Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Peptide-Based Bis-Acrylate and Hydrogels
2.2. Morphology Investigation and Swelling Ratios of Hydrogels
2.3. Enzymatic Biodegradation of Hydrogels
2.4. Meanchial Property and In Vitro Release
2.5. Cytotoxicity of Hydrogels and Cell Culture
2.6. Antibacterial Property of Hydrogels
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Peptide-Based Bis-Methacrylate
3.3. Preparation of Peptide-Based Bis-Acrylate/AAc Hydrogel
3.4. 1H NMR and FTIR Spectra
3.5. Morphology of Hydrogels
3.6. Swelling Ratio of Hydrogels
3.7. In Vitro Biodegradability of Hydrogels
3.8. Compressive Modulus of Hydrogels
3.9. In Vitro Drug Release from Hydrogels
3.10. Biocompatibility Evaluation
3.11. Antibacterial Assessment
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pawde, S.M.; Deshmukh, K. Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. J. Appl. Polym. Sci. 2008, 109, 3431–3437. [Google Scholar] [CrossRef]
- Calo, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: a review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Zhu., J.; Li, F.X.; Wang, X.L.; Yu, J.Y.; Wu, D.Q. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl. Mater. Inter. 2018, 10, 13304–13316. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, X.; Wu, D.; Chu, C.C. Development of a biocompatible and biodegradable hybrid hydrogel platform for sustained release of ionic drugs. J. Mater. Chem. B. 2014, 2, 6660–6668. [Google Scholar] [CrossRef]
- Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21, 3307–3329. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.Q.; Zhu, J.; Han, H.; Zhang, J.Z.; Wu, F.F.; Qin, X.H.; Yu, J.Y. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: in vitro and in vivo study. Acta Biomater. 2018, 65, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Lehr, V.T.; Lulic-Botica, M.; Lindblad, W.J.; Kazzi, N.J.; Aranda, J.V. Management of infiltration injury in neonates using DuoDerm Hydroactive Gel. Am. J. Perinatol. 2004, 21, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Liu, Y.; Ma, R.J.; Xu, Y.L.; Zhang, Y.L.; Li, B.X.; An, Y.L.; Shi, L.Q. A G-quadruplex hydrogel via multicomponent self-assembly: formation and zero-order controlled release. ACS Appl. Mater. Inter. 2017, 9, 13056–13067. [Google Scholar] [CrossRef]
- Das, D.; Ghosh, P.; Ghosh, A.; Haldar, C.; Dhara, S.; Panda, A.B.; Pal, S. Stimulus-responsive, biodegradable, biocompatible, covalently cross-linked hydrogel based on dextrin and poly(N-isopropylacrylamide) for in vitro/in vivo controlled drug release. ACS Appl. Mater. Inter. 2015, 7, 14338–14351. [Google Scholar] [CrossRef]
- Shang, J.J.; Theato, P. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation. Soft Matter. 2018, 14, 8401–8407. [Google Scholar] [CrossRef]
- Biondi, M.; Ungaro, F.; Quaglia, F.; Netti, P.A. Controlled drug delivery in tissue engineering. Adv. Drug Deliver. Rev. 2008, 60, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Olad, A.; Doustdar, F.; Gharekhani, H. Starch-based semi-IPN hydrogel nanocomposite integrated with clinoptilolite: Preparation and swelling kinetic study. Carbohyd. Polym. 2018, 200, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.F.; Li, M.J.; Wu, X.M.; Li, M.; Wu, Y. Preparation of thermoresponsive and pH-sensitivity polymer magnetic hydrogel nanospheres as anticancer drug carriers. Colloid. Surface. B. 2011, 88, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 2007, 298, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Cao, Y.; Song, X.; Zhang, Z.; Xiao, C.; He, C.; Chen, X. pH- and thermo-responsive poly(N-isopropylacrylamideco-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. J. Mater. Chem. B. 2013, 1, 5578–5587. [Google Scholar] [CrossRef]
- Gierszewska, M.; Ostrowska-Czubenko, J.; Chrzanowska, E. pH-responsive chitosan/alginate polyelectrolyte complex membranes reinforced by tripolyphosphate. Eur. Polym. J. 2018, 101, 282–290. [Google Scholar] [CrossRef]
- Negut, I.; Grumezescu, V.; Grumezescu, A.M. Treatment strategies for infected wounds. Molecules. 2018, 23, 2392–2414. [Google Scholar] [CrossRef] [PubMed]
- Patenaude, M.; Hoare, T. Injectable, degradable thermoresponsive poly(N-isopropylacrylamide) hydrogels. ACS Macro Lett. 2012, 1, 409–413. [Google Scholar] [CrossRef]
- Franssen, O.; Vos, O.P.; Hennink, W.E. Delayed release of a model protein from enzymatically-degrading dextran hydrogels. J. Control. Release. 1997, 44, 237–245. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, S.C. Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv. Drug Deliver. Rev. 2004, 56, 1621–1633. [Google Scholar] [CrossRef]
- Singh, N.K.; Lee, D.S. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J. Control. Release. 2014, 193, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhuang, X.; He, P.; Xiao, C.; He, C.; Sun, J.; Chen, X.; Jing, X. Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer. 2009, 50, 4308–4316. [Google Scholar] [CrossRef]
- Phan, V.H.G.; Thambi, T.; Duong, H.T.T.; Lee, D.S. Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Gungormus, M.; Branco, M.; Fong, H.; Schneider, J.P.; Tamerler, C.; Sarikaya, M. Self assembled bi-functional peptide hydrogels with biomineralization-directing peptides. Biomaterials. 2010, 31, 7266–7274. [Google Scholar] [CrossRef]
- Liu, Y.F.; Yang, Y.L.; Wang, C.; Zhao, X.J. Stimuli-responsive self-assembling peptides made from antibacterial peptides. Nanoscale. 2013, 5, 6413–6421. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xu, W.; Chen, J.; Yan, L.; Ding, J.; Hou, Y.; Chen, X. Positively charged polypeptide nanogel enhances mucoadhesion and penetrability of 10-hydroxycamptothecin in orthotopic bladder carcinoma. J. Control. Release. 2017, 259, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Loo, Y.; Wong, Y.C.; Cai, E.Z.; Ang, C.H.; Raju, A.; Lakshmanan, A.; Koh, A.G.; Zhou, H.J.; Lim, T.C.; Moochhala, S.M.; Hauser, C.A.E. Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials. 2014, 35, 4805–4814. [Google Scholar] [CrossRef]
- Amantana, A.; Moulton, H.M.; Cate, M.L.; Reddy, M.T.; Whitehead, T.; Hassinger, J.N.; Youngblood, D.S.; Iversen, P.L. Pharmacokinetics, biodistribution, stability and toxicity of a cell-penetrating peptide-morpholino oligomer conjugate. Bioconjugate Chem. 2007, 18, 1325–1331. [Google Scholar] [CrossRef]
- Guo, K.; Chu, C.C. Synthesis of biodegradable amino-acid-based poly(ester amide)s and poly(ether ester amide)s with pendant functional groups. J. Appl. Polym. Sci. 2010, 117, 3386–3394. [Google Scholar] [CrossRef]
- Marschutz, M.K.; Bernkop-Schnurch, A. Oral peptide drug delivery: polymer inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials. 2000, 21, 1499–1507. [Google Scholar] [CrossRef]
- Wu, D.Q.; Wu, J.; Chu, C.C. A novel family of biodegradable hybrid hydrogels from arginine-based poly(ester amide) and hyaluronic acid precursors. Soft Matter. 2013, 9, 3965–3975. [Google Scholar] [CrossRef]
- Wu, D.Q.; Wu, J.; Qin, X.H.; Chu, C.C. From macro to micro to nano: the development of a novel lysine based hydrogel platform and enzyme triggered self-assembly of macro hydrogel into nanogel. J. Mater. Chem. B. 2015, 3, 2286–2294. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, B.; Wang, J.; Zhang, S.; Lin, Q.; Gong, P.; Ma, L.; Yang, S. A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv. Funct. Mater. 2014, 24, 3933–3943. [Google Scholar] [CrossRef]
- Pang, Q.; Zheng, X.; Luo, Y.; Ma, L.; Gao, C. A photo-cleavable polyprodrug-loaded wound dressing with UV-responsive antibacterial property. J. Mater. Chem. B. 2017, 5, 8975–8982. [Google Scholar] [CrossRef]
- Yoon, D.S.; Lee, Y.; Ryu, H.A.; Jang, Y.; Lee, K.M.; Choi, Y.; Choi, W.J.; Lee, M.; Park, K.M.; Park, K.D.; Lee, J.W. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomater. 2016, 38, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Zhang, Y.K.; Yang, Q.; Li, D.P.; Zhang, G.W.; Long, S.J. Agar/PAAc-Fe3+ hydrogels with pH-sensitivity and high toughness using dual physical cross-linking. Iran. Polym. J. 2018, 27, 829–840. [Google Scholar] [CrossRef]
- Adak, A.; Das, G.; Barman, S.; Mohapatra, S.; Bhunia, D.; Jana, B.; Ghosh, S. Biodegradable neuro-compatible peptide hydrogel promotes neurite outgrowth, shows significant neuroprotection, and delivers anti-alzheimer drug. ACS Appl. Mater. Inter. 2017, 9, 5067–5076. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, Z.K.; Yang, X.F.; He, Y.H.; Lin, R. Construction and characterization of a pure protein hydrogel for drug delivery application. Int. J. Biol. Macromol. 2017, 95, 294–298. [Google Scholar] [CrossRef]
- Brandl, F.; Kastner, F.; Gschwind, R.M.; Blunk, T.; Tessmar, J.; Gopferich, A. Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics. J. Control. Release. 2010, 142, 221–228. [Google Scholar] [CrossRef]
- Sriprachya-Anunt, S.; Fttzpatrick, R.E.; Goldman, M.P.; Smith, S.R. Infections complicating pulsed carbon dioxide laser resurfacing for photoaged facial skin. Dermatol. Surg. 1997, 23, 527–535. [Google Scholar] [CrossRef]
- Kaiser, E.; Colescott, R.L.; Bossinger, C.D.; Cook, P.I. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 1970, 34, 595–598. [Google Scholar] [CrossRef]
- Hu, Y.; Ren, G.; Deng, L.; Zhang, J.; Liu, H.; Mu, S.; Wu, T. Degradable UV-crosslinked hydrogel for the controlled release of triclosan with reduced cytotoxicity. Mat. Sci. Eng. C-Mater. 2016, 67, 151–158. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Component | Gel-1 | Gel-2 | Gel-3 | Gel-4 |
---|---|---|---|---|
Peptide-based bis-acrylate (mg) | 40 | 60 | 80 | 100 |
AAc (mg) | 360 | 340 | 320 | 300 |
APS (mg) | 20 | 20 | 20 | 20 |
TEMED (μL) | 10 | 10 | 10 | 10 |
DI water (mL) | 3 | 3 | 3 | 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Han, H.; Ye, T.-T.; Li, F.-X.; Wang, X.-L.; Yu, J.-Y.; Wu, D.-Q. Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application. Molecules 2018, 23, 3383. https://doi.org/10.3390/molecules23123383
Zhu J, Han H, Ye T-T, Li F-X, Wang X-L, Yu J-Y, Wu D-Q. Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application. Molecules. 2018; 23(12):3383. https://doi.org/10.3390/molecules23123383
Chicago/Turabian StyleZhu, Jie, Hua Han, Ting-Ting Ye, Fa-Xue Li, Xue-Li Wang, Jian-Yong Yu, and De-Qun Wu. 2018. "Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application" Molecules 23, no. 12: 3383. https://doi.org/10.3390/molecules23123383
APA StyleZhu, J., Han, H., Ye, T. -T., Li, F. -X., Wang, X. -L., Yu, J. -Y., & Wu, D. -Q. (2018). Biodegradable and pH Sensitive Peptide Based Hydrogel as Controlled Release System for Antibacterial Wound Dressing Application. Molecules, 23(12), 3383. https://doi.org/10.3390/molecules23123383