A Comparative Assessment of Biological Effects and Chemical Profile of Italian Asphodeline lutea Extracts
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Materials
5.2. Chemicals
5.3. Total Bioactive Components (Phenolics and Flavonoids)
5.4. HPLC Analyses for Phenolics and Anthraquinones
5.5. Heavy Metals Determination
5.6. Antioxidant Activity
5.7. Enzyme Inhibitory Activities
5.8. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lazarova, I.; Gevrenova, R. Asphodeline lutea (L.) Rchb.: A review of its botany, phytochemistry and ethnopharmacology. Pharmacia 2013, 60, 21–25. [Google Scholar]
- AlRawashdeh, I.M.I. Comparison diversity of Asphodeline lutea plant species among six locations at Alshoubak and Alnaqab ecosystems in Jordan. ARPN J. Agric. Biol. Sci. 2016, 11, 160–164. [Google Scholar]
- Guarrera, P.M.; Savo, V. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 2016, 185, 202–234. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Aktumsek, A.; Guler, G.-O.; Cakmak, Y.-S.; Girón-Calle, J.; Alaiz, M.; Vioque, J. Nutritional quality of protein in the leaves of eleven Asphodeline species (Liliaceae) from Turkey. Food Chem. 2012, 135, 1360–1364. [Google Scholar] [CrossRef] [PubMed]
- Uysal, A.; Lazarova, I.; Zengin, G.; Gunes, E.; Aktumsek, A.; Gevrenova, R. New Perspectives on Asphodeline lutea from Bulgaria and Turkey: Anti-mutagenic, Anti-microbial and Anti-methicillin Resistant Staphylococcus aureus (MRSA) Activity. Br. J. Pharm. Res. 2016, 10, 1–10. [Google Scholar] [CrossRef]
- Lazarova, I.; Simeonova, R.; Vitcheva, V.; Kondeva-Burdina, M.; Gevrenova, R.; Zheleva-Dimitrova, D.; Zengin, G.; Danchev, N.D. Hepatoprotective and antioxidant potential of Asphodeline lutea (L.) Rchb. roots extract in experimental models in vitro/in vivo. Biomed. Pharmacoth. 2016, 83, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, A.; Todorova-Nikolova, G.; Lazarova, I.; Engi, H.; Molnár, J. Modulation of multidrug resistance by selected edible plants-Asphodeline lutea and Allium ursinum. CR Acad. Bulgar. Sci. 2010, 63, 221–224. [Google Scholar]
- Ilhan, M.; Zengin, G.; Küpeli Akkol, E.; Aktümsek, A.; Süntar, I. The importance of Asphodeline species on enzyme inhibition: anti-elastase, anti-hyaluronidase and anti-collagenase potential. Turk. J. Pharm. Sci. 2016, 13, 323–327. [Google Scholar]
- Ali-Shtayeh, M.S.; Yaniv, Z.; Mahajna, J. Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. J. Ethnopharmacol. 2000, 73, 221–232. [Google Scholar] [CrossRef]
- Kargioglu, M.; Cenkci, S.; Serteser, A.; Evliyaoglu, N.; Konuk, M.; Kök, M.S.; Bagci, Y. An ethnobotanical survey of Inner-West Anatolia, Turkey. Hum. Ecol. 2008, 36, 763–777. [Google Scholar] [CrossRef]
- Lazarova, I.; Zengin, G.; Aktumsek, A.; Gevrenova, R.; Ceylan, R.; Uysal, S. HPLC–DAD analysis of phenolic compounds and antioxidant properties of Asphodeline lutea roots from Bulgaria and Turkey. Ind. Crops Prod. 2014, 61, 438–441. [Google Scholar] [CrossRef]
- Todorova, G.; Lazarova, I.; Mikhova, B.; Kostova, I. Anthraquinone, naphthalene, and naphthoquinone components of Asphodeline lutea. Chem. Nat. Compd. 2010, 46, 322–323. [Google Scholar] [CrossRef]
- Ivanova, A.; Todorova-Nikolova, G.; Platikanov, S.; Antonova, D.; Kostova, I. Comparative GC/MS study of volatiles from different parts of Asphodeline lutea Rchb. CR Acad. Bulgar. Sci. 2008, 61, 727–730. [Google Scholar]
- Lazarova, I.; Marinova, E.; Todorova-Nikolova, G.; Kostova, I. Antioxidant properties of Asphodeline lutea of Bulgarian origin. Riv. Ital. Sostanze Grasse 2009, 86, 181–188. [Google Scholar]
- Adawia, K. Comparison of the total phenol, flavonoid contents and antioxidant activity of methanolic root extracts of Asphodelus microcarpus and Asphodeline lutea growing in Syria. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 159–164. [Google Scholar] [CrossRef]
- Ali-Shtayeh, M.S.; Jamous, R.M.; Zaitoun, S.Y.A.; Qasem, I.B. In-vitro screening of acetylcholinesterase inhibitory activity of extracts from Palestinian indigenous flora in relation to the treatment of Alzheimer’s disease. Funct. Foods Health Dis. 2014, 4, 381–400. [Google Scholar]
- Bose, S.; Cho, J. Targeting chaperones, heat shock factor-1, and unfolded protein response: Promising therapeutic approaches for neurodegenerative disorders. Ageing Res. Rev. 2016, 35, 155–175. [Google Scholar] [CrossRef] [PubMed]
- Song, M.K.; Bischoff, D.S.; Song, A.M.; Uyemura, K.; Yamaguchi, D.T. Metabolic relationship between diabetes and Alzheimer's disease affected by Cyclo(His-Pro) plus zinc treatment. BBA Clin. 2017, 7, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim. Biophys. Acta 2016, 1863, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Singh, J.V.; Gupta, M.K.; Singh, P.; Sharma, S.; Nepali, K.; Bedi, P.M.S. Benzoflavones as cholesterol esterase inhibitors: Synthesis, biological evaluation and docking studies. Bioorg. Med. Chem. Lett. 2017, 27, 850–854. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Li, Y.; Qiang, X.; Cao, Z.; Xu, R.; Yang, X.; Xiao, G.; Song, Q.; Tan, Z.; Deng, Y. Multifunctional thioxanthone derivatives with acetylcholinesterase, monoamine oxidases and β-amyloid aggregation inhibitory activities as potential agents against Alzheimer’s disease. Bioorg. Med. Chem. 2017, 25, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Hanafy, D.M.; Prenzler, P.D.; Burrows, G.E.; Ryan, D.; Nielsen, S.; El Sawi, S.A.; El Alfy, T.S.; Abdelrahman, E.H.; Obied, H.K. Biophenols of mints: Antioxidant, acetylcholinesterase, butyrylcholinesterase and histone deacetylase inhibition activities targeting Alzheimer’s disease treatment. J. Funct. Foods 2017, 33, 345–362. [Google Scholar] [CrossRef]
- Li, J.; Cesari, M.; Liu, F.; Dong, B.; Vellas, B. Effects of diabetes mellitus on cognitive decline in patients with Alzheimer disease: a systematic review. Can. J. Diabetes 2017, 41, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, W.-L.; Liang, W.-C.; Law, W.-K.; Tsz-Ming, I.D.; Ng, T.-B.; Miu-Yee, W.M.; Chi-Cheong, W.D. Acetylshikonin, a novel AChE inhibitor, inhibits apoptosis via upregulation of heme oxygenase-1 expression in SH-SY5Y cells. Evid. Based Complement. Alternat. Med. 2013, 2013, 937370. [Google Scholar] [CrossRef] [PubMed]
- Leu, Y.L.; Hwang, T.L.; Hu, J.W.; Fang, J.Y. Anthraquinones from Polygonum cuspidatum as tyrosinase inhibitors for dermal use. Phytother. Res. 2008, 22, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Gou, L.; Lee, J.; Hao, H.; Park, Y.-D.; Zhan, Y.; Lü, Z.-R. The effect of oxaloacetic acid on tyrosinase activity and structure: Integration of inhibition kinetics with docking simulation. Int. J. Biol. Macromol. 2017, 101, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Cespedes, C.L.; Balbontin, C.; Avila, J.G.; Dominguez, M.; Alarcon, J.; Paz, C.; Burgos, V.; Ortiz, L.; Peñaloza-Castro, I.; Seigler, D.S. Inhibition on cholinesterase and tyrosinase by alkaloids and phenolics from Aristotelia chilensis leaves. Food Chem. Toxicol. 2017, 109 Pt 2, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.M.; Yates, P.O. Possible role of neuromelanin in the pathogenesis of Parkinson's disease. Mech. Ageing Dev. 1983, 21, 193–203. [Google Scholar] [CrossRef]
- Jung, H.A.; Ali, M.Y.; Choi, J.S. Promising inhibitory effects of anthraquinones, naphthopyrone, and naphthalene glycosides, from Cassia obtusifolia on α-glucosidase and human protein tyrosine phosphatases 1B. Molecules 2017, 22, 28. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo-González, M.; Grosso, C.; Valentão, P.; Andrade, P.B. α-Glucosidase and α-amylase inhibitors from Myrcia spp.: A stronger alternative to acarbose? J. Pharm. Biomed. Anal. 2016, 118, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Ogunsuyi, O.B.; Ogunbadejo, M.D.; Adefegha, S.A. Influence of gallic acid on α-amylase and α-glucosidase inhibitory properties of acarbose. J. Food Drug Anal. 2016, 24, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Torres-Naranjo, M.; Suárez, A.; Gilardoni, G.; Cartuche, L.; Flores, P.; Morocho, V. Chemical constituents of Muehlenbeckia tamnifolia (Kunth) Meisn (Polygonaceae) and its in vitro α-amilase and α-glucosidase inhibitory activities. Molecules 2016, 21, 1461. [Google Scholar] [CrossRef] [PubMed]
- Arvindekar, A.; More, T.; Payghan, P.V.; Laddha, K.; Ghoshal, N.; Arvindekar, A. Evaluation of anti-diabetic and alpha glucosidase inhibitory action of anthraquinones from Rheum emodi. Food Funct. 2015, 6, 2693–2700. [Google Scholar] [CrossRef] [PubMed]
- Rajurkar, N.S.; Hande, S. Estimation of phytochemical content and antioxidant activity of some selected traditional indian medicinal plants. Indian J. Pharm. Sci. 2011, 73, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Locatelli, M.; Ceylan, R.; Aktumsek, A. Anthraquinone profile, antioxidant and enzyme inhibitory effect of root extracts of eight Asphodeline taxa from Turkey: Can Asphodeline roots be considered as a new source of natural compounds? J. Enzyme Inhib. Med. Chem. 2016, 31, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, M.; Zengin, G.; Uysal, A.; Carradori, S.; De Luca, E.; Bellagamba, G.; Aktumsek, A.; Lazarova, I. Multicomponent pattern and biological activities of seven Asphodeline taxa: Potential sources of natural-functional ingredients for bioactive formulations. J. Enzyme Inhib. Med. Chem. 2016, 32, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Menghini, L.; Malatesta, L.; De Luca, E.; Bellagamba, G.; Uysal, S.; Aktumsek, A.; Locatelli, M. Comparative study of biological activities and multicomponent pattern of two wild Turkish species: Asphodeline anatolica and Potentilla speciosa. J. Enzyme Inhib. Med. Chem. 2016, 31, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Chaouche, T.M.; Haddouchi, F.; Ksouri, R.; Atik-Bekkara, F. Evaluation of antioxidant activity of hydromethanolic extracts of some medicinal species from South Algeria. J. Chin. Med. Assoc. 2014, 77, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. Sect. Ethnopharmacol. 2017, 8, 290. [Google Scholar] [CrossRef] [PubMed]
- Paduch, R.; Wiater, A.; Locatelli, M.; Pleszczyńska, M.; Tomczyk, M. Aqueous Extracts of Selected Potentilla Species Modulate Biological Activity of Human Normal Colon Cells. Curr. Drug Targets 2015, 16, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Amaeze, O.; Ayoola, G.; Sofidiya, M.; Adepoju-Bello, A.; Adegoke, A.; Coker, H. Evaluation of antioxidant activity of Tetracarpidium conophorum (Müll. Arg) Hutch & Dalziel leaves. Oxid. Med. Cell. Longev. 2011, 2011, 1–8. [Google Scholar]
- Karadeniz, A.; Cinbilgel, I.; Gün, S.S.; Cetin, A. Antioxidant activity of some Turkish medicinal plants. Nat. Prod. Res. 2015, 29, 2308–2312. [Google Scholar] [CrossRef] [PubMed]
- Formagio, A.S.N.; Volobuff, C.R.F.; Santiago, M.; Cardoso, C.A.L.; Vieira, M.D.C.; Valdevina Pereira, Z. Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Aboul-Ela, H.M.; Saad, A.A.; El-Sikaily, A.M.; Zaghloul, T.I. Oxidative stress and DNA damage in relation to transition metals overload in Abu-Qir Bay, Egypt. J. Genet. Eng. Biotechnol. 2011, 9, 51–58. [Google Scholar] [CrossRef]
- Da Silva, E.R.; do Carmo Maquiaveli, C.; Magalhães, P.P. The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp. Parasitol. 2012, 130, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Menghini, L.; Leporini, L.; Pintore, G.; Chessa, M.; Tirillini, B. Essential oil content and composition of three sage varieties grown in Central Italy. J. Med. Plants Res. 2013, 7, 480–489. [Google Scholar]
- Nescatelli, R.; Carradori, S.; Marini, F.; Caponigro, V.; Bucci, R.; De Monte, C.; Mollica, A.; Mannina, L.; Ceruso, M.; Supuran, C.T.; et al. Geographical characterization by MAE-HPLC and NIR methodologies and carbonic anhydrase inhibition of Saffron components. Food Chem. 2017, 221, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Ind. Crops Prod. 2016, 83, 39–43. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Viticult. 1977, 28, 49–55. [Google Scholar]
- Berk, S.; Tepe, B.; Arslan, S.; Sarikurkcu, C. Screening of the antioxidant, antimicrobial and DNA damage protection potentials of the aqueous extract of Asplenium ceterach DC. Afr. J. Biotechnol. 2011, 10, 8902–8908. [Google Scholar]
- Locatelli, M.; Genovese, S.; Carlucci, G.; Kremer, D.; Randic, M.; Epifano, F. Development and application of high-performance liquid chromatography for the study of two new oxyprenylated anthraquinones produced by Rhamnus species. J. Chromatogr. A 2012, 1225, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Melucci, D.; Locatelli, M.; Locatelli, C. Trace level voltammetric determination of heavy metals and total mercury in tea matrices (Camellia sinensis). Food Chem. Toxicol. 2013, 62, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, M.; Baeten, H.; Vanhentenrijk, S.; Vassileva, E.; Quevauviller, P. Critical discussion on the need for an efficient mineralization procedure for the analysis of plant material by atomic spectrometric methods. Anal. Chim. Acta 1998, 358, 85–94. [Google Scholar] [CrossRef]
- Locatelli, C.; Melucci, D. Voltammetric determination of metals as food contaminants: An excellent alternative to spectroscopic measurements. Application to meals, vegetables, mussels, clams and fishes. In Voltammetry: Theory, Types and Applications; Saito, Y., Kikuchi, T., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2014; pp. 225–248. [Google Scholar]
- Rinaldi, F.; Hanieh, P.N.; Longhi, C.; Carradori, S.; Secci, D.; Zengin, G.; Ammendolia, M.G.; Mattia, E.; Del Favero, E.; Marianecci, C.; et al. Neem oil nanoemulsions: Characterisation and antioxidant activity. J. Enzyme Inhib. Med. Chem. 2017, 32, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Uysal, A.; Gunes, E.; Aktumsek, A. Survey of phytochemical composition and biological effects of three extracts from a wild plant (Cotoneaster nummularia Fisch. et Mey.): A potential source for functional food ingredients and drug formulations. PLoS ONE 2014, 9, e113527. [Google Scholar] [CrossRef] [PubMed]
Location | Stage/Parts | Total Phenolic Content (mg GAE/g Extract) * | Total Flavonoid Content (mg RE/g Extract) * |
---|---|---|---|
Perugia | PF-R | 12.5 ± 0.2 a | 5.4 ± 0.7 a |
PF-AP | 24.7 ± 0.9 a | 19.8 ± 0.3 a | |
F-R | 17.7 ± 0.4 a | 4.8 ± 0.1 a | |
F-AP | 27.7 ± 0.6 b | 22.1 ± 0.2 b | |
F-Fl | 19.4 ± 0.6 b | 11.4 ± 0.1 b | |
Novele | PF-R | 12.4 ± 0.7 a | 3.7 ± 0.2 b |
PF-AP | 23.8 ± 0.3 a | 14.8 ± 0.5 b | |
F-R | 12.7 ± 0.2 b | 4.6 ± 0.1 a | |
F-AP | 23.9 ± 0.3 c | 17.3 ± 0.1 c | |
F-Fl | 17.5 ± 0.7 c | 11.0 ± 0.4 b | |
Pescosansonesco | PF-R | 9.8 ± 0.2 b | 2.9 ± 0.2 c |
PF-AP | 24.0 ± 0.8 a | 19.3 ± 0.2 a | |
F-R | 10.7 ± 0.4 c | 3.2 ± 0.1 b | |
F-AP | 38.2 ± 0.8 a | 28.0 ± 0.3 a | |
F-Fl | 24.7 ± 0.5 a | 13.5 ± 0.3 a |
Phenolic Components | Perugia | Novele | Pescosansonesco | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PF-R | PF-AP | F-R | F-AP | F-Fl | PF-R | PF-AP | F-R | F-AP | F-Fl | PF-R | PF-AP | F-R | F-AP | F-Fl | |
Gallic acid | nd | nd | 0.9 ± 0.1 | nd | 0.52 ± 0.05 | nd | nd | 1.1 ± 0.1 | 0.31 ± 0.05 | 1.1 ± 0.8 | 1.96 ± 0.04 | nd | 1.09 ± 0.02 | 1.1 ± 0.6 | nd |
Catechin | nd | 0.84 ± 0.03 | 0.54 ± 0.05 | nd | nd | 0.57 ± 0.04 | nd | nd | nd | nd | 1.8 ± 0.1 | 1.1 ± 0.03 | 0.51 ± 0.01 | nd | nd |
p-OH benzoic acid | nd | nd | nd | nd | nd | nd | nd | nd | 0.43 ± 0.07 | nd | 0.42 ± 0.05 | nd | nd | nd | 0.41 ± 0.02 |
Epicatechin | nd | nd | 0.35 ± 0.03 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
3-OH benzoic acid | 0.36 ± 0.04 | nd | 0.40 ± 0.05 | nd | nd | nd | nd | nd | nd | nd | nd | 1.9 ± 0.5 | nd | nd | nd |
p-Coumaric acid | nd | nd | nd | nd | nd | 2.2 ± 0.2 | nd | 0.32 ± 0.05 | nd | nd | 0.24 ± 0.03 | 0.46 ± 0.03 | nd | nd | 0.42 ± 0.02 |
Rutin | nd | 1.6 ± 0.9 | nd | 1.1 ± 0.1 | 9.0 ± 0.1 | 3.0 ± 0.3 | 0.28 ± 0.02 | 0.67 ± 0.08 | nd | 5.6 ± 0.4 | 10.0 ± 0.9 | 8.9 ± 0.7 | 0.31 ± 0.07 | nd | 0.9 ± 0.1 |
Naringin | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.24 ± 0.03 | nd | 1.5 ± 0.2 | 0.28 ± 0.02 | nd | nd |
2,3-diMeOBA | nd | nd | 0.33 ± 0.09 | nd | nd | nd | nd | nd | 0.37 ± 0.02 | nd | nd | 53.0 ± 5.0 | nd | nd | nd |
Benzoic acid | nd | 1.2 ± 0.6 | nd | 0.50 ± 0.05 | 2.4 ± 0.2 | 0.56 ± 0.04 | nd | 0.26 ± 0.09 | 0.35 ± 0.01 | nd | 0.33 ± 0.02 | 18.0 ± 3.0 | nd | 0.4 ± 0.1 | 0.87 ± 0.09 |
Quercetin | 0.31 ± 0.07 | 2.3 ± 0.3 | nd | 0.52 ± 0.05 | 2.3 ± 0.24 | 2.6 ± 0.2 | 0.31 ± 0.05 | nd | 2.7 ± 0.4 | 3.0 ± 1.0 | 12.0 ± 1.0 | 0.7 ± 0.1 | 0.63 ± 0.04 | 0.3 ± 0.8 | 5.0 ± 1.0 |
Naringenin | nd | nd | nd | nd | 0.63 ± 0.03 | nd | nd | nd | nd | nd | nd | 0.79 ± 0.08 | nd | nd | nd |
Total (µg/mg) | 0.67 | 6.01 | 2.54 | 2.12 | 14.88 | 8.94 | 0.59 | 2.31 | 4.20 | 10.29 | 27.32 | 86.15 | 2.81 | 1.89 | 7.66 |
Location | Stage/Parts | Aloe-emodin | Emodin | Chrysophanol | Physcion | Total (µg/mg) |
---|---|---|---|---|---|---|
Perugia | PF-R | 3.10 ± 0.30 | nd | 0.51 ± 0.06 | 15.0 ± 2.0 | 18.3 |
PF-AP | 0.82 ± 0.08 | nd | 1.60 ± 0.70 | 1.70 ± 0.90 | 4.12 | |
F-R | 0.72 ± 0.07 | nd | 2.00 ± 1.00 | 0.77 ± 0.09 | 3.47 | |
F-AP | 0.81 ± 0.06 | nd | nd | 5.00 ± 1.00 | 6.20 | |
F-Fl | 2.70 ± 0.30 | nd | 0.69 ± 0.04 | 2.40 ± 0.50 | 5.81 | |
Novele | PF-R | 2.00 ± 1.00 | nd | nd | 18.0 ± 3.0 | 19.5 |
PF-AP | 0.85 ± 0.07 | nd | 1.51 ± 0.9 | 5.00 ± 1.00 | 7.57 | |
F-R | 0.65 ± 0.09 | nd | 1.10 ± 0.50 | 1.00 ± 0.40 | 2.72 | |
F- AP | 0.65 ± 0.08 | nd | nd | 3.00 ± 1.00 | 4.07 | |
F-Fl | 0.71 ± 0.05 | nd | 0.39 ± 0.04 | 0.84 ± 0.08 | 1.94 | |
Pescosansonesco | PF-R | 1.00 ± 0.20 | 0.82 ± 0.09 | 2.00 ± 1.00 | 6.00 ± 1.00 | 10.6 |
PF-AP | 1.00 ± 0.30 | nd | nd | 4.00 ± 1.00 | 5.39 | |
F-R | 1.10 ± 0.20 | nd | 2.00 ± 1.00 | 5.00 ± 1.00 | 5.81 | |
F- AP | 2.00 ± 1.00 | nd | 0.44 ± 0.04 | 4.87 ± 2.00 | 7.41 | |
F-Fl | 2.00 ± 1.00 | nd | 0.60 ± 0.07 | 8.00 ± 1.00 | 11.0 |
Location | Stage/Parts | Zn (ppm) | Cd (ppm) | Pb (ppm) | Cu (ppm) |
---|---|---|---|---|---|
Perugia | PF-R | 1100 ± 300 | <LoD | <LoD | 1100 ± 350 |
PF-AP | <LoD | <LoD | <LoD | <LoD | |
F-R | 500 ± 100 | 90 ± 30 | <LoD | <LoD | |
F-AP | 53 ± 5 | <LoD | <LoD | 35 ± 6 | |
F-Fl | 300 ± 50 | <LoD | <LoD | <LoD | |
Novele | PF-R | 460 ± 90 | 700 ± 200 | <LoD | <LoD |
PF-AP | <LoD | <LoD | <LoD | <LoD | |
F-R | 140 ± 40 | <LoD | <LoD | <LoD | |
F-AP | 250 ± 20 | 50 ± 10 | 180 ± 40 | <LoD | |
F-Fl | 190 ± 50 | 130 ± 30 | 70 ± 30 | <LoD |
Location | Stage/Parts | DPPH Scavenging ** | ABTS Scavenging ** | FRAP ** | CUPRAC ** | Phosphomolybdenum Assay ‡ | Metal Chelating Activity † |
---|---|---|---|---|---|---|---|
Perugia | PF-R | 39.8 ± 0.5 a | 56.0 ± 2.0 a | 37.0 ± 1.0 b | 57.5 ± 1.5 a | 0.91 ± 0.05 a | 12.8 ± 0.7 a |
PF-AP | 68.0 ± 1.0 b | 74.0 ± 3.0 c | 64.0 ± 2.0 b | 86.0 ± 2.0 b | 0.87 ± 0.07 b | 16.0 ± 2.0 b | |
F-R | 43.8 ± 0.1 a | 75.0 ± 4.0 a | 52.0 ± 4.0 a | 71.0 ± 0.9 a | 1.03 ± 0.07 a | 8.5 ± 0.1 a | |
F-AP | 86.5 ± 1.5 b | 102 ± 3 b | 84.0 ± 2.0 b | 108 ± 1 b | 0.93 ± 0.09 b | 18.0 ± 2.0 a | |
F-Fl | 52.0 ± 1.0 b | 63.0 ± 2.0 b | 50.0 ± 1.0 b | 65.0 ± 1.0 b | 0.73 ± 0.04 b | 15.2 ± 0.6 a | |
Novele | PF-R | 30.4 ± 0.3 b | 57.0 ± 4.0 a | 42.0 ± 2.0 a | 52.0 ± 2.0 b | 0.71 ± 0.04 c | 7.3 ± 0.1 b |
PF-AP | 58.6 ± 0.5 c | 121 ± 3 a | 65.0 ± 1.0 b | 82.0 ± 3.0 b | 0.99 ± 0.06 a | 19.7 ± 0.4 a | |
F-R | 32.0 ± 1.0 b | 56.0 ± 2.0 b | 42.8 ± 0.9 b | 60.0 ± 2.0 b | 0.92 ± 0.04 c | 5.8 ± 0.1 c | |
F- AP | 75.5 ± 0.3 c | 97.0 ± 1.0 c | 68.0 ± 1.0 c | 86.7 ± 0.6 c | 0.79 ± 0.01 c | 13.1 ± 1.5 c | |
F-Fl | 44.0 ± 1.0 c | 54.0 ± 2.0 c | 45.5 ± 0.4 c | 59.0 ± 1.0 c | 0.77 ± 0.05 b | 12.9 ± 0.3 b | |
Pescosansonesco | PF-R | 20.5 ± 0.3 c | 36.0 ± 1.0 b | 29.0 ± 1.0 c | 40.4 ± 0.3 c | 0.80 ± 0.04 b | 6.5 ± 0.7 c |
PF-AP | 70.9 ± 0.4 a | 85.0 ± 1.0 b | 75.0 ± 1.0 a | 92.2 ± 0.6 a | 1.00 ± 0.10 a | 15.4 ± 1.5 b | |
F-R | 26.0 ± 0.8 c | 53.6 ± 0.8 c | 38.0 ± 1.0 c | 46.0 ± 1.0 c | 0.99 ± 0.07 b | 6.9 ± 0.9 b | |
F-AP | 90.4 ± 0.4 a | 180 ± 1 a | 128 ± 4 a | 160 ± 1 a | 1.43 ± 0.01 a | 16.3 ± 0.1 b | |
F-Fl | 64.0 ± 1.0 a | 89.0 ± 1.0 a | 62.0 ± 1.0 a | 86.0 ± 1.0 a | 0.96 ± 0.06 a | 14.5 ± 0.7 a |
Location | Stage/Parts | AChE Inhibition ** | BChE Inhibition ** | Tyrosinase Inhibition † | α-Amylase Inhibition ‡ | α-Glucosidase Inhibition ‡ |
---|---|---|---|---|---|---|
Perugia | PF-R | 1.74 ± 0.07 c | 2.03 ± 0.06 a | 12.0 ± 2.0 a | 0.39 ± 0.01 a | na |
PF-AP | 1.59 ± 0.01 c | na | 7.5 ± 0.3 c | 0.45 ± 0.01 a | 14.0 ± 0.1 b | |
F-R | 2.20 ± 0.40 a | 1.90 ± 0.20 b | 14.0 ± 0.2 a | 0.45 ± 0.03 a | 2.1 ± 0.4 b | |
F-AP | 1.77 ± 0.09 b | 0.31 ± 0.06 b | 7.0 ± 2.0 c | 0.41 ± 0.04 c | na | |
F-Fl | 1.65 ± 0.05 a | 0.77 ± 0.03 b | 23.0 ± 2.0 a | 0.45 ± 0.01 b | 32.1 ± 0.2 b | |
Novele | PF-R | 1.88 ± 0.08 b | 2.02 ± 0.04 a | 12.0 ± 1.0 a | 0.39 ± 0.01 a | 15.8 ± 0.3 b |
PF-AP | 1.82 ± 0.04 a | 1.10 ± 0.10 b | 15.0 ± 2.0 b | 0.41 ± 0.01 b | 0.25 ± 0.02 c | |
F-R | 1.92 ± 0.04 b | 2.05 ± 0.02 a | 21.0 ± 1.0 a | 0.39 ± 0.01 b | 44.2 ± 0.4 a | |
F-AP | 1.77 ± 0.06 b | 1.06 ± 0.01 a | 21.0 ± 2.0 b | 0.43 ± 0.01 b | 2.01 ± 0.01 b | |
F-Fl | 1.71 ± 0.04 a | 1.37 ± 0.07 a | 12.0 ± 2.0 c | 0.45 ± 0.01 b | 42.7 ± 0.3 a | |
Pescosansonesco | PF-R | 1.92 ± 0.02 a | 1.83 ± 0.05 b | 12.0 ± 1.0 a | 0.37 ± 0.01 b | 19.3 ± 0.2 a |
PF-AP | 1.67 ± 0.05 b | 1.36 ± 0.04 a | 20.0 ± 2.0 a | 0.46 ± 0.03 a | 37.4 ± 0.9 a | |
F-R | 1.88 ± 0.02 c | 1.60 ± 0.20 c | 14.0 ± 2.0 b | 0.38 ± 0.02 b | na | |
F-AP | 2.10 ± 0.60 a | na | 25.3 ± 0.5 a | 0.51 ± 0.01 a | 34.1 ± 0.4 a | |
F-Fl | 1.51 ± 0.08 b | 0.58 ± 0.07 c | 18.8 ± 0.8 b | 0.48 ± 0.01 a | na |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melucci, D.; Locatelli, M.; Locatelli, C.; Zappi, A.; De Laurentiis, F.; Carradori, S.; Campestre, C.; Leporini, L.; Zengin, G.; Picot, C.M.N.; et al. A Comparative Assessment of Biological Effects and Chemical Profile of Italian Asphodeline lutea Extracts. Molecules 2018, 23, 461. https://doi.org/10.3390/molecules23020461
Melucci D, Locatelli M, Locatelli C, Zappi A, De Laurentiis F, Carradori S, Campestre C, Leporini L, Zengin G, Picot CMN, et al. A Comparative Assessment of Biological Effects and Chemical Profile of Italian Asphodeline lutea Extracts. Molecules. 2018; 23(2):461. https://doi.org/10.3390/molecules23020461
Chicago/Turabian StyleMelucci, Dora, Marcello Locatelli, Clinio Locatelli, Alessandro Zappi, Francesco De Laurentiis, Simone Carradori, Cristina Campestre, Lidia Leporini, Gokhan Zengin, Carene Marie Nancy Picot, and et al. 2018. "A Comparative Assessment of Biological Effects and Chemical Profile of Italian Asphodeline lutea Extracts" Molecules 23, no. 2: 461. https://doi.org/10.3390/molecules23020461
APA StyleMelucci, D., Locatelli, M., Locatelli, C., Zappi, A., De Laurentiis, F., Carradori, S., Campestre, C., Leporini, L., Zengin, G., Picot, C. M. N., Menghini, L., & Mahomoodally, M. F. (2018). A Comparative Assessment of Biological Effects and Chemical Profile of Italian Asphodeline lutea Extracts. Molecules, 23(2), 461. https://doi.org/10.3390/molecules23020461