dimers and trimers | |||
1. HPLC-DAD (Phenolic acids) 2. HPLC-DAD-ESI(−)-MS/MS (Identification of unknown peaks) | 1. Phenolic acids Atlantis dC18 (250 × 4.6 mm, 5 µm) 2. Unknown peaks Hydrosphere C18 HS-3C2 (150 × 2.0 mm, 5 µm) | 1. Phenolic acids A: 0.1% Formic acid in water B: Methanol 2. Unknown peaks A: 0.1% Formic acid in water B: 0.1% Formic acid in Methanol | y | n | Colored rice bran from six rice samples collected from the local markets | Protocatechuic acid; p-Hydroxybenzoic acid; Vanillic acid; p-Coumaric acid; Ferulic acid; Sinapic acid; Protocatechualdehyde. | [42] |
3. HPLC-DAD-ESI-MS/MS (Anthocyanins) | YMC-pack ODS-AQ (250 × 4.6 mm, 5 µm) | A: 0.1% Formic acid in water B: Methanol | y | n | Cyanidin 3-glucoside; Peonidin 3-glucoside; Cyanidin 3-rutinoside | ||
HPLC-DAD | Kinetex C18 (150 × 4.6 mm, 2.6 µm) | A: 1% Acetic acid in water B: 1% Acetic Acid + 32% Acetonitrile in water | y | n | Four samples of Zizania aquatica L. purchased in local markets in Czech Republic | Chlorogenic acid; Gallic acid; Protocatechuic acid; p-Hydroxybenzoic acid; Vanillic acid; Caffeic acid; Syringic acid; p-Coumaric acid; Ferulic acid; Sinapic acid; Ellagic acid; o-Coumaric acid; Protocatechuic ethyl acid; Cinnamic acid; Epigallocatechin; Catechin; Epicatechin; Rutin; Quercetin; Kaempferol. | [14] |
HPLC-VWD | Zorbax SB-C18 (250 × 4.6 mm, 5 µm) | A: 0.4% Acetic acid B: Acetonitrile | y | n | Fresh brown rice from China | Protocatechuic acid; Chlorogenic acid; Caffeic acid; Syringic acid; Coumaric acid; Ferulic acid. | [39] |
HPLC-VWD | Zorbax SB-C18 (250 × 4.6 mm, 5 µm) | A: 0.4% Acetic acid B: Acetonitrile | y | n | Indica cultivar Yinfengxue and Japonica cultivar Wujingyun 27 from China | Protocatechuic acid; Chlorogenic acid; Caffeic acid; Syringic acid; Coumaric acid; Ferulic acid. | [15] |
HPLC-DAD | C18 (150 × 4.6 mm, 5 µm) | A: 0.1% Trifluoracetic acid in water B: 0.1% Trifluoroacetic acid in acetonitrile | y | n | Rice from Portugal | Gallic acid; Protocatechuic acid; p-Hydroxybenzoic acid; Vanillic acid; Syringic acid; Chlorogenic acid; Caffeic acid; p-Coumaric acid; Sinapic acid; Ferulic acid. Luteolin-7-O-glucoside; Apigenin-7-O-glucoside; Apigenin; Tricin. | [16] |
HPLC-DAD | LUNA C-18 (250 × 4.6 mm, 5 µm) | A: 3% Acetic acid in water B: 3% Acetic acid and 25% Acetonitrile in water | y | n | Paddy-rice samples from Thailand | 4-Hydroxybenzoic acid: Gallic acid; Protocatechuic acid; p-Hydroxybenzoic acid; Vanillic acid; 6-Hydrocinnamic acid: Chlorogenic acid; Caffeic acid; Syringic acid; p-Coumaric acid; Ferulic acid; Sinapic acid. Rutin; Myricetin; Quercetin; Apigenin; Kaempferol | [21] |
1. HPLC-DAD (Phenolic acids and anthocyanins) | Zorbax SB-C18 (150 × 4.6 mm, 3.5 µm) | Phenolic acids A: 0.1% Formic acid in water B: 0.1% Formic acid in Acetonitrile Anthocyanins A: 6% Formic acid in water B: Methanol | y | n | Six rice cultivars from Texas | Protocatechuic acid; Vanillic acid; p-Coumaric acid; Ferulic acid; Sinapic acid. Cyanidin 3-galactoside; Cyanidin 3-glucoside; Cyanidin 3-rutinoside; Peonidin 3-glucoside. | [36] |
2. HPLC-FD (Proanthocyanidins) | Develosil Diol (250 × 4.6 mm, 5 μm) | A: 2% Acetic acid in acetonitrile B: 2% Acetic acid + 3% water in acetonitrile | y | n | Monomers to decamers | ||
1. HPLC-DAD-ESI(−)-MS/MS (Phenolic acids) 2. HPLC-DAD-ESI (+)-MS/MS (Anthocyanins) | 1. RP 18 (250 × 4.6 mm, 5 µm) 2. Gemini C18 110A (150 × 4.6 mm, 5 µm) | 1. Phenolic acids A: 0.1% Acetic acid in water B: 0.1% Acetic acid in methanol 2. Anthocyanins A: 0.5% Formic acid in water B: 0.5% Formic acid in methanol | y | n | White, red and black rice from China | Protocatechuic acid; Vanillic acid; p-Hydroxybenzoic acid; Syringic acid; trans-p-Coumaric acid; trans-Sinapic acid; Ferulic acid. Cyanidin 3-glucoside; Peonidin 3-glucoside; Cyanidin 3-rutinoside | [19] |
HPLC-DAD | Intersil ODS-3 (150 × 4.6 mm, 5 μm) | A: Trifluoroacetic acid in water (pH 2.5) B: Acetonitrile | y | n | Various rice varieties from Iran | Gallic acid; Salicylic acid; Caffeic acid; Pyrogallol; Quercetin; Rutin; Myricetin; Kaempferol; Naringin; Apigenin; Genistein; Daidzein | [18] |
HPLC-DAD | RP 18 LiChroCART (250 × 4 mm, 5 µm) | A: 2% Acetic acid and 5% Methanol in water B: 2% Acetic acid and 88% Methanol in water | y | y | Commercial rice samples from Spain | Protocatechuic acid; Vanillin; Protocatechuic aldehyde; p-Hydroxybenzoic acid; p-Hydroxybenzaldehyde; Ferulic acid; Sinapic acid; Guaiacol; p-Coumaric Acid; Caffeic acid; 5-Hydroxymethyl-2-furaldehyde; Furfural; 5-Methylfurfural; Syringic Acid; Ellagic acid | [34] |
1. HPLC-DAD-ESI(+/−)-MS/MS (Hydroxycinnamic acids and flavonols) | Zorbax Eclipse XDB-C18 (150 × 2.1 mm, 3.5 μm) | A: 3% Acetonitrile and 8.5% Formic acid in water B: 50% Acetonitrile and 8.5% Formic acid in water C: 90% methanol and 8.5% formic acid in water | y | n | White, red and black cultivars from Italy | 3-p-Coumaroylquinic acid; 3-Feruloylquinic acid; 4-p-Coumaroylquinic acid; 4-Feruloylquinic acid; Quercetin 3-glucoside; Quercetin 3-rutinoside; Isorhamnetin 3-glucoside; Isorhamnetin 3-rutinoside; Quercetin; Isorhamnetin; Diidroquercetin 3-glucoside; Diidroisorhamnetin-3-glucoside. | [27] |
2. HPLC-DAD-ESI -MS/MS (Anthocyanins) | A: 3% Acetonitrile and 10% Formic acid in water B: 50% Acetonitrile and 10% Formic acid in water | Cyanidin 3-glucoside; Peonidin 3-glucoside; Cyanidin 3-gentioside; Cyanidin 3-rutinoside; Malvidin 3-glucoside; Peonidin 3-rutinoside. | |||||
3. HPLC-DAD-ESI -MS/MS (Flavan-3-ols) | A: 1% Formic acid and 2% Methanol in water B: Methanol | Catechin; Epicatechin; Gallocatechin; Epigallocatechin (monomers and dimers) | |||||
HPLC-DAD-ESI(+/−)-MS | Zorbax Eclipse plus (150 × 4.6 mm, 5 µm) | A: Acetonitrile B: 2% Acetic acid in water | n | n | Black rice from China | Cyanidin 3-sophoroside; Cyanidin 3-glucoside; Peonidin 3-glucoside; Procyanidin glucoside; Caffeic acid hexose; Procyanidin B2-3-O-gallate hexose;Epiafzelchin-epicatechin-O-dimethylgallate. | [49] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciulu, M.; Cádiz-Gurrea, M.d.l.L.; Segura-Carretero, A. Extraction and Analysis of Phenolic Compounds in Rice: A Review. Molecules 2018, 23, 2890. https://doi.org/10.3390/molecules23112890
Ciulu M, Cádiz-Gurrea MdlL, Segura-Carretero A. Extraction and Analysis of Phenolic Compounds in Rice: A Review. Molecules. 2018; 23(11):2890. https://doi.org/10.3390/molecules23112890
Chicago/Turabian StyleCiulu, Marco, Maria de la Luz Cádiz-Gurrea, and Antonio Segura-Carretero. 2018. "Extraction and Analysis of Phenolic Compounds in Rice: A Review" Molecules 23, no. 11: 2890. https://doi.org/10.3390/molecules23112890
APA StyleCiulu, M., Cádiz-Gurrea, M. d. l. L., & Segura-Carretero, A. (2018). Extraction and Analysis of Phenolic Compounds in Rice: A Review. Molecules, 23(11), 2890. https://doi.org/10.3390/molecules23112890