Chemical Profiles of Incense Smoke Ingredients from Agarwood by Headspace Gas Chromatography-Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Observation of Various Grades of Agarwoods
2.2. HS GC-MS/MS Analysis
2.3. Chemical Profiles of Kynam Agarwoods Using HS GC/MS-MS
2.4. Chemical Profiles of Different Grades of Agarwoods Using HS GC/MS-MS
2.5. Chemical Ingredients of Different Grades of Agarwoods
3. Materials and Methods
3.1. Reagents
3.2. Agarwood Materials
3.3. Sample Preparation
3.4. GC-MS/MS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kalra, R.; Kaushik, N. A review of chemistry, quality and analysis of infected agarwood tree (Aquilaria sp.). Phytochem. Rev. 2017, 16, 1045–1079. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, J.; Gao, Z.; Zhang, Z.; Lyu, J. A review of quality assessment and grading for agarwood. Chin. Herb. Med. 2017, 9, 22–30. [Google Scholar] [CrossRef]
- Chen, H.Q.; Wei, J.H.; Yang, J.S.; Zhang, Z.; Yang, Y.; Gao, Z.H.; Sui, C.; Gong, B. Chemical constituents of agarwood originating from the endemic genus Aquilaria plants. Chem. Biodivers. 2012, 9, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, Y.; Xue, J.; Wei, J.; Zhang, Z.; Chen, H. Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) gilg trees. Molecules 2011, 16, 4884–4896. [Google Scholar] [CrossRef] [PubMed]
- Hashim, Y.Z.; Kerr, P.G.; Abbas, P.; Mohd Salleh, H. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 189, 331–360. [Google Scholar] [CrossRef] [PubMed]
- Tay, P.Y.; Tan, C.P.; Abas, F.; Yim, H.S.; Ho, C.W. Assessment of extraction parameters on antioxidant capacity, polyphenol content, epigallocatechin gallate (EGCG), epicatechin gallate (ECG) and iriflophenone 3-C-β-glucoside of agarwood (Aquilaria crassna) young leaves. Molecules 2014, 19, 12304–12319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Yu, Z.; Wang, C.; Wu, X.; Guo, P.; Wei, J. Chemical constituents and pharmacological activity of agarwood and Aquilaria plants. Molecules 2018, 23, E342. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, C.; Peng, D.; Liu, X.; Wu, C.; Guo, P.; Wei, J. Agarwood essential oil displays sedative-hypnotic effects through the GABAergic system. Molecules 2017, 22, E2190. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.L.; Tsai, Y.C.; Fu, S.L.; Cheng, M.J.; Chung, M.I.; Chen, J.J. 2-(2-Phenylethyl)-4H-chromen-4-one derivatives from the resinous wood of Aquilaria sinensis with anti-inflammatory effects in LPS-induced macrophages. Molecules 2018, 23, E289. [Google Scholar] [CrossRef] [PubMed]
- Ismail, S.N.; Maulidiani, M.; Akhtar, M.T.; Abas, F.; Ismail, I.S.; Khatib, A.; Ali, N.A.M.; Shaari, K. Discriminative analysis of different grades of gaharu (Aquilaria malaccensis Lamk.) via ¹H-NMR-based metabolomics using PLS-DA and random forests classification models. Molecules 2017, 22, E1612. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Tsuneya, T.; Uneyama, K. Components of the agarwood smoke on heating. J. Essent. Oil Res. 1993, 5, 419–423. [Google Scholar] [CrossRef]
- The Scent of Kyara (Oud). Available online: https://www.onoda.ch/news/2018/1/20/kyara-agarwood (accessed on 26 September 2018).
- Liao, G.; Dong, W.H.; Yang, J.L.; Li, W.; Wang, J.; Mei, W.L.; Dai, H.F. Monitoring the chemical profile in agarwood formation within one year and speculating on the biosynthesis of 2-(2-phenylethyl)chromones. Molecules 2018, 23, E1261. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Kakino, M.; Tazawa, S.; Watarai, T.; Oyama, M.; Maruyama, H.; Araki, Y.; Hara, H.; Iinuma, M. Quantification of polyphenols and pharmacological analysis of water and ethanol-based extracts of cultivated agarwood leaves. J. Nutr. Sci. Vitaminol. (Tokyo) 2012, 58, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Tajuddin, S.N.; Yusoff, M.M. Chemical composition of volatile oils of Aquilaria malaccensis (Thymelaeaceae) from Malaysia. Nat. Prod. Commun. 2010, 5, 1965–1968. [Google Scholar] [PubMed]
- Gao, X.; Xie, M.; Liu, S.; Guo, X.; Chen, X.; Zhong, Z.; Wang, L.; Zhang, W. Chromatographic fingerprint analysis of metabolites in natural and artificial agarwood using gas chromatography-mass spectrometry combined with chemometric methods. J. Chromatogr. B 2014, 967, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Mei, W.L.; Yang, D.L.; Wang, H.; Yang, J.L.; Zeng, Y.B.; Guo, Z.K.; Dong, W.H.; Li, W.; Dai, H.F. Characterization and determination of 2-(2-phenylethyl)chromones in agarwood by GC-MS. Molecules 2013, 18, 12324–12345. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.H.; Lee, C.Y.; Yang, C.L.; Lee, M.R. Classification and differentiation of agarwoods by using non-targeted HS-SPME-GC/MS and multivariate analysis. Anal. Methods 2014, 6, 7449–7456. [Google Scholar] [CrossRef]
- Zhou, R.; An, Q.; Pan, X.W.; Yang, B.; Hu, J.; Wang, Y.H. Higher cytotoxicity and genotoxicity of burning incense than cigarette. Environ. Chem. Lett. 2015, 13, 465–471. [Google Scholar] [CrossRef]
- Espinoza, E.O.; Lancaster, C.A.; Kreitals, N.M.; Hata, M.; Cody, R.B.; Blanchette, R.A. Distinguishing wild from cultivated agarwood (Aquilaria spp.) using direct analysis in real time and time of-flight mass spectrometry. Rapid Commun. Mass Spect. 2014, 28, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Ahmaed, D.T.; Kulkarni, A.D. Sesquiterpenes and chromones of agarwood: A review. Malays. J. Chem. 2017, 19, 33–58. [Google Scholar]
- Ismail, N.; Azah, M.A.N.; Jamil, M.; Rahiman, M.H.F.; Tajuddin, S.N.; Taib, M.N. Analysis of high quality agarwood oil chemical compounds by means of SPME/GC-MS and Z-SCORE technique. Malays. J. Anal. Sci. 2013, 17, 403–413. [Google Scholar]
- Jong, P.L.; Tsan, P.; Mohamed, R. Gas chromatography-mass spectrometry analysis of agarwood extracts from mature and juvenile Aquilaria malaccensis. Inter. J. Agric. Biol. 2014, 16, 644–648. [Google Scholar]
- Liu, Y.Y.; Chen, H.Q.; Yang, Y.; Zhang, Z.; Wei, J.H.; Meng, H. Whole-tree agarwood-inducing technique: An efficient novel technique for producing high-quality agarwood in cultivated Aquilaria sinensis trees. Molecules 2013, 18, 3086–3106. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Schellenberg, I. Comparison of different extraction methods for the determination of essential oils and related compounds from aromatic plants and optimization of solid-phase microextraction/gas chromatography. Anal. Bioanal. Chem. 2007, 387, 2207–2217. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
Sample Availability: Samples of the agarwoods are available from the authors. |
No. | Compound | LRI a | Retention Time (min) | Content b (%) | Detected m/z | Chemical Formula | Type c |
---|---|---|---|---|---|---|---|
1 | Benzaldehyde | 1581 | 5.296 | 0.17 ± 0.05 | 106 | C7H6O | Ar |
2 | exo-7-(2-Propenyl)bicyclo [4.2.0]oct-1(2)-ene | 1720 | 11.137 | 0.04 ± 0.02 | 148 | C11H16 | Other |
3 | 4-Methoxybenzaldehyde | 1731 | 11.617 | 0.14 ± 0.05 | 136 | C8H8O2 | Ar |
4 | 1,8-Nonadiene-3-yne, 2,8-dimethyl-7-methylene- | 1734 | 11.717 | 0.04 ± 0.03 | 160 | C12H16 | Other |
5 | Cubenene | 1818 | 15.273 | 0.03 ± 0.02 | 204 | C15H24 | S |
6 | α-Longipinene | 1823 | 15.471 | 0.26 ± 0.12 | 204 | C15H24 | S |
7 | Tricyclo[5 2.2.0(1,6)]undecan-3-ol, 2-methylene-6,8,8-trimethyl- | 1860 | 17.017 | 1.30 ± 0.42 | 220 | C15H24O | Ar |
8 | Naphthalene | 1885 | 18.086 | 0.18 ± 0.22 | 202 | C15H22 | Ar |
9 | δ-Guaiene | 1888 | 18.196 | 0.13 ± 0.08 | 204 | C15H24 | S |
10 | Nootkatene | 1895 | 18.502 | 0.12 ± 0.06 | 202 | C15H22 | Ar |
11 | Kessane | 1910 | 19.119 | 0.39 ± 0.29 | 222 | C15H26O | Ar |
12 | 4a,5-Dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalen-1-ol | 1928 | 19.863 | 0.31 ± 0.07 | 220 | C15H24O | Ar |
13 | cis-α-Santalol | 1962 | 21.312 | 0.28 ± 0.09 | 220 | C15H24O | S |
14 | β-Vetivenene | 1969 | 21.593 | 0.10 ± 0.02 | 202 | C15H22 | T |
15 | γ-Eudesmol | 1998 | 22.799 | 0.06 ± 0.06 | 222 | C15H26O | S |
16 | 10s,11s-Himachala-3(12),4-diene | 2017 | 23.61 | 0.27 ± 0.12 | 204 | C15H24 | Ar |
17 | Agarospirol | 2022 | 23.808 | 0.21 ± 0.04 | 222 | C15H26O | S |
18 | β-Guaiene | 2031 | 24.209 | 0.53 ± 0.24 | 204 | C15H24 | S |
19 | Cubenol | 2041 | 24.606 | 1.24 ± 0.43 | 222 | C15H26O | S |
20 | α-epi-7-epi-5-Eudesmol | 2057 | 25.296 | 0.95 ± 0.28 | 222 | C15H26O | S |
21 | Bulnesol | 2074 | 26.021 | 0.26 ± 0.18 | 222 | C15H26O | S |
22 | α-Tetralone | 2089 | 26.624 | 0.53 ± 0.26 | 218 | C15H22O | Ar |
23 | α-Kessyl acetate | 2110 | 27.497 | 0.91 ± 1.31 | 280 | C17H28O3 | Ar |
24 | (1R,7S,E)-7-Isopropyl-4,10-dimethylenecyclodec-5-enol | 2120 | 27.941 | 0.33 ± 0.32 | 220 | C15H24O | Ar |
25 | 10-epi-Elemol | 2141 | 28.822 | 0.19 ± 0.15 | 222 | C15H26O | S |
26 | Ledol | 2156 | 29.445 | 0.53 ± 0.10 | 222 | C15H26O | S |
27 | Longiverbenone | 2217 | 32.017 | 0.82 ± 0.74 | 218 | C15H22O | Other |
28 | Cryptomeridiol | 2230 | 32.552 | 1.95 ± 1.10 | 240 | C15H28O2 | S |
29 | 2aS,3aR,5aS,9bR)-2a,5a,9-Trimethyl-2a,4,5,5a,6,7,8,9b-octahydro-2H-naphtho[1–b]oxireno[2–c]furan | 2243 | 33.081 | 0.40 ± 0.45 | 234 | C15H22O2 | Ar |
30 | 10-epi-γ-Eudesmol | 2324 | 36.506 | 2.21 ± 0.19 | 222 | C15H26O | S |
31 | Sandaracopimarinal | 2413 | 40.221 | 2.19 ± 0.57 | 286 | C20H30O | Ar |
32 | γ-Gurjunene | 2470 | 42.629 | 0.52 ± 0.10 | 204 | C15H24 | S |
33 | Butyl hexadecanoate | 2542 | 45.628 | 0.75 ± 0.46 | 312 | C20H40O2 | Other |
34 | 2-(2-Phenylethyl)chromone | 2613 | 48.64 | 26.19 ± 1.0 | 250 | C17H14O2 | Other |
35 | Butyl octadecanoate | 2635 | 49.538 | 1.13 ± 0.69 | 340 | C22H44O2 | Other |
36 | 1-Iodo-octacosane | 2640 | 49.743 | 0.05 ± 0.03 | 520 | C28H61I | Ak |
37 | 1-Iodo-eicosane | 2680 | 51.447 | 0.09 ± 0.06 | 408 | C20H41I | Ak |
38 | Bis(2-ethylhexyl) 1,2-benzenedicarboxylate | 2700 | 52.277 | 0.34 ± 0.38 | 390 | C24H38O4 | Other |
39 | Squalene | 2806 | 56.472 | 1.19 ± 1.30 | 410 | C30H50 | Tri |
40 | Nonacosane | 2900 | 60.669 | 0.08 ± 0.05 | 408 | C29H60 | Ak |
Compound | Retention Time (min) | LRI | Detected m/z | Chemical Formula | Agarwoods a |
---|---|---|---|---|---|
Butyl hexadecanoate | 45.628 | 2542 | 312 | C17H40O2 | K, V, L, C |
Butyl octadecanoate | 49.538 | 2635 | 340 | C22H44O2 | K, V, L, C |
Bis(2-ethylhexyl) 1,2-benzenedicarboxylate | 52.277 | 2700 | 390 | C24H38O4 | K, V, L, C |
Squalene | 56.472 | 2800 | 410 | C30H50 | K, V, L, C |
Benzaldehyde | 5.296 | 1581 | 106 | C7H6O | K |
4-methoxy-Benzaldehyde | 11.617 | 1731 | 136 | C8H8O2 | K |
1,8-Nonadien-3-yne, 2,8-dimethyl-7-methylene- | 11.717 | 1734 | 160 | C12H16 | K |
Cubenene | 15.275 | 1818 | 204 | C15H24 | K |
α-Longipinene | 15.471 | 1823 | 204 | C15H24 | K |
Tricyclo[5.2.2.0(1,6)]undecan-3-ol, 2-methylene-6,8,8-trimethyl- | 17.017 | 1860 | 220 | C15H24O | K |
Naphthalene | 18.086 | 1885 | 202 | C15H22 | K |
δ-Guaiene | 18.196 | 1888 | 204 | C15H24 | K |
Nootkatene | 18.502 | 1895 | 202 | C15H22 | K |
4a,5-Dimethyl-3-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalen-1-ol | 19.863 | 1928 | 220 | C15H24O | K |
cis-α-Santalol | 21.312 | 1962 | 220 | C15H24O | K |
β-Vetivenene | 21.593 | 1969 | 202 | C15H22 | K |
γ-Eudesmol | 22.799 | 1998 | 222 | C15H26O | K |
10s,11s-Himachala-3(12),4-diene | 23.610 | 2017 | 204 | C15H24 | K |
β-Guaiene | 24.209 | 2031 | 204 | C15H24 | K |
Cubenol | 24.606 | 2041 | 222 | C15H26O | K |
α-Tetralone | 26.624 | 2089 | 218 | C15H22O | K |
α-Kessyl acetate | 27.497 | 2110 | 280 | C17H28O3 | K |
(1R,7S,E)-7-Isopropyl-4,10-dimethylenecyclodec-5-enol | 27.941 | 2120 | 220 | C15H24O | K |
Ledol | 29.445 | 2156 | 222 | C15H26O | K |
Longiverbenone | 32.017 | 2217 | 218 | C15H22O | K |
2aS,3aR,5aS,9bR)-2a,5a,9-Trimethyl-2a,4,5,5a,6,7,8,9b-octahydro-2H-naphtho[1–b]oxireno[2–c]furan | 33.081 | 2243 | 234 | C15H22O2 | K |
10-epi-γ-Eudesmol | 36.506 | 2324 | 222 | C15H26O | K |
Sandaracopimarinal | 40.221 | 2413 | 286 | C20H30O | K |
γ-Gurjunene | 42.629 | 2470 | 204 | C15H24 | K |
2-(2-Phenylethyl)chromone | 48.640 | 2613 | 250 | C17H14O2 | K |
1-iodo-Triacontane | 49.743 | 2640 | 548 | C22H44O2 | K |
Eicosane, 1-iodo- | 51.447 | 2680 | 408 | C20H41I | K |
2-Isopropenyl-4a,8-dimethyl-1,2,3,4,4a,5,6,7-octahydronaphthalene | 17.354 | 1868 | 204 | C15H24 | L |
Dehydrodeoxybaimuxinol | 19.844 | 1927 | 220 | C15H24O | L |
Rosifoliol | 22.267 | 1985 | 222 | C15H26O | L |
1H-Cyclopropa[a]naphthalene, 1a,2,3,3a,4,5,6,7b-octahydro-1,1,3a,7-tetramethyl-, [1aR-(1aα,3aα,7bα)]- | 23.598 | 2017 | 204 | C15H24 | L |
Guaiol acetate | 23.692 | 2019 | 222 | C15H26O | L |
Isovalencenol | 24.782 | 2045 | 218 | C15H22O | L |
4-isopropenyl-1-methoxymethoxymethyl-cyclohexene | 25.046 | 2051 | 196 | C12H20O2 | L |
trans-α-Bisabolene | 25.447 | 2061 | 204 | C15H24 | L |
β-Patchoulene | 25.667 | 2066 | 204 | C15H24 | L |
Androstan-17-one, 3-ethyl-3-hydroxy-, (5α)- | 25.938 | 2072 | 318 | C21H34O2 | L |
Acetate, (2,4a,5,8a-tetramethyl-1,2,3,4,4a,7,8,8a-octahydro-1-naphthalenyl) ester | 26.337 | 2082 | 250 | C16H26O3 | L |
Dehydrofukinone | 27.707 | 2115 | 218 | C15H22O | L |
Neoisolongifolene, 8,9-epoxy- | 33.235 | 2246 | 218 | C15H22O | L |
6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydro-naphthalen-2-ol | 34.576 | 2278 | 220 | C15H24O | L |
(S)-cis-Verbenol | 36.717 | 2329 | 152 | C10H16O | L |
Card-20(22)-enolide, 3,5,14,19-tetrahydroxy-, (3β,5β)- | 38.348 | 2368 | 406 | C23H34O6 | L |
Espatulenol | 39.248 | 2390 | 220 | C15H24O | L |
5-Isopropenyl-2-methylcyclopent-1-enecarboxaldehyde | 39.504 | 2396 | 150 | C10H14O | L |
Levoverbenone | 39.650 | 2399 | 150 | C10H14O | L |
Cyclobutene, 4,4-dimethyl-1-(2,7-octadienyl)- | 39.908 | 2405 | 190 | C14H22 | L |
Alloaromadendrene oxide-(1) | 40.407 | 2417 | 220 | C15H24O | L |
3-Oxatricyclo[20.8.0.0(7,16)]triaconta-1(22),7(16),9,13,23,29-hexaene | 41.858 | 2452 | 406 | C29H42O | L |
Andrographolide | 42.100 | 2458 | 350 | C20H30O5 | L |
Docosa-2,6,10,14,18-pentaen-22-al, 2,6,10,15,18-pentamethyl-, all-trans | 48.062 | 2600 | 384 | C27H44O | L |
2,6,10-trimethyl-Tetradecane | 49.731 | 2639 | 240 | C17H36 | L |
Heptadecanal | 51.965 | 2693 | 254 | C17H34O | L |
4,5-di-epi-Aristolochene | 17.343 | 1868 | 204 | C15H24 | V |
α-Costal | 25.156 | 2054 | 218 | C15H22O | V |
6,7-Dimethyl-1,2,3,5,8,8a-hexahydronaphthalene | 25.964 | 2073 | 162 | C12H18 | V |
Dihydrocolumellarin | 39.222 | 2389 | 234 | C15H22O2 | V |
Columellarin | 40.694 | 2424 | 232 | C15H20O2 | V |
Isovelleral | 44.081 | 2505 | 232 | C15H20O2 | V |
Octadecanoic acid | 45.149 | 2530 | 284 | C18H36O2 | V |
1-Hexacosene | 45.755 | 2545 | 364 | C26H52 | V |
Pentadecanal- | 46.405 | 2560 | 226 | C15H30O | V |
n-Pentadecanol | 47.783 | 2593 | 228 | C15H32O | V |
2-Nonadecanone | 48.071 | 2600 | 282 | C19H38O | V |
Dotriacontane, 1-iodo- | 52.442 | 2704 | 576 | C32H65I | V |
Tetracosanal | 53.568 | 2731 | 352 | C24H48O | V |
α-Ylangene | 14.047 | 1789 | 204 | C15H24 | C |
5,5-dimethyl-4-(3-oxobutyl)-Spiro[2.5]octane | 15.489 | 1824 | 208 | C14H24O | C |
Diepicedrene-1-oxide | 17.013 | 1860 | 220 | C15H24O | C |
7-epi-α-Cadinene | 17.220 | 1865 | 204 | C15H24 | C |
α-Guaiene | 17.385 | 1869 | 204 | C15H24 | C |
Alloaromadendrene oxide-(2) | 19.874 | 1928 | 220 | C15H24O | C |
Diethyl phthalate | 21.888 | 1976 | 222 | C12H14O4 | C |
Hinesol | 23.982 | 2026 | 222 | C15H26O | C |
cis-Eudesm-6-en-11-ol | 24.456 | 2037 | 222 | C15H26O | C |
Longipinane, (E)- | 25.371 | 2059 | 206 | C15H26 | C |
Pentadecanoic acid | 35.990 | 2312 | 242 | C15H30O2 | C |
Palmitoleic acid | 39.168 | 2388 | 254 | C16H30O2 | C |
Hexadecane | 45.448 | 2537 | 226 | C16H34 | C |
trans-Geranylgeraniol | 48.077 | 2600 | 290 | C20H34O | C |
Tetradecanal | 48.432 | 2608 | 212 | C14H28O | C |
Hexadecanal | 50.261 | 2652 | 240 | C16H32O | C |
Octacosane | 51.439 | 2680 | 394 | C28H58 | C |
Oxirane, hexadecyl- | 51.970 | 2693 | 268 | C18H36O | C |
Heptacosane | 53.037 | 2718 | 380 | C27H56 | C |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, W.-Y.; Hsiang, C.-Y.; Ho, S.-C.; Ho, T.-Y.; Lee, K.-T. Chemical Profiles of Incense Smoke Ingredients from Agarwood by Headspace Gas Chromatography-Tandem Mass Spectrometry. Molecules 2018, 23, 2969. https://doi.org/10.3390/molecules23112969
Kao W-Y, Hsiang C-Y, Ho S-C, Ho T-Y, Lee K-T. Chemical Profiles of Incense Smoke Ingredients from Agarwood by Headspace Gas Chromatography-Tandem Mass Spectrometry. Molecules. 2018; 23(11):2969. https://doi.org/10.3390/molecules23112969
Chicago/Turabian StyleKao, Wen-Yi, Chien-Yun Hsiang, Shih-Ching Ho, Tin-Yun Ho, and Kung-Ta Lee. 2018. "Chemical Profiles of Incense Smoke Ingredients from Agarwood by Headspace Gas Chromatography-Tandem Mass Spectrometry" Molecules 23, no. 11: 2969. https://doi.org/10.3390/molecules23112969
APA StyleKao, W. -Y., Hsiang, C. -Y., Ho, S. -C., Ho, T. -Y., & Lee, K. -T. (2018). Chemical Profiles of Incense Smoke Ingredients from Agarwood by Headspace Gas Chromatography-Tandem Mass Spectrometry. Molecules, 23(11), 2969. https://doi.org/10.3390/molecules23112969