Network Medicine for Alzheimer’s Disease and Traditional Chinese Medicine
Abstract
:1. Introduction
2. Functional Network Connectivity
3. Particular Components of the Network
3.1. Myelination
3.2. Myeloid Cells
4. Genes and Pathways
5. Network and Pathway Modeling
6. Traditional Chinese Medicine (TCM) and Network Pharmacology
6.1. The Effects of Particular TCM Herbs and Mixtures
6.2. Suppression of Inflammation by TCM
6.3. Inhibition of AD Network Components
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
NM | Network Medicine |
TCM | Traditional Chinese Medicine |
ISGNs | Integrated Gene Similarity Networks |
fMRI | Functional Magnetic Resonance Imaging |
MCI | Mild Cognitive Impairment |
OSMTs | Orthogonal Minimal Spanning Trees |
PAC | Phase-Amplitude Cross Frequency Coupling |
MMN | Mismatch Negativity |
GWAS | Genome-Wide Association Study |
SAMP8 | Senescence Accelerated Mouse-Prone 8 |
PPI | Protein-Protein Interaction |
PD | Parkinson’s Disease |
ADNI | Alzheimer’s Disease Neuroimaging Initiative |
NetWAS | Network-Wide Association Study |
APP | Amyloid Precursor Protein |
CNN | Convolutional Neural Network |
LW | Liuwei Dihuang Decoction |
MMSE | Mini-Mental State Examination |
DSS | Danggui-Shaoyao-San |
G-Re | Ginsenoside Re |
MOA | Mechanism of Action |
SFI | Shenfu Injection |
HupA | Huperzine A |
Apo E4 | Apolipoprotein E4 |
BBB | Blood-Brain Barrier |
BACE1 | β-site APP Cleaving Enzyme 1 |
AChE | Acetylcholinesterase |
HDAC2 | Human Histone Deacetylase 2 |
References
- Goh, K.-I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabási, A.-L. The human disease network. Proc. Natl. Acad. Sci. 2007, 104, 8685–8690. [Google Scholar] [CrossRef] [PubMed]
- Menche, J.; Sharma, A.; Kitsak, M.; Ghiassian, S.D.; Vidal, M.; Loscalzo, J.; Barabási, A.-L. Uncovering disease-disease relationships through the incomplete interactome. Science 2015, 347, 1257601. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Guo, M.; Wang, C.; Xing, L.; Wang, L.; Zhang, Y. Constructing an integrated gene similarity network for the identification of disease genes. J. Biomed. Semant. 2017, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.C.; Majumdar, S.; Korolev, I.O.; Berger, K.L.; Bozoki, A.C. Alzheimer’s disease and amnestic mild cognitive impairment weaken connections within the default-mode network: A multi-modal imaging study. J. Alzheimers Dis. JAD 2013, 34, 969–984. [Google Scholar] [PubMed]
- Sanz-Arigita, E.J.; Schoonheim, M.M.; Damoiseaux, J.S.; Rombouts, S.A.; Maris, E.; Barkhof, F.; Scheltens, P.; Stam, C.J. Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of fMRI resting-state functional connectivity. PLoS ONE 2010, 5, e13788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pievani, M.; de Haan, W.; Wu, T.; Seeley, W.W.; Frisoni, G.B. Functional network disruption in the degenerative dementias. Lancet Neurol. 2011, 10, 829–843. [Google Scholar] [CrossRef]
- Balthazar, M.L.; de Campos, B.M.; Franco, A.R.; Damasceno, B.P.; Cendes, F. Whole cortical and default mode network mean functional connectivity as potential biomarkers for mild Alzheimer’s disease. Psychiatry Res. 2014, 221, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Park, B.; Kim, S.J.; Kim, H.S.; Choi, C.G.; Jung, S.C.; Oh, J.Y.; Lee, J.H.; Roh, J.H.; Shim, W.H. Improved diagnostic accuracy of Alzheimer’s disease by combining regional cortical thickness and default mode network functional connectivity: Validated in the Alzheimer’s disease neuroimaging initiative set. Korean J. Radiol. 2017, 18, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.S.; Yoo, K.; Lee, Y.B.; Chung, J.; Lim, J.E.; Yoon, B.; Jeong, Y. Default mode network functional connectivity in early and late mild cognitive impairment: Results from the Alzheimer’s disease neuroimaging initiative. Alzheimer Dis. Asso. Disord. 2016, 30, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, L.; Chen, J.; Xu, Y.; Jie, X. Alzheimer classification using a minimum spanning tree of high-order functional network on fMRI dataset. Front. Neurosci. 2017, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, S.I.; Salis, C.; Tarnanas, I.; Linden, D.E. Topological filtering of dynamic functional brain networks unfolds informative chronnectomics: A novel data-driven thresholding scheme based on orthogonal minimal spanning trees (OMSTs). Front. Neuroinform. 2017, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Ahnaou, A.; Moechars, D.; Raeymaekers, L.; Biermans, R.; Manyakov, N.V.; Bottelbergs, A.; Wintmolders, C.; Van Kolen, K.; Van De Casteele, T.; Kemp, J.A.; et al. Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer’s disease pathology. Sci. Rep. 2017, 7, 14189. [Google Scholar] [CrossRef] [PubMed]
- Tanninen, S.E.; Nouriziabari, B.; Morrissey, M.D.; Bakir, R.; Dayton, R.D.; Klein, R.L.; Takehara-Nishiuchi, K. Entorhinal tau pathology disrupts hippocampal-prefrontal oscillatory coupling during associative learning. Neurobiol. Aging 2017, 58, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, M.C.; Bischof, G.N.; Seemiller, J.; Hammes, J.; Kukolja, J.; Onur, O.A.; Jessen, F.; Fliessbach, K.; Neumaier, B.; Fink, G.R.; et al. Networks of tau distribution in Alzheimer’s disease. Brain 2018, 141, 568–581. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Knopman, D.S.; Gunter, J.L.; Graff-Radford, J.; Vemuri, P.; Boeve, B.F.; Petersen, R.C.; Weiner, M.W.; Jack, C.R., Jr. Cascading network failure across the Alzheimer’s disease spectrum. Brain 2016, 139, 547–562. [Google Scholar] [CrossRef] [PubMed]
- De Haan, W.; van Straaten, E.C.W.; Gouw, A.A.; Stam, C.J. Altering neuronal excitability to preserve network connectivity in a computational model of Alzheimer’s disease. PLoS Comput. Biol. 2017, 13, e1005707. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, A.T.; Moyon, S.; Wang, M.; Katsyv, I.; Song, W.M.; Zhou, X.; Dammer, E.B.; Duong, D.M.; Aaker, J.; Zhao, Y.; et al. Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer’s disease. Mol. Neurodegener. 2017, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- De Rossi, P.; Buggia-Prevot, V.; Clayton, B.L.; Vasquez, J.B.; van Sanford, C.; Andrew, R.J.; Lesnick, R.; Botte, A.; Deyts, C.; Salem, S.; et al. Predominant expression of Alzheimer’s disease-associated bin1 in mature oligodendrocytes and localization to white matter tracts. Mol. Neurodegener. 2016, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, G.; Baer, K.; Buffo, A.; Curtis, M.A.; Faull, R.L.; Rees, M.I.; Gotz, M.; Dimou, L. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 2013, 61, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ma, Y.; Liu, Z.; Geng, Q.; Chen, Z.; Zhang, Y. Alterations of myelin morphology and oligodendrocyte development in early stage of Alzheimer’s disease mouse model. Neurosci. Lett. 2017, 642, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.K.; Sudol, K.L.; Janelsins, M.C.; Mastrangelo, M.A.; Frazer, M.E.; Bowers, W.J. Triple-transgenic Alzheimer’s disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia 2009, 57, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Logsdon, B.A.; Zhang, B.; Komashko, V.; Mostafavi, S.; Chen, M.; Perumal, T.M.; Funk, C.; Allen, M.; Amberkar, S.; Hide, W.; et al. Integrative network analysis of multiple Alzheimer’s disease RNASEQ studies from the accelerating medicine partnership-Alzheimer’s disease consortium. Alzheimers Dement. 2016, 12, P1026–P1027. [Google Scholar] [CrossRef]
- Huang, K.L.; Marcora, E.; Pimenova, A.A.; Di Narzo, A.F.; Kapoor, M.; Jin, S.C.; Harari, O.; Bertelsen, S.; Fairfax, B.P.; Czajkowski, J.; et al. A common haplotype lowers pu.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat. Neurosci. 2017, 20, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, R.; van der Lee, S.J.; Naj, A.C.; Bellenguez, C.; Badarinarayan, N.; Jakobsdottir, J.; Kunkle, B.W.; Boland, A.; Raybould, R.; Bis, J.C.; et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 2017, 49, 1373–1384. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.-R.; Cui, X.-L.; Zheng, Y.; Zhang, G.-R.; Li, P.; Huang, H.; Zhao, Y.-Y.; Zhou, W.-X.; Zhang, Y.-X. Nodes and biological processes identified on the basis of network analysis in the brain of the senescence accelerated mice as an Alzheimer’s disease animal model. Front. Aging Neurosci. 2013, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.S.; Xin, J.; Hu, Y.; Zhang, L.; Wang, J. Analyzing the genes related to Alzheimer’s disease via a network and pathway-based approach. Alzheimers Res. Ther. 2017, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Pan, Z.; Hu, Y.; Zhang, L.; Wang, J. Network and pathway-based analyses of genes associated with Parkinson’s disease. Mol. Neurobiol. 2017, 54, 4452–4465. [Google Scholar] [CrossRef] [PubMed]
- Voyle, N.; Keohane, A.; Newhouse, S.; Lunnon, K.; Johnston, C.; Soininen, H.; Kloszewska, I.; Mecocci, P.; Tsolaki, M.; Vellas, B.; et al. A pathway based classification method for analyzing gene expression for Alzheimer’s disease diagnosis. J. Alzheimers Dis. JAD 2016, 49, 659–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booij, B.B.; Lindahl, T.; Wetterberg, P.; Skaane, N.V.; Saebo, S.; Feten, G.; Rye, P.D.; Kristiansen, L.I.; Hagen, N.; Jensen, M.; et al. A gene expression pattern in blood for the early detection of Alzheimer’s disease. J. Alzheimers Dis. JAD 2011, 23, 109–119. [Google Scholar] [PubMed]
- Song, A.; Yan, J.; Kim, S.; Risacher, S.L.; Wong, A.K.; Saykin, A.J.; Shen, L.; Greene, C.S. Network-based analysis of genetic variants associated with hippocampal volume in Alzheimer’s disease: A study of ADNI cohorts. BioData Min. 2016, 9, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, X.; Yan, J.; Liu, K.; Kim, S.; Nho, K.; Risacher, S.L.; Greene, C.S.; Moore, J.H.; Saykin, A.J.; Shen, L. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules. Bioinformatics 2017, 33, 3250–3257. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Zhang, J.; Mou, X.; Yang, Y. Integrating gene expression and protein interaction data for signaling pathway prediction of Alzheimer’s disease. Comput. Math. Methods Med. 2014, 2014, 340758. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Zhou, W.; Liu, S.; Deng, Y.; Cai, F.; Tone, M.; Tone, Y.; Tong, Y.; Song, W. Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int. J. Neuropsychopharmacol. 2012, 15, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Billones, C.D.; Demetria, O.J.L.D.; Hostallero, D.E.D.; Naval, P.C. DemNet: A convolutional neural network for the detection of Alzheimer’s disease and mild cognitive impairment. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; p. 3724. [Google Scholar]
- Dartigues, J.F.; Grasset, L.; Helmer, C.; Feart, C.; Letenneur, L.; Jacqmin-Gadda, H.; Joly, P.; Amieva, H. Ginkgo biloba extract consumption and long-term occurrence of death and dementia. J. Prev. Alzheimers Dis. 2017, 4, 16–20. [Google Scholar] [PubMed]
- Savaskan, E.; Mueller, H.; Hoerr, R.; von Gunten, A.; Gauthier, S. Treatment effects of ginkgo biloba extract EGb 761® on the spectrum of behavioral and psychological symptoms of dementia: Meta-analysis of randomized controlled trials. Int. Psychogeriatr. 2018, 30, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, X.; Cheng, X.; Cheng, J.; Liu, F.; Xu, Y.; Zeng, J.; Qiao, S.; Zhou, W.; Zhang, Y. LW-AFC, a new formula derived from Liuwei Dihuang decoction, ameliorates cognitive deterioration and modulates neuroendocrine-immune system in SAMP8 mouse. Curr. Alzheimer Res. 2017, 14, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Ni, J.; Lu, T.; Zhang, X.; Wei, M.; Li, T.; Liu, W.; Wang, Y.; Shi, Y.; Tian, J. Adding Chinese herbal medicine to conventional therapy brings cognitive benefits to patients with Alzheimer’s disease: A retrospective analysis. BMC Complement. Altern. Med. 2017, 17, 533. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Wang, L.; Wu, T.; Yang, C.; Gao, L.; Cai, H.; Liu, J.; Fang, S.; Chen, Y.; Tan, W.; et al. Network pharmacology-based study on the mechanism of action for herbal medicines in Alzheimer treatment. J. Ethnopharmacol. 2017, 196, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, Q.; Zhang, Y. A systems pharmacology approach to decipher the mechanism of danggui-shaoyao-san decoction for the treatment of neurodegenerative diseases. J. Ethnopharmacol. 2016, 178, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.P.; Yan, B.; Hou, M.; Sun, M.S.; He, K.; Guan, Y.; Yao, L.H.; Zhou, M.F. [study on material basis and mechanism of Erzhi wan prevent Alzheimer’s disease by network pharmacology]. Zhongguo Zhong Yao Za Zhi 2017, 42, 4211–4217. [Google Scholar] [PubMed]
- Li, J.; Liu, Y.; Li, W.; Wang, Z.; Guo, P.; Li, L.; Li, N. Metabolic profiling of the effects of ginsenoside re in an Alzheimer’s disease mouse model. Behav. Brain Res. 2018, 337, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhu, R.; Ye, H.; Tang, K.; Zhao, J.; Chen, Y.; Liu, Q.; Cao, Z. Towards a bioinformatics analysis of anti-Alzheimer’s herbal medicines from a target network perspective. Brief. Bioinform. 2013, 14, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Ma, Z.; Li, M.; Xing, Y.; Hou, Y. Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine Chinese Dragon’s blood. J. Ethnopharmacol. 2014, 152, 508–521. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Jiang, C.; Wang, Z.; Yi, X.; Gong, Y.; Chen, Y.; Fu, Y. Effect of huperzine A on Abeta-induced p65 of astrocyte in vitro. Biosci. Biotechnol. Biochem. 2016, 80, 2334–2337. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.T.; Qian, Z.M.; He, X.; Gong, Q.; Wu, K.C.; Jiang, L.R.; Lu, L.N.; Zhu, Z.J.; Zhang, H.Y.; Yung, W.H.; et al. Reducing iron in the brain: A novel pharmacologic mechanism of huperzine a in the treatment of Alzheimer’s disease. Neurobiol. Aging 2014, 35, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Liu, M.; Liu, Z.; Lv, D. Huperzine a for vascular dementia. Cochrane Database Syst. Rev. 2009, 2, CD007365. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.J.; Chen, H.Y.; Lee, C.C.; Chen, C.Y. Computational design of apolipoprotein e4 inhibitors for Alzheimer’s disease therapy from traditional Chinese medicine. BioMed Res. Int. 2014, 2014, 452625. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.J.; Lee, C.C.; Chen, C.Y. In silico design of bace1 inhibitor for Alzheimer’s disease by traditional Chinese medicine. BioMed Res. Int. 2014, 2014, 741703. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, D.; Kaur Dogra, A.; Tahrani, A.; Herrmann, F.; Wink, M. Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target. Molecules 2016, 21, 1161. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.C.; Lee, W.Y.; Chen, K.B.; Chan, Y.C.; Lee, C.C.; Chen, C.Y. In silico investigation of traditional Chinese medicine compounds to inhibit human histone deacetylase 2 for patients with Alzheimer’s disease. BioMed Res. Int. 2014, 2014, 769867. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarrell, J.T.; Gao, L.; Cohen, D.S.; Huang, X. Network Medicine for Alzheimer’s Disease and Traditional Chinese Medicine. Molecules 2018, 23, 1143. https://doi.org/10.3390/molecules23051143
Jarrell JT, Gao L, Cohen DS, Huang X. Network Medicine for Alzheimer’s Disease and Traditional Chinese Medicine. Molecules. 2018; 23(5):1143. https://doi.org/10.3390/molecules23051143
Chicago/Turabian StyleJarrell, Juliet T., Li Gao, David S. Cohen, and Xudong Huang. 2018. "Network Medicine for Alzheimer’s Disease and Traditional Chinese Medicine" Molecules 23, no. 5: 1143. https://doi.org/10.3390/molecules23051143
APA StyleJarrell, J. T., Gao, L., Cohen, D. S., & Huang, X. (2018). Network Medicine for Alzheimer’s Disease and Traditional Chinese Medicine. Molecules, 23(5), 1143. https://doi.org/10.3390/molecules23051143