Fast Determination of Yttrium and Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry after Online Flow Injection Pretreatment
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Sample Loading Rate and Time
2.2. Influence of Interferences and Effect of Rinsing Conditions
2.3. Effects of Eluting Condition
2.4. Calibration and Effect of Salinity
2.5. Analytical Figures of Merit
2.6. Comparison with Other FI-ICP-MS Systems
2.7. Applications
3. Materials and Methods
3.1. Reagents and Samples
3.2. Instrumentation
3.3. FI System and FI-ICP-MS Analysis Procedure
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Elderfield, H.; Greaves, M.J. The rare earth elements in seawater. Nature 1982, 296, 214–219. [Google Scholar] [CrossRef]
- Hatje, V.; Bruland, K.W.; Flegal, A.R. Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1® resin: Method development and application in the San Francisco Bay plume. Mar. Chem. 2014, 160, 34–41. [Google Scholar] [CrossRef]
- Byrne, R.H.; Kim, K.-H. Rare earth element scavenging in seawater. Geochim. Cosmochim. Acta 1990, 54, 2645–2656. [Google Scholar] [CrossRef]
- German, C.R.; Masuzawa, T.; Greaves, M.J.; Elderfield, H.; Edmond, J.M. Dissolved rare earth elements in the Southern Ocean: Cerium oxidation and the influence of hydrography. Geochim. Cosmochim. Acta 1995, 59, 1551–1558. [Google Scholar] [CrossRef]
- Nozaki, Y.; Alibo, D.S. Importance of vertical geochemical processes in controlling the oceanic processes of dissolved rare earth elements in the northeastern Indian Ocean. Earth Planet. Sci. Lett. 2003, 205, 155–172. [Google Scholar] [CrossRef]
- Zheng, X.-Y.; Plancherel, Y.; Saito, M.A.; Scott, P.M.; Henderson, G.M. Rare earth elements (REEs) in the tropical South Atlantic and quantitative deconvolution of their non-conservative behavior. Geochim. Cosmochim. Acta 2016, 177, 217–237. [Google Scholar] [CrossRef] [Green Version]
- Barretto, P.M.C.; Fujimori, K. Natural analogue studies: Geology and mineralogy of Morro do Ferro, Brazil. Chem. Geol. 1986, 55, 297–312. [Google Scholar] [CrossRef]
- Yan, X.-P.; Kerrich, R.; Hendry, M.J. Flow injection on-line group preconcentration and separation of (ultra) trace rare earth elements in environmental and geological samples by precipitation using a knotted reactor as a filterless collector for inductively coupled plasma mass spectrometric determination. J. Anal. At. Spectrom. 1999, 14, 215–221. [Google Scholar]
- Vicente, O.; Padro, A.; Martinez, L.; Olsina, R.; Marchevsky, E. Determination of some rare earth elements in seawater by inductively coupled plasma mass spectrometry using flow injection preconcentration. Spectrochim. Acta B 1998, 53, 1281–1287. [Google Scholar] [CrossRef]
- Bau, M.; Dulski, P. Anthropogenic origin of positive gadolinium anomalies in river waters. Earth Planet. Sci. Lett. 1996, 143, 245–255. [Google Scholar] [CrossRef]
- Elbaz-Poulichet, F.; Seidel, J.-L.; Othoniel, C. Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France. Water Res. 2002, 36, 1102–1105. [Google Scholar] [CrossRef]
- Fu, Q.; Yang, L.; Wang, Q. On-line preconcentration with a novel alkyl phosphinic acid extraction resin coupled with inductively coupled plasma mass spectrometry for determination of trace rare earth elements in seawater. Talanta 2007, 72, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Shellock, F.G.; Spinazzi, A. MRI Safety Update 2008: Part 1, MRI contrast agents and nephrogenic systemic fibrosis. Am. J. Roentgenol. 2008, 191, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Kulaksız, S.; Bau, M. Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth Planet. Sci. Lett. 2013, 362, 43–50. [Google Scholar] [CrossRef]
- Shabani, M.B.; Akagi, T.; Shimizu, H.; Masuda, A. Determination of trace lanthanides and yttrium in seawater by inductively coupled plasma mass spectrometry after preconcentration with solvent extraction and back-extraction. Anal. Chem. 1990, 62, 2709–2714. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Kamber, B.S. Rare earth element concentrations in the natural water reference materials (NRCC) NASS-5, CASS-4 and SLEW-3. Geostand. Geoanal. Res. 2007, 31, 95–103. [Google Scholar] [CrossRef]
- Labrecque, C.; Lariviere, D. Quantification of rare earth elements using cloud point extraction with diglycolamide and ICP-MS for environmental analysis. Anal. Methods 2014, 6, 9291–9298. [Google Scholar] [CrossRef]
- Greaves, M.J.; Elderfield, H.; Klinkhammer, G.P. Determination of the rare earth elements in natural waters by isotope-dilution mass spectrometry. Anal. Chim. Acta 1989, 218, 265–280. [Google Scholar] [CrossRef]
- Bayon, G.; Birot, D.; Bollinger, C.; Barrat, J.A. Multi-element determination of trace elements in natural water reference materials by ICP-SFMS after Tm addition and iron co-precipitation. Geostand. Geoanal. Res. 2010, 35, 145–153. [Google Scholar] [CrossRef]
- Freslon, N.; Bayon, G.; Birot, D.; Bollinger, C.; Barrat, J.A. Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in seawater using Tm addition and Mg(OH)2 co-precipitation. Talanta 2011, 85, 582–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.-Y.; Yang, J.; Henderson, G.M. A robust procedure for high-precision determination of rare earth element concentrations in seawater. Geostand. Geoanal. Res. 2014, 39, 277–292. [Google Scholar] [CrossRef]
- Zhang, T.; Shan, X.; Liu, R.; Tang, H.; Zhang, S. Preconcentration of rare earth elements in seawater with poly(acrylaminophosphonic dithiocarbamate) chelating fiber prior to determination by inductively coupled plasma mass spectrometry. Anal. Chem. 1998, 70, 3964–3968. [Google Scholar] [CrossRef]
- Wen, B.; Shan, X.; Xu, S. Preconcentration of ultratrace rare earth elements in seawater with 8-hydroxyquinoline immobilized polyacrylonitrile hollow fiber membrane for determination by inductively coupled plasma mass spectrometry. Analyst 1999, 124, 621–626. [Google Scholar] [CrossRef]
- Haley, B.A.; Klinkhammer, G.P. Complete separation of rare earth elements from small volume seawater samples by automated ion chromatography: Method development and application to benthic flux. Mar. Chem. 2003, 82, 197–220. [Google Scholar] [CrossRef]
- Zhu, Y.; Itoh, A.; Fujimori, E.; Umemura, T.; Haraguchi, H. Determination of rare earth elements in seawater by ICP-MS after preconcentration with a chelating resin-packed minicolumn. J. Alloys Compd. 2006, 408–412, 985–988. [Google Scholar] [CrossRef]
- Karadas, C.; Kara, D.; Fisher, A. Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with off-line column preconcentration using 2,6-diacetylpyridine functionalized Amberlite XAD-4. Anal. Chim. Acta 2011, 689, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Zereen, F.; Yilmaz, V.; Arslan, Z. Solid phase extraction of rare earth elements in seawater and estuarine water with 4-(2-thiazolylazo) resorcinol immobilized Chromosorb 106 for determination by inductively coupled plasma mass spectrometry. Microchem. J. 2013, 110, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.A.; Hernandez, P.; Salazar, V.; Castrillejo, Y.; Barrado, E. Amperometric biosensor for oxalate determination in urine using sequential injection analysis. Molecules 2012, 17, 8859–8871. [Google Scholar] [CrossRef] [PubMed]
- Halicz, L.; Gavrieli, I.; Dorfman, E. On-line method for inductively coupled plasma mass spectrometric determination of rare earth elements in highly saline brines. J. Anal. At. Spectrom. 1996, 11, 811–814. [Google Scholar] [CrossRef]
- Benkhedda, K.; Infante, H.G.; Ivanova, E.; Adams, F.C. Determination of sub-parts-per-trillion levels of rare earth elements in natural waters by inductively coupled plasma time-of-flight mass spectrometry after flow injection on-line sorption preconcentration in a knotted reactor. J. Anal. At. Spectrom. 2001, 16, 995–1001. [Google Scholar] [CrossRef]
- Willie, S.N.; Sturgeon, R.E. Determination of transition and rare earth elements in seawater by flow injection inductively coupled plasma time-of-flight mass spectrometry. Spectrochim. Acta B 2001, 56, 1707–1716. [Google Scholar] [CrossRef]
- Hirata, S.; Kajiya, T.; Aihara, M.; Honda, K.; Shikino, O. Determination of rare earth elements in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry. Talanta 2002, 58, 1185–1194. [Google Scholar] [CrossRef]
- Kajiya, T.; Aihara, M.; Hirata, S. Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with on-line column pre-concentration using 8-quinolinole-immobilized fluorinated metal alkoxide glass. Spectrochim. Acta B 2004, 59, 543–550. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Yan, X.-P.; Wang, Z.-P.; Zhang, Z.-P.; Liu, L.-W. Flow injection on-line solid phase extraction coupled with inductively coupled plasma mass spectrometry for determination of (ultra) trace rare earth elements using maleic acid grafted polytetrafluoroethylene fibers as sorbent. J. Am. Soc. Mass Spectrom. 2006, 17, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Umemura, T.; Haraguchi, H.; Inagaki, K.; Chiba, K. Determination of REEs in seawater by ICP-MS after on-line preconcentration using a syringe-driven chelating column. Talanta 2009, 78, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Hathorne, E.C.; Haley, B.; Stichel, T.; Grasse, P.; Zieringer, M.; Frank, M. Online preconcentration ICP-MS analysis of rare earth elements in seawater. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Arslan, Z.; Paulson, A.J. Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS): An investigation of rare earth element signatures in otolith microchemistry. Anal. Chim. Acta 2003, 476, 1–13. [Google Scholar] [CrossRef]
- Shelley, R.U.; Zachhuber, B.; Sedwick, P.N.; Worsfold, P.J.; Lohan, M.C. Determination of total dissolved cobalt in UV-irradiated seawater using flow injection with chemiluminescence detection. Limnol. Oceanogr. Methods 2010, 8, 352–362. [Google Scholar] [CrossRef]
- Sturgeon, R.E.; Willie, S.N.; Yang, L.; Greenberg, P.; Spatz, R.O.; Chen, Z.; Scriver, C.; Clancy, V.; Lam, J.W.H.; Thorrold, S. Certification of a fish otolith reference material in support of quality assurance for trace element analysis. J. Anal. At. Spectrom. 2005, 20, 1067–1071. [Google Scholar] [CrossRef]
- Zhu, Z.; Zheng, A. Determination of rhenium in seawater from the Jiulong River Estuary and Taiwan Strait, China by automated flow injection inductively coupled plasma-mass spectrometry. Anal. Lett. 2017, 50, 1422–1434. [Google Scholar] [CrossRef]
- Zhu, Z.; Zheng, A. Automated flow injection coupled with ICP-MS for the online determination of trace silver in seawater. Spectroscopy 2017, 32, 50–59. [Google Scholar]
- Pourmand, A.; Dauphas, N.; Ireland, T.J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 2012, 291, 38–54. [Google Scholar] [CrossRef]
- Wen, L.-S.; Stordal, M.C.; Tang, D.; Gill, G.A.; Santschi, P.H. An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Mar. Chem. 1996, 55, 129–152. [Google Scholar] [CrossRef]
Sample Availability: Samples of the those seawater samples from Jiulong River Estuary and Taiwan Strait are available from the authors, the other samples and reagents are not available from the authors. |
Elements | CASS-4 (ng kg−1) | SLEW-3 (ng kg−1) | ||||
---|---|---|---|---|---|---|
Reference Compiled a | This Study b | RSD c (%) | Reference Compiled d | This Study b | RSD c (%) | |
Y | 20.93 ± 0.40 | 18.89 ± 0.12 | 7.25 | 40.55 ± 2.05 | 38.10 ± 2.39 | 4.41 |
La | 9.37 ± 0.38 | 9.96 ± 0.15 | 4.33 | 7.80 ± 0.13 | 8.22 ± 0.25 | 3.71 |
Ce | 4.69 ± 0.92 | 4.90 ± 0.07 | 3.13 | 7.08 ± 0.68 | 7.19 ± 0.45 | 1.06 |
Pr | 1.33 ± 0.06 | 1.37 ± 0.01 | 2.10 | 1.68 ± 0.05 | 1.64 ± 0.03 | 1.78 |
Nd | 5.39 ± 0.47 | 5.49 ± 0.04 | 1.30 | 8.18 ± 0.35 | 7.97 ± 0.19 | 1.82 |
Sm | 5.55 ± 0.17 | 6.00 ± 0.21 | 5.45 | 7.10 ± 0.15 | 7.38 ± 0.21 | 2.69 |
Eu | 0.23 ± 0.03 | 0.23 ± 0.02 | 0.00 | 0.54 ± 0.08 | 0.55 ± 0.02 | 1.72 |
Gd | 1.29 ± 0.1 | 1.46 ± 0.04 | 8.74 | 3.09 ± 0.01 | 3.20 ± 0.06 | 2.36 |
Tb | 0.20 ± 0.03 | 0.20 ± 0.01 | 0.00 | 0.45 ± 0 | 0.43 ± 0.02 | 2.94 |
Dy | 1.41 ± 0.08 | 1.42 ± 0.05 | 0.38 | 3.37 ± 0.02 | 3.33 ± 0.08 | 0.95 |
Ho | 0.38 ± 0.05 | 0.35 ± 0.02 | 6.32 | 0.91 ± 0 | 0.91 ± 0.07 | 0.13 |
Er | 1.20 ± 0.1 | 1.27 ± 0.08 | 4.15 | 2.71 ± 0.01 | 2.78 ± 0.05 | 1.72 |
Tm | 0.23 ± 0.07 | 0.20 ± 0.02 | 10.75 | 0.37 ± 0 | 0.35 ± 0.01 | 3.93 |
Yb | 1.21 ± 0.14 | 1.16 ± 0.01 | 3.29 | 1.95 ± 0.14 | 1.85 ± 0.06 | 3.85 |
Lu | 0.20 ± 0.03 | 0.19 ± 0.01 | 4.56 | 0.31 ± 0.03 | 0.30 ± 0.01 | 3.51 |
Elements | Blank a (ng kg−1) | LODs (ng kg−1) |
---|---|---|
Y | 0.126 ± 0.023 | 0.034 |
La | 0.172 ± 0.05 | 0.045 |
Ce | 0.61 ± 0.112 | 0.078 |
Pr | 0.038 ± 0.023 | 0.019 |
Nd | 0.124 ± 0.038 | 0.048 |
Sm | 0.046 ± 0.021 | 0.027 |
Eu | 0.007 ± 0.004 | 0.009 |
Gd | 0.05 ± 0.01 | 0.022 |
Tb | 0.007 ± 0.003 | 0.003 |
Dy | 0.03 ± 0.007 | 0.021 |
Ho | 0.006 ± 0.003 | 0.003 |
Er | 0.02 ± 0.007 | 0.012 |
Tm | 0.003 ± 0.003 | 0.002 |
Yb | 0.009 ± 0.007 | 0.005 |
Lu | 0.002 ± 0.002 | 0.002 |
Loading | Eluting | Duration (min) | Absorbent | Sample (mL) | LODs (ng kg−1) | Reference | ||
---|---|---|---|---|---|---|---|---|
Rate (mL min−1) | Rate (mL min−1) | Time (s) | HNO3 (mol L−1) | |||||
5 | 1.2 | 80 | 1.0 | ~5.5 | - a | 10 | 0.06–0.27 | [8] |
12 | 1.5 | 300 | 2.0 | ~12 | Amberlite XAD-7 + 8HQ | 100 | 0.002–0.016 b | [9] |
2.0 | 1.0 | 30 | 0.1 | >30 | APAR c | 60 | 0.001–0.013 | [12] |
2 | 1.0 | 100 | 0.8 d | ~9.5 | I-8-HQ e | 3 | 0.06–0.6 | [29] |
4.4 | 0.8 | 90 | 0.4 | ~4 | PMBP f | 2.2 | 0.003–0.04 | [30] |
5 | 1.5 | 30 | 1.5 | 12 | Toyopearl AF Chelate 650M® | 50 | 0.02–0.29 | [31] |
3.2 | 1.7 | 61 | 1.0 | 7 | Muromac A-1 | 6.4 | 0.04–0.251 | [32] |
3.2 | 2.0 | 60 | 1.4 | 7 | MAF-8HQ g | 6.4 | 0.11–0.30 | [33] |
7.4 | 0.5 | 35 | 0.9 | 2.8 | M-PTFE h | 14.8 | 0.001–0.02 | [34] |
5 | 0.5 | 120 | 2 | 6 | Nobias chelate PB1M | 10 | 0.005–0.09 | [35] |
1.0 | 0.3 | 5 | 1.5 i | 15 | - | 7 | 0.001–0.036 | [36] |
2.0 | 1.0 | 60 | 0.8 | ~5.3 | Toyopearl AF Chelate 650M® | 6 | 0.002–0.078 | This study |
Rf Power | 1500 W |
---|---|
Plasma gas | 15.0 L min−1 |
Auxiliary gas | 1.0 L min−1 |
Carrier gas | 0.85 L min−1 |
Collision gas (He) | 4.1 mL min−1 |
Integration time | 0.1 s per isotope |
Sampling depth | 8 mm |
Target isotopes | 89Y 139La 140Ce 141Pr 143Nd 147Sm 151Eu 157Gd 159Tb 163Dy 165Ho 166Er 169Tm 174Yb 175Lu |
Step | Duration/s | Pump 1/mL min−1 | Pump 2/mL min−1 | 8-Position Valve | 6-Way Valve |
---|---|---|---|---|---|
Conditioning | 20 | 0.5 | 1.5 | 1 | A |
Loading | 180 | 0.5 | 2.0 | 1 | A |
Rinsing | 60 | 0.5 | 2.0 | 1 | A |
Eluting | 50 | 1.0 | 0 | 2 | B |
Return to conditioning |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Zheng, A. Fast Determination of Yttrium and Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry after Online Flow Injection Pretreatment. Molecules 2018, 23, 489. https://doi.org/10.3390/molecules23020489
Zhu Z, Zheng A. Fast Determination of Yttrium and Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry after Online Flow Injection Pretreatment. Molecules. 2018; 23(2):489. https://doi.org/10.3390/molecules23020489
Chicago/Turabian StyleZhu, Zuhao, and Airong Zheng. 2018. "Fast Determination of Yttrium and Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry after Online Flow Injection Pretreatment" Molecules 23, no. 2: 489. https://doi.org/10.3390/molecules23020489
APA StyleZhu, Z., & Zheng, A. (2018). Fast Determination of Yttrium and Rare Earth Elements in Seawater by Inductively Coupled Plasma-Mass Spectrometry after Online Flow Injection Pretreatment. Molecules, 23(2), 489. https://doi.org/10.3390/molecules23020489