Antitumor Effect of n-Butylidenephthalide Encapsulated on B16/F10 Melanoma Cells In Vitro with a Polycationic Liposome Containing PEI and Polyethylene Glycol Complex
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity of BP/LPPC in Tumor and Control Cells
2.2. BP/LPPC-Induced Cell Cycle Arrest (G0/G1) in B16/F10 Melanoma Cells
2.3. Morphological Evaluation and Mechanism of BP/LPPC-Induced Apoptosis
2.4. Combination of BP/LPPC and 5-FU had a Synergistic Effect
2.5. Protection Effect of BP Encapsulated with LPPC
2.6. LPPC with Positive Charge Triggered Cell Uptake of BP through the Endocytosis Pathway
3. Materials and Methods
3.1. Preparation of BP/LPPC
3.2. Cell Culture and Reagent
3.3. BP/LPPC-Induced Cytotoxicity
3.4. Analysis of Cell Cycle Arrest Induced by BP/LPPC
3.5. TUNEL Assay
3.6. Immunocytochemistry
3.7. Western Blotting
3.8. Inhibition Caspase-3 Activity Assay
3.9. Synergistic Effects of BP/LPPC Combined with 5-FU
3.10. Protection of BP Activity through LPPC Encapsulation
3.11. Cell Uptake of BP/LPPC in Qualitative and Quantitative Analysis
3.12. Statistics
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Tsai, N.M.; Chen, Y.L.; Lee, C.C.; Lin, P.C.; Cheng, Y.L.; Chang, W.L.; Lin, S.Z.; Harn, H.J. The natural compound n-butylidenephthalide derived from Angelica sinensis inhibits malignant brain tumor growth in vitro and in vivo. J. Neurochem. 2006, 99, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Lai, W.L.; Harn, H.J.; Hung, P.H.; Hsieh, M.C.; Chang, K.F.; Huang, X.F.; Liao, K.W.; Lee, M.S.; Tsai, N.M. The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors. Evid.-Based Compliment. Altern. 2013, 2013, 394636. [Google Scholar]
- Hsueh, K.W.; Chiou, T.W.; Chiang, S.F.; Yamashita, T.; Abe, K.; Borlongan, C.V.; Sanberg, P.R.; Huang, A.Y.; Lin, S.Z.; Harn, H.J. Autophagic down-regulation in motor neurons remarkably prolongs the survival of ALS mice. Neuropharmacology 2016, 108, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Zhou, Y.; Li, X.; Gao, X.; Tian, J.; Qin, X.; Du, G. Neuroprotective and Cytotoxic Phthalides from Angelicae Sinensis Radix. Molecules 2016, 21, 549. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.M.; Su, H.L.; Li, C.; Lin, S.Z.; Yen, S.Y.; Huang, M.H.; Ho, L.I.; Chiou, T.W.; Harn, H.J. The Role of Butylidenephthalide in Targeting the Microenvironment Which Contributes to Liver Fibrosis Amelioration. Front. Pharmacol. 2016, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Yen, S.Y.; Chen, S.R.; Hsieh, J.; Li, Y.S.; Chuang, S.E.; Chuang, H.M.; Huang, M.H.; Lin, S.Z.; Harn, H.J.; Chiou, T.W. Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion. Oncogene 2016, 35, 2156–2165. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.W.; Lin, C.C.; Yu, Y.L.; Lin, C.Y.; Lin, P.C.; Wu, M.T.; Chen, C.J.; Chang, W.; Lin, S.Z.; Chen, Y.L.; et al. n-Butylidenephthalide induced apoptosis in the A549 human lung adenocarcinoma cell line by coupled down-regulation of AP-2α and telomerase activity. Acta Pharmacol. Sinca 2009, 30, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.Y.; Chiu, S.C.; Harn, H.J.; Zhai, W.J.; Lin, S.Z.; Yang, H.H. Proteomic-based identification of multiple pathways underlying n-butylidenephthalide-induced apoptosis in LNCaP human prostate cancer cells. Food Chem. Toxicol. 2013, 59, 281–288. [Google Scholar] [CrossRef]
- Lin, P.C.; Chen, Y.L.; Chiu, S.C.; Yu, Y.L.; Chen, S.P.; Chien, M.H.; Chen, K.Y.; Chang, W.L.; Lin, S.Z.; Chiou, T.W.; et al. Orphan nuclear receptor, Nurr-77 was a possible target gene of butylidenephthalide chemotherapy on glioblastoma multiform brain tumor. J. Neurochem. 2008, 106, 1017–1026. [Google Scholar] [CrossRef]
- Chiu, S.C.; Chen, S.P.; Huang, S.Y.; Wang, M.J.; Lin, S.Z.; Harn, H.J.; Pang, C.Y. Induction of apoptosis coupled to endoplasmic reticulum stress in human prostate cancer cells by n-butylidenephthalide. PLoS ONE 2012, 7, e33742. [Google Scholar] [CrossRef]
- Chen, Y.L.; Jian, M.H.; Lin, C.C.; Kang, J.C.; Chen, S.P.; Lin, P.C.; Hung, P.J.; Chen, J.R.; Chang, W.L.; Lin, S.Z.; et al. The induction of orphan nuclear receptor Nur77 expression by n-butylenephthalide as pharmaceuticals on hepatocellular carcinoma cell therapy. Mol. Pharmacol. 2008, 74, 1046–1058. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.F.; Lin, P.C.; Ho, L.I.; Liu, P.Y.; Wu, W.C.; Chiang, I.P.; Chang, H.W.; Lin, S.Z.; Harn, Y.C.; Harn, H.J.; et al. Overexpression of the orphan receptor Nur77 and its translocation induced by PCH4 may inhibit malignant glioma cell growth and induce cell apoptosis. J. Surg. Oncol. 2011, 103, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Chang, K.F.; Huang, X.F.; Hung, C.L.; Chen, S.C.; Chao, W.R.; Liao, K.W.; Tsai, N.M. Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme. Int. J. Nanomed. 2015, 10, 6009–6020. [Google Scholar]
- Liu, Y.K.; Lin, Y.L.; Chen, C.H.; Lin, C.M.; Ma, K.L.; Chou, F.H.; Tsai, J.S.; Lin, H.Y.; Chen, F.R.; Cheng, T.L.; et al. A unique and potent protein binding nature of liposome containing polyethylenimine and polyethylene glycol: A nondisplaceable property. Biotechnol. Bioeng. 2011, 108, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Liu, Y.K.; Tsai, N.M.; Hsieh, J.H.; Chen, C.H.; Lin, C.M.; Liao, K.W. A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomed.-Nanotechnol. 2012, 8, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.L.; Chen, C.H.; Wu, H.Y.; Tsai, N.M.; Jian, T.Y.; Chang, Y.C.; Lin, C.H.; Wu, C.H.; Hsu, F.T.; Leung, T.K.; et al. Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J. Nanobiotechnol. 2016, 14, 11. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Lin, Y.L.; Liu, Y.K.; He, P.J.; Lin, C.M.; Chiu, Y.H.; Wu, C.J.; Cheng, T.L.; Liu, S.J.; Liao, K.W. Liposome-based polymer complex as a novel adjuvant: Enhancement of specific antibody production and isotype switch. Int. J. Nanomed. 2012, 7, 607–621. [Google Scholar]
- Wang, T.; Bai, J.; Jiang, X.; Nienhaus, G.U. Cellular uptake of nanoparticles by membrane penetration: A study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 2012, 6, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Hillaireau, H.; Couvreur, P. Nanocarriers entry into the cell: Relevance to drug delivery. Cell. Mol. Life Sci. 2009, 66, 2873–2896. [Google Scholar] [CrossRef]
- Hou, L.; Liu, Q.; Shen, L.; Liu, Y.; Zhang, X.; Chen, F.; Huang, L. Nano-delivery of fraxinellone remodels tumor microenvironment and facilitates therapeutic vaccination in desmoplastic melanoma. Theranostics 2018, 8, 3781–3796. [Google Scholar] [CrossRef]
- Prado Almeida, E.D.; Vieira Dipieri, L.; Rosseti, F.C.; Maldonado Marchetti, J.; Lopes Badra Bentley, M.V.; de Souza Nunes, R.; Sarmento, V.H.V.; Giroldo Valerio, M.E.; Rodrigues, J.J.J.; Martins Montalvao, M.; et al. Skin permeation, biocompatibility and antitumor effect of chloroaluminum phthalocyanine associated to oleic acid in lipid nanoparticles. Photodiagn. Photodyn. 2018, 24, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Miao, L.; Goodwin, T.J.; Li, J.; Liu, Q.; Huang, L. Quercetin Remodels the Tumor Microenvironment to Improve the Permeation, Retention, and Antitumor Effects of Nanoparticles. ACS Nano 2017, 11, 4916–4925. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Cell Line | Tumor Type | BP (a) | BP/LPPC (b) | BP/Lipo | 5-FU | Fold (a/b) |
---|---|---|---|---|---|---|
Tumor Cell | ||||||
B16/F10 | mo melanoma | 71.47 ± 1.97 | 12.24 ± 1.22 c,d,e | 108.89 ± 2.34 | 2.66 ± 1.46 | 5.84 |
K-balb | mo fibroblast sarcoma | 56.49 ± 0.51 | 15.28 ± 1.94 c,d,e | 83.78 ± 2.96 | ND | 3.70 |
Normal Cell | ||||||
Balb/3T3 | mo normal fibroblast | 168.8 ± 0.9 | 50.4 ± 3.6 | ND | ND | 3.35 |
SVEC | mo vascular endothelial cell | 98.77 ± 0.28 | 23.36 ± 0.27 | ND | 9.20 ± 4.66 | 4.23 |
MDCK | canine kidney epithelial cell | 110.52 ± 1.73 | 27.05 ± 0.05 | ND | >10 | 4.09 |
BP (80 µg/mL) | BP/LPPC (30 µg/mL) | ||||||
% G0/G1 | % S | % G2/M | % G0/G1 | % S | % G2/M | ||
0 h | 51.77 ± 1.79 | 27.75 ± 2.24 | 20.48 ± 0.51 | 0 h | 50.77 ± 0.62 | 29.03 ± 0.41 | 20.20 ± 0.22 |
6 h | 60.38 ± 0.32 * | 17.84 ± 0.19 # | 21.78 ± 0.38 * | 1 h | 64.39 ± 0.63 * | 19.76 ± 0.41 # | 15.85 ± 0.23 # |
12 h | 62.31 ± 0.59 * | 16.15 ± 0.72 # | 21.54 ± 0.17 * | 3 h | 65.66 ± 0.77 * | 18.32 ± 0.37 # | 16.02 ± 1.12 # |
24 h | 65.25 ± 1.72 * | 17.71 ± 1.69 # | 17.04 ± 0.30 # | 6 h | 67.53 ± 0.30 * | 19.37 ± 0.10 # | 13.10 ± 0.20 # |
48 h | 74.80 ± 0.97 * | 12.49 ± 0.93 # | 12.71 ± 0.19 # | 12 h | 63.27 ± 1.26 * | 23.26 ± 2.14 # | 13.48 ± 0.88 # |
BP (24 h) | BP/LPPC (6 h) | ||||||
% G0/G1 | % S | % G2/M | % G0/G1 | % S | % G2/M | ||
0 µg/mL | 52.05 ± 2.44 | 27.25 ± 2.93 | 20.70 ± 0.49 | 0 µg/mL | 52.49 ± 1.82 | 26.96 ± 2.52 | 20.55 ± 0.70 |
40 µg/mL | 64.93 ± 0.37 * | 17.47 ± 0.30 # | 17.60 ± 0.66 # | 15 µg/mL | 55.23 ± 0.93 * | 21.85 ± 0.65 # | 22.92 ± 0.39 * |
80 µg/mL | 66.15 ± 0.52 * | 16.94 ± 0.62 # | 16.91 ± 0.14 # | 30 µg/mL | 66.15 ± 0.13 * | 21.03 ± 0.37 # | 12.82 ± 0.25 # |
120 µg/mL | 69.81 ± 1.10 * | 18.85 ± 2.16 # | 11.34 ± 1.38 # | 45 µg/mL | 71.53 ± 1.51 * | 18.11 ± 1.28 # | 10.36 ± 0.23 # |
15 min | 30 min | 45 min | 60 min | 90 min | |
---|---|---|---|---|---|
No inhibitor | 9.70 ± 0.78 | 12.79 ± 0.35 | 18.19 ± 3.18 | 20.70 ± 0.91 | 22.17 ± 1.57 |
AHH (13.31 µg/mL) | 2.53 ± 0.46 * | 3.77 ± 0.72 * | 5.50 ± 0.14 * | 8.38 ± 0.25 * | 8.74 ± 0.14 * |
FIII (1 µg/mL) | 5.69 ± 1.28 * | 6.08 ± 0.46 * | 9.71 ± 0.59 * | 11.31 ± 0.15 * | 12.77 ± 0.06 * |
CPZ (10 µg/mL) | 2.42 ± 0.25 * | 4.66 ± 0.70 * | 11.32 ± 0.10 * | 11.99 ± 0.11 * | 12.42 ± 0.52 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.-W.; Chang, K.-F.; Huang, X.-F.; Lin, Y.-L.; Weng, J.-C.; Liao, K.-W.; Tsai, N.-M. Antitumor Effect of n-Butylidenephthalide Encapsulated on B16/F10 Melanoma Cells In Vitro with a Polycationic Liposome Containing PEI and Polyethylene Glycol Complex. Molecules 2018, 23, 3224. https://doi.org/10.3390/molecules23123224
Gao H-W, Chang K-F, Huang X-F, Lin Y-L, Weng J-C, Liao K-W, Tsai N-M. Antitumor Effect of n-Butylidenephthalide Encapsulated on B16/F10 Melanoma Cells In Vitro with a Polycationic Liposome Containing PEI and Polyethylene Glycol Complex. Molecules. 2018; 23(12):3224. https://doi.org/10.3390/molecules23123224
Chicago/Turabian StyleGao, Hong-Wei, Kai-Fu Chang, Xiao-Fan Huang, Yu-Ling Lin, Jun-Cheng Weng, Kuang-Wen Liao, and Nu-Man Tsai. 2018. "Antitumor Effect of n-Butylidenephthalide Encapsulated on B16/F10 Melanoma Cells In Vitro with a Polycationic Liposome Containing PEI and Polyethylene Glycol Complex" Molecules 23, no. 12: 3224. https://doi.org/10.3390/molecules23123224
APA StyleGao, H. -W., Chang, K. -F., Huang, X. -F., Lin, Y. -L., Weng, J. -C., Liao, K. -W., & Tsai, N. -M. (2018). Antitumor Effect of n-Butylidenephthalide Encapsulated on B16/F10 Melanoma Cells In Vitro with a Polycationic Liposome Containing PEI and Polyethylene Glycol Complex. Molecules, 23(12), 3224. https://doi.org/10.3390/molecules23123224