Nectandra grandiflora By-Products Obtained by Alternative Extraction Methods as a Source of Phytochemicals with Antioxidant and Antifungal Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yields and Phytochemicals Contents
2.2. FTIR Analysis
2.3. LC-UV/ESI-HR-MS and MALDI/MS/MS Analysis
2.4. TG/DTG Profiles
2.5. Solubility Results
2.6. Antioxidant Activity
2.7. Antifungal Activity
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Ethanolic Extracts
3.3. Total Phenolic Content
3.4. Flavonoid Content
3.5. Infrared Analysis
3.6. LC-UV/ESI-HR-MS Analysis
3.7. MALDI-TOF/TOF MS Analysis
3.8. Thermogravimetric Analysis
3.9. Solubility Measurement of Extracts
3.10. Antioxidant Activities
3.10.1. DPPH Assay
3.10.2. ABTS Assay
3.11. Determination of Antifungal Activity against Aspergillus niger
3.12. Statistical Procedure
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Devappa, R.K.; Rakshit, S.K.; Dekker, R.F.H. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products. Biotechnol. Adv. 2015, 33, 681–716. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Pinelli, P.; Ieri, F.; Bernini, R. Sustainability, innovation, and green chemistry in the production and valorization of phenolic extracts from Olea europaea L. Sustainability 2016, 8, 1002–1012. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Lin, C.; Chu, W.; Lo, H. Species distribution and drug susceptibilities of Candida isolates in TSARY 2010. Diagn. Microbiol. Infect. Dis. 2013, 76, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Niu, G.; Liu, H. Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza bunge. Biochem. Eng. J. 2002, 12, 71–77. [Google Scholar] [CrossRef]
- Hemwimol, S.; Pavasant, P.; Shotipruk, A. Ultrasound-assisted extraction of anthraquinones from roots of Morinda citrifolia. Ultrason. Sonochem. 2006, 13, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Ind. Crops Prod. 2015, 66, 246–254. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, R.; Liu, C. Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb. Sep. Purif. Technol. 2008, 62, 480–483. [Google Scholar] [CrossRef]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vargas, H.I.; Rodríguez-Varela, L.I.; Ferreira, S.R.; Parada-Alfonso, F. Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. J. Supercrit. Fluids 2010, 51, 319–324. [Google Scholar] [CrossRef]
- Monrad, J.K.; Howard, L.R.; King, J.W.; Srinivas, K.; Mauromoustakos, A. Subcritical solvent extraction of anthocyanins from dried red grape pomace. J. Agric. Food Chem. 2010, 58, 2862–2868. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Yang, Y.; Chiu, H.; Hong, S. Development of a hyphenated procedure of heat-reflux and ultrasound-assisted extraction followed by RP-HPLC separation for the determination of three flavonoids content in Scutellaria barbata D. Don. J. Chromatogr. B 2013, 940, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, H.D.; Muḥammad, U.; Han, J.Z.; Wei, Z.H.; Lu, Z.X.; Bie, X.M.; Lu, F.X. Ultrasound-assisted extraction of polysaccharides from Artemisia selengensis Turcz and its antioxidant and anticancer activities. J. Food Sci. Technol. 2016, 53, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Li, J.; Wang, G.; Mao, G. Extraction and free radical scavenging activity of polysaccharide from ‘Anji Baicha’ (Camellia sinensis (L.) O. Kuntze). Int. J. Biol. Macromol. 2016, 84, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Wijngaard, H.; Hossain, M.B.; Rai, D.K.; Brunton, N. Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 2012, 46, 505–513. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Bowyer, M.C.; Vuong, Q.V.; Altena, I.A.; Scarlett, C.J. Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Ind. Crops Prod. 2015, 67, 192–200. [Google Scholar] [CrossRef]
- Delazar, A.; Nahar, L.; Hamedeyazdan, S.; Sarker, S.D. Microwave-assisted extraction in natural products isolation. Methods Mol. Biol. 2012, 864, 89–115. [Google Scholar] [PubMed]
- Wang, L.; Li, D.; Bao, C.; You, J.; Wang, Z.; Shi, Y.; Zhang, H. Ultrasonic extraction and separation of anthraquinones from Rheum palmatum L. Ultrason. Sonochem. 2008, 15, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Vieira, R.F.; Bizzo, H.R.; Deschamps, C. Genetic resources of aromatic plants from Brazil. Isr. J. Plant Sci. 2010, 58, 263–271. [Google Scholar] [CrossRef]
- Grecco, S.S.; Lorenzi, H.; Tempone, A.G.; Lago, J.H.G. Update: Biological and chemical aspects of Nectandra genus (Lauraceae). Tetrahedron Asymmetry 2016, 27, 793–810. [Google Scholar] [CrossRef]
- Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil, 2nd ed.; Instituto Plantarum: Nova Odessa, Brazil, 2002. [Google Scholar]
- Lorenzi, H. Árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil, 3rd ed.; Instituto Plantarum: Nova Odessa, Brazil, 2009. [Google Scholar]
- Ribeiro, A.B.; Bolzani, V.D.S.; Yoshida, M.; Santos, L.S.; Eberlin, M.N.; Silva, D.H.S. A new neolignan and antioxidant phenols from Nectandra grandiflora. J. Braz. Chem. Soc. 2005, 16, 526–530. [Google Scholar] [CrossRef]
- Mustapa, A.N.; Martin, Á.; Mato, R.B.; Cocero, M.J. Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical carbon dioxide extraction. Ind. Crops Prod. 2015, 74, 83–94. [Google Scholar] [CrossRef]
- Chirinos, R.; Rogez, H.; Campos, D.; Pedreschi, R.; Larondelle, Y. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep. Purif. Technol. 2007, 55, 217–225. [Google Scholar]
- Madja, M.H.; Rajaei, A.; Bashi, D.S.; Mortazavi, S.A.; Bolourian, S. Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine pennyroyal (Phlomidoschema parviflorum) leaves using response surface methodology. Ind. Crops Prod. 2014, 57, 195–202. [Google Scholar]
- Vuong, Q.V.; Hiruna, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med. 2013, 3, 104–111. [Google Scholar] [CrossRef]
- Jacotet-Navarro, M.; Rombaut, N.; Fabiano-Tixier, A.-S.; Danguien, M.; Bil, A.; Chemat, F. Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary. Ultrason. Sonochem. 2015, 27, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Gao, T.; Yang, H.; Du, Y.; Li, C.; Wei, L.; Zhou, T.; Lu, J.; Bi, H. Simultaneous microwave/ultrasonic-assisted enzymatic extraction of antioxidant ingredients from Nitraria tangutorun Bobr. Juice by-products. Ind. Crops Prod. 2015, 66, 229–238. [Google Scholar] [CrossRef]
- Ajuong, E.; Redington, M. Fourier transform infrared analyses of bog and modern oak wood (Quercus petraea) extractives. Wood Sci. Technol. 2004, 38, 181–190. [Google Scholar] [CrossRef]
- Grasel, F.S.; Ferrão, M.F.; Wolf, C.R. Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 153, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Ping, L.; Pizzi, A.; Guo, Z.D.; Brosse, N. Condensed tannins from grape pomace: Characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive. Ind. Crops Prod. 2012, 40, 13–20. [Google Scholar] [CrossRef]
- Liu, H.; Shang, J.; Chen, X.; Kamke, F.A.; Guo, K. The influence of thermal-hydro-mechanical processing on chemical characterization of Tsuga heterophylla. Wood Sci. Technol. 2014, 48, 373–392. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Daferera, D.J.; Mitsi, C.; Trigas, P.; Polissiou, M.; Tarantilis, P.A. Comparative chemotype determination of Lamiaceae plants by means of GC–MS, FT-IR, and dispersive-Raman spectroscopic techniques and GC-FID quantification. Ind. Crops Prod. 2014, 62, 22–33. [Google Scholar] [CrossRef]
- Ribeiro, A.B.; Silva, D.H.S.; Bolzani, V.S. Antioxidant flavonol glycosides from Nectandra grandiflora (Lauraceae). Eclética Química 2002, 27, 35–44. [Google Scholar] [CrossRef]
- De Rijke, E.; Out, P.; Niessen, W.M.; Ariese, F.; Gooijer, C.; Udo, A.T. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006, 1112, 31–63. [Google Scholar] [CrossRef] [PubMed]
- Le Quesne, P.W.; Larrahondo, J.E.; Raffauf, R.F. Antitumor plants X Constituents of Nectandra rigida. J. Nat. Prod. 1980, 43, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.B.; Anastasakis, K.; Kubacki, M.; Jones, J.M. Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. J. Anal. Appl. Pyrolysis 2009, 85, 3–10. [Google Scholar] [CrossRef]
- Silva, D.T.; Bianchini, N.H.; Muniz, M.F.B.; Heinzmann, B.M.; Labidi, J. Chemical composition and inhibitory effects of Nectandra grandiflora leaves essential oil against wood decay fungi. Drewno 2016, 59, 1–8. [Google Scholar]
- Tenorio, C.; Moy, R. Thermogravimetric characteristics, its relation with extractives and chemical properties and combustion characteristics of ten fast-growth species in Costa Rica. Thermochim. Acta 2013, 563, 12–21. [Google Scholar] [CrossRef]
- Carballo, T.; Gil, M.V.; Gómez, X.; González-Andrés, F.; Morán, A. Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation 2008, 19, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Conceição, M.C.; Junqueira, L.A.; Guedes, S.K.C.; Prado, M.E.T.; de Resende, J.V. Thermal and microstructural stability of a powdered gum derived from Pereskia aculeata Miller leaves. Food Hydrocoll. 2014, 40, 104–114. [Google Scholar] [CrossRef]
- Shebani, A.; Van Reenen, A.; Meincken, M. The effect of wood extractives on the thermal stability of different wood species. Thermochim. Acta 2008, 471, 43–50. [Google Scholar] [CrossRef]
- Missio, A.L.; Mattos, B.D.; Gatto, D.A.; De Lima, E.A. Thermal analysis of charcoal from fast-growing eucalypt wood: Influence of raw material moisture content. J. Wood Chem. Technol. 2014, 34, 191–201. [Google Scholar] [CrossRef]
- Martins, C.R.; Lopes, W.A.; Andrade, J.B. Solubilidade das substâncias orgânicas. Química Nova 2013, 36, 1248–1255. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pietta, P. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Ma, G.; Li, N.; Deng, Q.; Yin, Y.; Huang, R. Investigation of in vitro and in vivo antioxidant activities of flavonoids rich extract from the berries of Rhodomyrtus tomentosa (Ait.) Hassk. Food Chem. 2015, 173, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Vundać, V.B.; Brantner, A.H.; Plazibat, M. Content of polyphenolic constituents and antioxidant activity of some Stachys taxa. Food Chem. 2007, 104, 1277–1281. [Google Scholar] [CrossRef]
- Magro, A.; Carolino, M.; Bastos, M.; Mexia, A. Efficacy of plant extracts against stored products fungi. Revista Iberoamericana de Micología 2006, 23, 176–178. [Google Scholar] [CrossRef]
- Cândido, T.L.N.; Silva, M.R.; Agostini-Costa, T.S. Bioactive compounds and antioxidant capacity of buriti (Mauritia flexuosa L.f.) from the Cerrado and Amazon biomes. Food Chem. 2015, 177, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Metrouh-Amir, H.; Duarte, C.M.M.; Maiza, F. Solvent effect on total phenolic contents, antioxidant, and antibacterial activities of Matricaria pubescens. Ind. Crops Prod. 2015, 67, 249–256. [Google Scholar] [CrossRef]
- Herrera, R.; Erdocia, X.; Llano-Ponte, R.; Labidi, J. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties. J. Anal. Appl. Pyrolysis 2014, 107, 256–266. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Robles, E.; Salaberria, A.M.; Herrera, R.; Fernandes, S.C.; Labidi, J. Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials. Carbohydr. Polym. 2016, 144, 41–49. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Ethanolic extracts of Nectarina grandiflora leaves are available from the authors. |
Extraction | TPC (mg GaE/g DW) | FLC (mg QE/g DW) | |
---|---|---|---|
Method | Yield (g DW/100g Dried Plant) | ||
CE | 22.16 ± 1.18 a | 279.00 ± 7.32 a | 150.85 ± 0.71 a |
UAE | 13.99 ± 2.58 b | 254.94 ± 7.58 b | 114.50 ± 0.71 b |
MAE | 8.21 ± 2.74 c | 229.62 ± 1.85 c | 123.83 ± 3.60 b |
F | 28.32 | 62.55 | 22.40 |
p | <0.001 | <0.001 | 0.002 |
MSD | 2.28 | 10.18 | 5.47 |
CE | |||||||
Proposed Compound | Peak | tR (min) | λmax (nm) | MW | [M + Na]+ (m/z) | Fragment Ions (m/z) | Peak Area (%) |
Myricetin-rhamnoside | 1 | 10.17 | 256.93; 351.93 | 464 | 487.1861 | 319.1163; 273.2263 | 11.26 |
Quercetin-rhamnoside | 2 | 11.72 | 255.93; 349.93 | 448 | 471.1797 | 303.1064; 325.1030 | 65.32 |
Kaempferol-rhamnoside | 3 | 12.96 | 263.93 | 432 | 455.1926 | 218.2257; 287.1182; 304.2944 | 5.13 |
Unidentified | 6 | 19.98 | 253.93 | 250 | 273.2414 | 219.3682; 149.1013; 137.0943 | 15.57 |
Total identified | 81.71 | ||||||
MAE | |||||||
Proposed Compound | Peak | tR (min) | λmax (nm) | MW | [M + Na]+ (m/z) | Fragment Ions (m/z) | Peak Area (%) |
Myricetin-rhamnoside | 1 | 10.14 | 258.93; 352.93 | 464 | 487.1981 | 319.1164; 273.2266; 341.1031 | 9.95 |
Quercetin-rhamnoside | 2 | 11.69 | 255.93; 340.93 | 448 | 471.1819 | 303.1085; 325.1035 | 62.54 |
Kaempferol-rhamnoside | 3 | 12.93 | 263.93 | 432 | 455.1905 | 287.1170; 218.2304; 309.1042 | 5.50 |
Unidentified | 6 | 19.98 | 254.93 | 250 | 273.2419 | 219.3695; 149.1015 | 19.58 |
Total identified | 77.99 | ||||||
UAE | |||||||
Proposed Compound | Peak | tR (min) | λmax (nm) | MW | [M + Na]+ (m/z) | Fragment Ions (m/z) | Peak Area (%) |
Myricetin-rhamnoside | 1 | 10.14 | 256.93; 348.93 | 464 | 487.1881 | 319.1158; 273.2258; 341.1027 | 9.77 |
Quercetin-rhamnoside | 2 | 11.69 | 255.93; 349.93 | 448 | 471.1833 | 303.1102; 325.1038 | 61.18 |
Kaempferol-rhamnoside | 3 | 12.93 | 263.93 | 432 | 455.1806 | 287.1170; 218.2305; 304.2939 | 5.11 |
Unidentified | 6 | 19.98 | 255.00 | 250 | 273.2429 | 220.2213; 149.1024; 137.0951 | 20.83 |
Total identified | 76.06 |
Growth Intensity (GI) | Evaluation |
---|---|
0 | No growth apparent under magnification |
1 | No visible growth but visible under magnification |
2 | Visible growth up to 25% coverage |
3 | Visible growth up to 50% coverage |
4 | Visible growth up to 75% coverage |
5 | Heavy growth covering more than 75% of the studied area |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Silva, D.T.; Herrera, R.; Heinzmann, B.M.; Calvo, J.; Labidi, J. Nectandra grandiflora By-Products Obtained by Alternative Extraction Methods as a Source of Phytochemicals with Antioxidant and Antifungal Properties. Molecules 2018, 23, 372. https://doi.org/10.3390/molecules23020372
Da Silva DT, Herrera R, Heinzmann BM, Calvo J, Labidi J. Nectandra grandiflora By-Products Obtained by Alternative Extraction Methods as a Source of Phytochemicals with Antioxidant and Antifungal Properties. Molecules. 2018; 23(2):372. https://doi.org/10.3390/molecules23020372
Chicago/Turabian StyleDa Silva, Daniela Thomas, Rene Herrera, Berta Maria Heinzmann, Javier Calvo, and Jalel Labidi. 2018. "Nectandra grandiflora By-Products Obtained by Alternative Extraction Methods as a Source of Phytochemicals with Antioxidant and Antifungal Properties" Molecules 23, no. 2: 372. https://doi.org/10.3390/molecules23020372
APA StyleDa Silva, D. T., Herrera, R., Heinzmann, B. M., Calvo, J., & Labidi, J. (2018). Nectandra grandiflora By-Products Obtained by Alternative Extraction Methods as a Source of Phytochemicals with Antioxidant and Antifungal Properties. Molecules, 23(2), 372. https://doi.org/10.3390/molecules23020372