Fermentability of a Novel Galacto-Oligosaccharide Mixture by Lactobacillus spp. and Bifidobacterium spp.
Abstract
:1. Introduction
2. Results
2.1. Preparation of Galacto-Oligosaccharide Mixture
2.2. Effects of Various Galacto-oligosaccharides as the Main Carbohydrate Substrates on the Single-Strain Fermentations
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Strains and Culture Conditions
4.3. Prebiotic Oligosaccharide Mixtures
4.4. Enzyme Activity Assay and Protein Measurement
4.5. Sugar Analysis
4.6. Single Strain Cultivations and Automated Turbidimetry
4.7. Fermentation Activity Score
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome. Med. 2016, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Becker, N.; Kunath, J.; Loh, G.; Blaut, M. Human intestinal microbiota: Characterization of a simplified and stable gnotobiotic rat model. Gut. Microbes. 2011, 2, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, T.C.; Guarner, F.; Madsen, K.; Cabana, M.D.; Gibson, G.R.; Hentges, E.; Sanders, M.E. Human gut microbiota and its relationship to health and disease. Nutr. Rev. 2011, 69, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [PubMed]
- Gibson, G.R.; Probert, H.M.; Van Loo, J.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Roberfroid, M.; Gibson, G.R.; Hoyles, L.; McCartney, A.L.; Rastall, R.; Rowland, I.; Wolvers, D.; Watzl, B.; Szajewska, H.; Stahl, B.; et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010, 104 (Suppl. 2), S1–S63. [Google Scholar] [CrossRef] [PubMed]
- Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Patterson, E.; Cryan, J.F.; Fitzgerald, G.F.; Ross, R.P.; Dinan, T.G.; Stanton, C. Gut microbiota, the pharmabiotics they produce and host health. Proc. Nutr. Soc. 2014, 73, 477–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbeke, K. Prebiotics and synbiotics: How do they affect health? In Clinical Insights: Probiotics, Prebiotics and Gut Health; Floch, M.H., Kim, A., Eds.; Future Medicine Ltd.: London, UK, 2014; pp. 47–61. [Google Scholar]
- Goh, Y.J.; Klaenhammer, T.R. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes. Annu. Rev. Food Sci. Technol. 2015, 6, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Whelan, K. Prebiotic inulin-type fructans and galacto-oligosaccharides: Definition, specificity, function, and application in gastrointestinal disorders. J. Gastroenterol. Hepatol. 2017, 32 (Suppl. 1), 64–68. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, V.; Tomar, S.K.; Singh, R.R.; Singh, A.K.; Ali, B. Galactooligosaccharides: Novel components of designer foods. J. Food Sci. 2011, 76, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Vera, C.; Guerrero, C.; Conejeros, R.; Illanes, A. Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzyme Microb. Technol. 2012, 50, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Rastall, R.A. Gluco and galacto-oligosaccharides in food: Update on health effects and relevance in healthy nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Rastall, R.A.; Maitin, V. Prebiotics and synbiotics: Towards the next generation. Curr. Opin. Biotechnol. 2002, 13, 490–496. [Google Scholar] [CrossRef]
- Tzortzis, G.; Goulas, A.K.; Gibson, G.R. Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl. Microbiol. Biotechnol. 2005, 68, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Depeint, F.; Tzortzis, G.; Vulevic, J.; I’anson, K.; Gibson, G.R. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: A randomized, double-blind, crossover, placebo-controlled intervention study. Am. J. Clin. Nutr. 2008, 87, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Youn, S.Y.; Park, M.S.; Kim, H.G.; Baek, N.I.; Li, Z.; Ji, G.E. Synthesis of β-galactooligosaccharide using bifidobacterial β-galactosidase purified from recombinant Escherichia coli. J. Microbiol. Biotechnol. 2017, 27, 1392–1400. [Google Scholar] [PubMed]
- Pérez-López, E.; Cela, D.; Costabile, A.; Mateos-Aparicio, I.; Rupérez, P. In vitro fermentability and prebiotic potential of soyabean Okara by human faecal microbiota. Br. J. Nutr. 2016, 116, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Splechtna, B.; Nguyen, T.-H.; Steinböck, M.; Kulbe, K.D.; Lorenz, W.; Haltrich, D. Production of prebiotic galacto-oligosaccharides from lactose using β-galactosidases from Lactobacillus reuteri. J. Agric. Food Chem. 2006, 54, 4999–5006. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, S.S.; Kuipers, B.J.H.; Dijkhuizen, L.; Kamerling, J.P. Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products. Carbohydr. Res. 2016, 425, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, G.T.; Steed, H.; Macfarlane, S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 2008, 104, 305–344. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, H.; Hutkins, R.W. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 2000, 66, 2682–2684. [Google Scholar] [CrossRef] [PubMed]
- Huebner, J.; Wehling, R.L.; Hutkins, R.W. Functional activity of commercial prebiotics. Int. Dairy J. 2007, 17, 770–775. [Google Scholar] [CrossRef]
- Andersen, J.M.; Barrangou, R.; Abou Hachem, M.; Lahtinen, S.J.; Goh, Y.J.; Svensson, B.; Klaenhammer, T.R. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genom. 2013, 14, 312. [Google Scholar] [CrossRef] [PubMed]
- Sims, I.M.; Ryan, J.L.; Kim, S.H. In vitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp. Anaerobe 2014, 25, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Palframan, R.; Gibson, G.R.; Rastall, R.A. Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Lett. Appl. Microbiol. 2003, 37, 281–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vulevic, J.; Rastall, R.A.; Gibson, G.R. Developing a quantitative approach for determining the in vitro prebiotic potential of dietary oligosaccharides. FEMS Microbiol. Lett. 2004, 236, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Rurangwa, E.; Laranja, J.L.; Van Houdt, R.; Delaedt, Y.; Geraylou, Z.; Van de Wiele, T.; Van Loo, J.; Van Craeyveld, V.; Courtin, C.M.; Delcour, J.A.; et al. Selected nondigestible carbohydrates and prebiotics support the growth of probiotic fish bacteria mono-cultures in vitro. J. Appl. Microbiol. 2009, 106, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Cardelle-Cobas, A.; Olano, A.; Corzo, N.; Villamiel, M.; Collins, M.; Kolida, S.; Rastall, R.A. In vitro fermentation of lactulose-derived oligosaccharides by mixed fecal microbiota. J. Agric. Food Chem. 2012, 60, 2024–2032. [Google Scholar] [CrossRef] [PubMed]
- Maathuis, A.J.H.; van den Heuvel, E.G.; Schoterman, M.H.C.; Venema, K. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J. Nutr. 2012, 142, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.L.; Gibson, G.R.; Rastall, R.A. Influence of disaccharide structure on prebiotic selectivity in vitro. J. Agric. Food Chem. 2005, 53, 5192–5199. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.L.; Côté, G.L.; Gibson, G.R.; Rastall, R.A. Influence of glycosidic linkages and molecular weight on the fermentation of maltose-based oligosaccharides by human gut bacteria. J. Agric. Food Chem. 2006, 54, 9779–9784. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; O′Connell Motherway, M.; Schoterman, M.H.; van Neerven, R.J.; Nauta, A.; van Sinderen, D. Selective carbohydrate utilization by lactobacilli and bifidobacteria. J. Appl. Microbiol. 2013, 114, 1132–1146. [Google Scholar] [CrossRef] [PubMed]
- Kondepudi, K.K.; Ambalam, P.; Nilsson, I.; Wadström, T.; Ljungh, A. Prebiotic-non-digestible oligosaccharides preference of probiotic bifidobacteria and antimicrobial activity against Clostridium difficile. Anaerobe 2012, 18, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Bouhnik, Y.; Raskine, L.; Simoneau, G.; Vicaut, E.; Neut, C.; Flourié, B.; Brouns, F.; Bornet, F.R. The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am. J. Clin. Nutr. 2004, 80, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Cardelle-Cobas, A.; Corzo, N.; Olano, A.; Peláez, C.; Requena, T.; Ávila, M. Galactooligosaccharides derived from lactose and lactulose: Influence of structure on Lactobacillus, Streptococcus and Bifidobacterium growth. Int. J. Food Microbiol. 2011, 149, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Thongaram, T.; Hoeflinger, J.L.; Chow, J.; Miller, M.J. Prebiotic galactooligosaccharide metabolism by probiotic lactobacilli and bifidobacteria. J. Agric. Food Chem. 2017, 65, 4184–4192. [Google Scholar] [CrossRef] [PubMed]
- Sela, D.A.; Mills, D.A. Nursing our microbiota: Molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 2010, 18, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, W.H.; Schillinger, U. Introduction to pre- and probiotics. Food Res. Int. 2002, 35, 109–116. [Google Scholar] [CrossRef]
- de Vrese, M.; Schrezenmeir, J. Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biotechnol. 2008, 111, 1–66. [Google Scholar] [PubMed]
- Felis, G.E.; Dellaglio, F. Taxonomy of lactobacilli and bifidobacteria. Curr. Issues Intest. Microbiol. 2007, 8, 44–61. [Google Scholar] [PubMed]
- Rabiu, B.A.; Jay, A.J.; Gibson, G.R.; Rastall, R.A. Synthesis and fermentation properties of novel galacto-oligosaccharides by β-galactosidases from Bifidobacterium species. Appl. Environ. Microbiol. 2001, 67, 2526–2530. [Google Scholar] [CrossRef] [PubMed]
- Splechtna, B.; Petzelbauer, I.; Baminger, U.; Haltrich, D.; Kulbe, K.D.; Nidetzky, B. Production of a lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enzyme Microb. Technol. 2001, 29, 434–440. [Google Scholar] [CrossRef]
- Maischberger, T.; Nguyen, T.-H.; Sukyai, P.; Kittl, R.; Riva, S.; Ludwig, R.; Haltrich, D. Production of lactose-free galacto-oligosaccharide mixtures: Comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid. Carbohydr. Res. 2008, 343, 2140–2147. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-H.; Splechtna, B.; Steinböck, M.; Kneifel, W.; Lettner, H.P.; Kulbe, K.D.; Haltrich, D. Purification and characterization of two novel β-galactosidases from Lactobacillus reuteri. J. Agric. Food Chem. 2006, 54, 4989–4998. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitration of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Composition (% w/w) | |
---|---|
Monosaccharides | <0.2 |
Lactose | <0.1 |
Disaccharides | 33.5 |
Trisaccharides | 60.5 |
Tetrasaccharides | 4.8 |
Higher saccharides | <1.0 |
Strain | Carbohydrate Source b | ||||
---|---|---|---|---|---|
V-GOS | 4′GOS-P | Lb-GOS | Glucose | Blank c | |
L. reuteri Lb46 | 1.26 ± 0.03 | 1.25 ± 0.01 | 1.38 ± 0.01 | 1.28 ± 0.04 | 0.25 ± 0.00 |
L. reuteri Lb21 | 1.19 ± 0.02 | 1.19 ± 0.02 | 1.31 ± 0.01 | 1.30 ± 0.04 | 0.34 ± 0.02 |
L. acidophilus Lb19 | 1.35 ± 0.04 | 1.19 ± 0.02 | 1.47 ± 0.01 | 1.43 ± 0.03 | 0.40 ± 0.04 |
L. acidophilus Lb71 | 1.41 ± 0.03 | 1.36 ± 0.06 | 1.54 ± 0.01 | 1.47 ± 0.03 | 0.43 ± 0.00 |
L. acidophilus Lb105 | 1.36 ± 0.04 | 1.39 ± 0.05 | 1.47 ± 0.05 | 1.44 ± 0.06 | 0.38 ± 0.00 |
L. rhamnosus Lb29 | 1.01 ± 0.01 | 0.56 ±0.03 | 0.74 ±0.01 | 1.64 ± 0.01 | 0.80 ± 0.03 |
L. paracasei subsp. paracasei Lb16 | 1.33 ± 0.01 | 0.55 ± 0.01 | 1.21 ± 0.01 | 1.55 ± 0.01 | 0.71 ± 0.10 |
L. paracasei subsp. paracasei Lb20 | 1.33 ± 0.01 | 0.55 ± 0.02 | 1.21 ± 0.01 | 1.54 ± 0.00 | 0.71 ± 0.02 |
B. animalis subsp. lactis Bif1 | 0.77 ± 0.03 | 0.34 ± 0.04 | 0.95 ± 0.03 | 1.22 ± 0.02 | 0.25 ± 0.02 |
B. animalis subsp. lactis Bif3 | 0.84 ± 0.04 | 0.35 ± 0.02 | 0.95 ± 0.03 | 1.05 ± 0.02 | 0.24 ± 0.10 |
B. longum Bif14 | 0.69 ± 0.06 | 0.28 ± 0.02 | 0.79 ± 0.03 | 0.78 ± 0.03 | 0.31 ± 0.01 |
E. faecium En61 | 0.72 ± 0.07 | 0.46 ± 0.01 | 0.88 ± 0.10 | 0.66 ± 0.01 | 0.67 ± 0.19 |
E. coli DSM 613 | 0.40 ± 0.01 | 0.69 ± 0.05 | 0.38 ± 0.01 | 0.41 ± 0.02 | 0.95 ± 0.04 |
K. oxytoca DSM 6673 | 0.35 ± 0.00 | 0.45 ± 0.06 | 0.33 ± 0.05 | 0.36 ± 0.04 | 1.01 ± 0.10 |
C. freundii DSM 30039 | 0.51 ± 0.02 | 0.73 ± 0.01 | 0.34 ± 0.04 | 0.42 ± 0.09 | 0.89 ± 0.04 |
S. epidermis DSM 20044 | 0.93 ± 0.02 | 0.75 ± 0.08 | 0.88 ± 0.04 | 0.96 ± 0.02 | 0.66 ± 0.09 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kittibunchakul, S.; Maischberger, T.; Domig, K.J.; Kneifel, W.; Nguyen, H.-M.; Haltrich, D.; Nguyen, T.-H. Fermentability of a Novel Galacto-Oligosaccharide Mixture by Lactobacillus spp. and Bifidobacterium spp. Molecules 2018, 23, 3352. https://doi.org/10.3390/molecules23123352
Kittibunchakul S, Maischberger T, Domig KJ, Kneifel W, Nguyen H-M, Haltrich D, Nguyen T-H. Fermentability of a Novel Galacto-Oligosaccharide Mixture by Lactobacillus spp. and Bifidobacterium spp. Molecules. 2018; 23(12):3352. https://doi.org/10.3390/molecules23123352
Chicago/Turabian StyleKittibunchakul, Suwapat, Thomas Maischberger, Konrad J. Domig, Wolfgang Kneifel, Hoang-Minh Nguyen, Dietmar Haltrich, and Thu-Ha Nguyen. 2018. "Fermentability of a Novel Galacto-Oligosaccharide Mixture by Lactobacillus spp. and Bifidobacterium spp." Molecules 23, no. 12: 3352. https://doi.org/10.3390/molecules23123352
APA StyleKittibunchakul, S., Maischberger, T., Domig, K. J., Kneifel, W., Nguyen, H. -M., Haltrich, D., & Nguyen, T. -H. (2018). Fermentability of a Novel Galacto-Oligosaccharide Mixture by Lactobacillus spp. and Bifidobacterium spp. Molecules, 23(12), 3352. https://doi.org/10.3390/molecules23123352