A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols
Abstract
:1. Introduction
2. Epidemiologic Evidences
2.1. Studies in Animal Models
2.2. Studies in Humans
3. Biological Mechanisms
3.1. Digestive Enzyme Inhibition
3.1.1. Pancreatic Lipase Inhibition
3.1.2. Glucosidase/Amylase Inhibition
3.2. Generation of Short-Chain Fatty Acids (SFCA)
3.3. Modulation of Gut Microbiota
3.4. Regulating Lipid Metabolism
3.4.1. The Role of Energy Sensing Systems
3.4.2. Down-Regulation of Lipogenesis
3.4.3. Up-Regulation of Lipolysis via AMPK
4. Analysis of Inconsistent Results
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Yang, C.S.; Zhang, J.; Zhang, L.; Huang, J.; Wang, Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol. Nutr. Food Res. 2015, 60, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Yang, J.; Hsu, M.; Lee, R.; Grojean, E.M.; Ly, A.; Li, Z. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur. J. Nutr. 2017, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jobu, K.; Yokota, J.; Yoshioka, S.; Moriyama, H.; Murata, S.; Ohishi, M.; Miyamura, M. Effects of Goishi tea on diet-induced obesity in mice. Food Res. Int. 2013, 54, 324–329. [Google Scholar] [CrossRef]
- Welker, T.L.; Wan, X.; Zhou, Y.; Yang, Y.; Overturf, K.; Barrows, F.; Liu, K. Effect of dietary green tea supplementation on growth, fat content, and muscle fatty acid profile of rainbow trout (Oncorhynchus mykiss). Aquac. Int. 2016, 25, 1073–1094. [Google Scholar] [CrossRef]
- Kayashima, Y.; Murata, S.; Sato, M.; Matsuura, K.; Asanuma, T.; Chimoto, J.; Yamakawa-Kobayashi, K. Tea polyphenols ameliorate fat storage induced by high-fat diet in Drosophila melanogaster. Biochem. Biophys. Rep. 2015, 4, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Sae-Tan, S.; Grove, K.A.; Kennett, M.J.; Lambert, J.D. (−)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food Funct. 2011, 2, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zhang, X.; Miao, Y.; Cao, J.; Wu, Z.; Weng, P. The modulatory effect of (−)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Res. Int. 2017, 92, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Wang, L.; Wang, L.; Tanaka, Y.; Zhang, T.; Ashida, H. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct. 2014, 5, 2420–2429. [Google Scholar] [CrossRef] [PubMed]
- Raso, R.A.; Paim, R.R.; Pinheiro, S.V.; Júnior, W.C.; Vasconcellos, L.D.; Alberti, L.R. Effects of chronic consumption of green tea on weight and body fat distribution of Wistar rats evaluated by computed tomography. Acta Cir. Bras. 2017, 32, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Shin, Y.; Jung, S.; Kim, Y. Effects of epigallocatechin-3-gallate on thermogenesis and mitochondrial biogenesis in brown adipose tissues of diet-induced obese mice. Food Nutr. Res. 2017, 61, 1325307. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Wang, H.; Sheridan, Z.P. Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea. J. Food Drug Anal. 2018, 26, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hursel, R.; Viechtbauer, W.; Westerterp-Plantenga, M. Effects of green tea on weight loss and weight maintenance. A meta-analysis. Appetite 2009, 52, 838. [Google Scholar]
- Phung, O.J.; Baker, W.L.; Matthews, L.J.; Lanosa, M.; Thorne, A.; Coleman, C.I. Effect of green tea catechins with or without caffeine on anthropometric measures: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2009, 91, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Hursel, R.; Viechtbauer, W.; Dulloo, A.G.; Tremblay, A.; Tappy, L.; Rumpler, W.; Westerterp-Plantenga, M.S. The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: A meta-analysis. Obes. Rev. 2011, 12, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Palmatier, M.A.; Kang, A.; Kidd, K.K. Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol. Psychiaty 1999, 46, 557–567. [Google Scholar] [CrossRef]
- Dulloo, A.G.; Duret, C.; Rohrer, D.; Girardier, L.; Mensi, N.; Fathi, M.; Vandermander, J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am. J. Clin. Nutr. 1999, 70, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Barrenechea, L.; Alcorta, P.; Larrarte, E.; Margareto, J.; Labayen, I. Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: Randomised, double-blind, placebo-controlled clinical trial. Br. J. Nutr. 2013, 111, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Janssens, P.L.; Hursel, R.; Westerterp-Plantenga, M.S. Long-Term green tea extract supplementation does not affect fat absorption, resting energy expenditure, and body composition in adults. J. Nutr. 2015, 145, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Dostal, A.M.; Samavat, H.; Espejo, L.; Arikawa, A.Y.; Stendell-Hollis, N.R.; Kurzer, M.S. Green tea extract and catechol-O-Methyltransferase genotype modify fasting serum insulin and plasma adiponectin concentrations in a randomized controlled trial of overweight and obese postmenopausal women. J. Nutr. 2015, 146, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Grove, K.A.; Sae-Tan, S.; Kennett, M.J.; Lambert, J.D. (−)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice. Obesity 2012, 20, 2311–2313. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Hase, T.; Tokimitsu, I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity 2007, 15, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Hamdaoui, M.H.; Snoussi, C.; Dhaouadi, K.; Fattouch, S.; Ducroc, R.; Gall, M.L.; Bado, A. tea decoctions prevent body weight gain in rats fed high-fat diet; black tea being more efficient than green tea. J. Nutr. Int. Metab. 2016, 6, 33–40. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Y.; Xu, H.; Zhu, Q.; Lu, H.; Zhang, M.; Sheng, J. Oxidized tea polyphenols prevent lipid accumulation in liver and visceral white adipose tissue in rats. Eur. J. Nutr. 2016, 56, 2037–2048. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Chen, Y.; Cheng, M.; Zhang, X.; Zheng, X.; Zhang, Z. The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. J. Food Sci. Technol. 2017, 55, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Glisan, S.L.; Grove, K.A.; Yennawar, N.H.; Lambert, J.D. Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies. Food Chem. 2017, 216, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.; Noh, S. Green tea as inhibitor of the intestinal absorption of lipids: Potential mechanism for its lipid-lowering effect. J. Nutr. Biochem. 2007, 18, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Unno, T.; Osada, C.; Motoo, Y.; Suzuki, Y.; Kobayashi, M.; Nozawa, A. Dietary tea catechins increase fecal energy in rats. J. Nutr. Sci. Vitaminol. 2009, 55, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.; Temple, N.J. Beverage Impacts on Health and Nutrition; Humana Press: New York, NY, USA, 2016. [Google Scholar]
- Wang, S.; Sun, Z.; Dong, S.; Liu, Y.; Liu, Y. Molecular interactions between (−)-Epigallocatechin gallate analogs and pancreatic lipase. PLoS ONE 2014, 9, e111143. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Fukui, Y.; Asami, S.; Toyoda-Ono, Y.; Iwashita, T.; Shibata, H.; Kiso, Y. Inhibitory effects of oolong Tea polyphenols on pancreatic lipase in vitro. J. Agric. Food Chem. 2005, 53, 4593–4598. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.; Kusumoto, A.; Abe, K.; Hosoda, K.; Kiso, Y.; Wang, M.; Yamamoto, S. Polyphenol-enriched oolong tea increases fecal lipid excretion. Eur. J. Clin. Nutr. 2006, 60, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Thurairajah, P.H.; Syn, W.; Neil, D.A.; Stell, D.; Haydon, G. Orlistat (Xenical)-induced subacute liver failure. Eur. J. Gastroenterol. Hepatol. 2005, 17, 1437–1438. [Google Scholar] [CrossRef] [PubMed]
- Karamadoukis, L.; Shivashankar, G.; Ludeman, L.; Williams, A. An unusual complication of treatment with orlistat. Clin. Nephrol. 2009, 71, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.; St-Pierre, S.; Tremblay, A. Currently available drugs for the treatment of obesity: Sibutramine and orlistat. Mini-Rev. Med. Chem. 2007, 7, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Kong, F. Effects of tea polyphenols and different teas on pancreatic α-amylase activity in vitro. LWT-Food Sci. Technol. 2016, 66, 232–238. [Google Scholar] [CrossRef]
- Sun, L.; Warren, F.J.; Netzel, G.; Gidley, M.J. 3 or 3′-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea polyphenols. J. Funct. Foods 2016, 26, 144–156. [Google Scholar] [CrossRef]
- Koh, L.W.; Wong, L.L.; Loo, Y.Y.; Kasapis, S.; Huang, D. Evaluation of different teas against starch digestibility by mammalian glycosidases. J. Agric. Food Chem. 2010, 58, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Apostolidis, E.; Shetty, K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 aiabetes. J. Food Biochem. 2008, 32, 15–31. [Google Scholar] [CrossRef]
- Miao, M.; Jiang, H.; Jiang, B.; Li, Y.; Cui, S.W.; Jin, Z. Structure elucidation of catechins for modulation of starch digestion. J. Funct. Foods 2013, 5, 2024–2029. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Z.; Zhu, H.; Zhang, W.; Chen, Y. In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea. BMC Complement. Altern. Med. 2016, 16, 378. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Igarashi, M.; Yamada, S.; Takahashi, N.; Watanabe, K. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. J. Ethnopharmacol. 2015, 161, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, H.; Du, Y.; Yan, R.; Ou, S.; Chen, T.; Fu, L. C-geranylated flavanones from Ying De black tea and their antioxidant and α -glucosidase inhibition activities. Food Chem. 2017, 235, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Rana, M.M.; Liu, G.; Gao, M.; Li, D.; Wu, F.; Wei, S. Green tea flavour determinants and their changes over manufacturing processes. Food Chem. 2016, 212, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Gao, Y.; Liu, Y.; Zheng, X.; Ye, J.; Liang, Y.; Lu, J. Studies on the mechanism of efficient extraction of tea components by aqueous ethanol. Food Chem. 2016, 194, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Kim, Y.; Park, J.; Kim, Y.; Kim, S. Changes in major polyphenolic compounds of tea (Camellia sinensis) leaves during the production of black tea. Food Sci. Biotechnol. 2016, 25, 1523–1527. [Google Scholar] [CrossRef]
- Mahmood, N. A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. Comp. Clin. Pathol. 2014, 25, 1253–1264. [Google Scholar] [CrossRef]
- Nyambe-Silavwe, H.; Williamson, G. Polyphenol and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: A randomised, controlled, single-blind, cross-over intervention. Br. J. Nutr. 2016, 116, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Striegel, L.; Kang, B.; Pilkenton, S.J.; Rychlik, M.; Apostolidis, E. Effect of black tea and black tea pomace polyphenols on α-Glucosidase and α-Amylase Inhibition, relevant to type 2 diabetes prevention. Front. Nutr. 2015, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Nyman, M.; Fåk, F. Modulation of gut microbiota in rats fed high-fat diets by processing whole-grain barley to barley malt. Mol. Nutr. Food Res. 2015, 59, 2066–2076. [Google Scholar] [CrossRef] [PubMed]
- Besten, G.D.; Bleeker, A.; Gerding, A.; Eunen, K.V.; Havinga, R.; Dijk, T.H.; Bakker, B.M. Short-chain fatty acids protect against high-fat diet–Induced obesity via a PPAR γ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015, 64, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G. AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. Curr. Opin. Cell Biol. 2015, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Besten, G.D.; Gerding, A.; Dijk, T.H.; Ciapaite, J.; Bleeker, A.; Eunen, K.V.; Bakker, B.M. Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor γ and glucagon-like peptide-1. PLoS ONE 2015, 10, e0136364. [Google Scholar] [CrossRef] [PubMed]
- Besten, G.D.; Havinga, R.; Bleeker, A.; Rao, S.; Gerding, A.; Eunen, K.V.; Bakker, B.M. The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with melioration of major biomarkers of the metabolic syndrome. PLoS ONE 2014, 9, e107392. [Google Scholar]
- Balaji, M.; Ganjayi, M.S.; Kumar, G.E.; Parim, B.N.; Mopuri, R.; Dasari, S. A review on possible therapeutic targets to contain obesity: The role of phytochemicals. Obes. Res. Clin. Pract. 2016, 10, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zuo, T.; Zhang, N.; Shi, H.; Liu, F.; Wu, J.; Tang, Q. High throughput sequencing analysis reveals amelioration of intestinal dysbiosis by squid ink polysaccharide. J. Funct. Foods 2016, 20, 506–515. [Google Scholar] [CrossRef]
- Candela, M.; Maccaferri, S.; Turroni, S.; Carnevali, P.; Brigidi, P. Functional intestinal microbiome, new frontiers in prebiotic design. Int. J. Food Microbiol. 2010, 140, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Korpela, K.; Flint, H.J.; Johnstone, A.M.; Lappi, J.; Poutanen, K.; Dewulf, E.; Salonen, A. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS ONE 2014, 9, e90702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilg, H.; Moschen, A.R. Microbiota and diabetes: An evolving relationship. Gut 2014, 63, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Gordon, J.I. A core gut microbiome in obese and lean twins. Nature 2008, 457, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Bradlow, H.L. Obesity and the gut microbiome: Pathophysiological aspects. Horm. Mol. Biol. Clin. Investig. 2014, 17, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Million, M.; Lagier, J.; Yahav, D.; Paul, M. Gut bacterial microbiota and obesity. Clin. Microbiol. Infect. 2013, 19, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Backhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [PubMed]
- Bessesen, D. An obesity-associated gut microbiome with increased capacity for energy harvest. Yearb. Endocrinol. 2007, 163–165. [Google Scholar] [CrossRef]
- Parks, B.; Nam, E.; Org, E.; Kostem, E.; Norheim, F.; Hui, S.; Lusis, A. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice cell. Metabolism 2013, 17, 141–152. [Google Scholar]
- Remely, M.; Tesar, I.; Hippe, B.; Gnauer, S.; Rust, P.; Haslberger, A. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef. Microbes 2015, 6, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Kałużna-Czaplińska, J.; Gątarek, P.; Chartrand, M.S.; Dadar, M.; Bjørklund, G. Is there a relationship between intestinal microbiota, dietary compounds, and obesity? Trends Food Sci. Technol. 2017, 70, 105–113. [Google Scholar] [CrossRef]
- Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 2016, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharm. 2017, 139, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, X.; Sun, Y.; Hu, B.; Sun, Y.; Jabbar, S.; Zeng, X. Fermentation in vitro of EGCG, GCG and EGCG3”Me isolated from Oolong tea by human intestinal microbiota. Food Res. Int. 2013, 54, 1589–1595. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Z.; Weng, P. Antioxidant and Hepatoprotective Effect of (−)-Epigallocatechin 3-O-(3-O-Methyl) gallate (EGCG3″Me) from Chinese Oolong Tea. J. Agric. Food Chem. 2014, 62, 10046–10054. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qiao, L.; Zhang, X.; Wu, Z.; Weng, P. Effect of methylated tea catechins from Chinese oolong tea on the proliferation and differentiation of 3T3-L1 preadipocyte. Fitoterapia 2015, 104, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, X.; Sun, Y.; Su, D.; Sun, Y.; Hu, B.; Zeng, X. Purification and fermentation in vitro of sesaminol triglucoside from sesame cake by human intestinal microbiota. J. Agric. Food Chem. 2013, 61, 1868–1877. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-y, M.; Garrett, W.S. The Microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, W.; Huang, J.; Ding, Y.; Pan, Z.; Zhao, Y.; Zeng, X. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota. Food Funct. 2016, 7, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Indias, I.; Tinahones, F.J. Impaired adipose tissue expandability and lipogenic capacities as ones of the main causes of metabolic disorders. J. Diabetes Res. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Wang, L.; Tinshun, Z.; Nakamura, T.; Ashida, H. Fermented tea improves glucose intolerance in mice by enhancing translocation of glucose transporter 4 in skeletal muscle. J. Agric. Food Chem. 2012, 60, 11366–11371. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.; Bolin, A.P.; Cardoso, C.A.; Otton, R. Green tea extract activates AMPK and ameliorates white adipose tissue metabolic dysfunction induced by obesity. Eur. J. Nutr. 2015, 55, 2231–2244. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Ghoshal, S.; Porter, T.D. Phosphorylation of hepatic AMP-activated protein kinase and liver kinase B1 is increased after a single oral dose of green tea extract to mice. Nutr. Res. 2012, 32, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Farah, B.L.; Sinha, R.A.; Wu, Y.; Singh, B.K.; Bay, B.; Yen, P.M. Epigallocatechin-3-Gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance. PLoS ONE 2014, 9, e87161. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.C.; Gonzalo-Benito, H.; Jové, M.; Fourcade, S.; Cassanyé, A.; Boada, J.; Portero-Otín, M. Dietary intake of green tea polyphenols regulates insulin sensitivity with an increase in AMP-activated protein kinase α content and changes in mitochondrial respiratory complexes. Mol. Nutr. Food Res. 2012, 57, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Moseti, D.; Regassa, A.; Kim, W. Molecular regulation of adipogenesis and otential anti-adipogenic bioactive molecules. Int. J. Mol. Sci. 2016, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Lefterova, M.I.; Lazar, M.A. New developments in adipogenesis. Trends Endocrinol. Metab. 2009, 20, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Spiegelman, B.M. Transcriptional regulation of brown and white adipogenesis. In Novel Insights into Adipose Cell Functions; Research and Perspectives in Endocrine Interactions; Springer: Berlin/Heidelberg, Germany, 2010; pp. 89–92. [Google Scholar]
- Wen, X. Methylated Flavonoids Have Greatly Improved Intestinal Absorption and Metabolic Stability. Drug Metab. Dispos. 2006, 34, 1786–1792. [Google Scholar] [CrossRef] [PubMed]
- Walle, T. Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. Int. J. Mol. Sci. 2009, 10, 5002–5019. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xi-fu, S. Effect of theaflavins on the differentiation of rabbit bone marrow mesenchymal stem cells into adipocytes. J. Clin. Rehabil. Tissue 2008, 16, 3061–3064. [Google Scholar]
- Cao, Z.; Yang, H.; He, Z.; Luo, C.; Xu, Z.; Gu, D.; Lin, Q. Effects of aqueous extracts of raw Pu-erh tea and ripened Pu-Erh tea on proliferation and differentiation of 3T3-L1 Preadipocytes. Phytother. Res. 2012, 27, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Deng, H.; Cao, J. The comparative study on effects of green tea and black tea polyphenols on genes related to adipocyte differentiation in rats. Acta Nutr. Sin. 2007, 29, 582–586. [Google Scholar]
- Long, Y.C. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Investig. 2012, 116, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.; Choi, M.; Choi, J.; Kim, N.; Kim, M.; Jung, S.; Hwang, G. Effect of green tea on hepatic lipid metabolism in mice fed a high-fat diet. J. Nutr. Biochem. 2018, 51, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, J.M.; Puddey, I.B.; Burke, V.; Croft, K.D. Is reversal of endothelial dysfunction by tea related to flavonoid metabolism? Br. J. Nutr. 2006, 95, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Janssens, P.L.; Penders, J.; Hursel, R.; Budding, A.E.; Savelkoul, P.H.; Westerterp-Plantenga, M.S. Long-Term green tea supplementation does not change the human gut microbiota. PLoS ONE 2016, 11, e0153134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Wu, Z.; Weng, P. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. J. Agric. Food Chem. 2016, 64, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
- Besten, G.D.; Eunen, K.V.; Groen, A.K.; Venema, K.; Reijngoud, D.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
Test Subjects | Tea Polyphenol or Tea Type | Doses | Duration and Design | Type of Effect | Mechanisms | References |
---|---|---|---|---|---|---|
C57BL/6J mice | green tea polyphenols and black tea polyphenols (GTP)/(BTP), both decaffeinated | Average polyphenol consumption was 240 and 320 mg per kg body weight for mice fed GTP and BTP respectively | 4 weeks testing period on 4 groups of mice: high-fat/high-sucrose (HF/HS), HF/HS + GTP or BTP, and low fat/high-sucrose. | GTP and BTP significantly induced weight loss. GTP and BTP induced significant increase in AMPK phosphorylation by 70 and 289% respectively. | BTPs increased pAMPK through increased SCFA production, GTPs increased AMPK in liver tissue. | [2] |
3T3L-1 cells and C57BL/6J mice | Goishi tea (post-fermented tea) extract | 1 mg/mL extract for cells and 4 g of tea leaves to 1 L infuse for mice | 84 days testing period on 4 groups of mice, HFD(high-fat diet) tap water, HFD Goishi tea, HFD green tea. | Goishi tea is likely effective against diet-induced obesity. | Goishi tea largely influenced the reduction of serum total cholesterol and low-density lipoprotein cholesterol and inhibited oxidation. | [3] |
transgenic Drosophila melanogaster | Theaflavin (TF), epitheaflagallin (ETG), and epigallocatechin gallate (EGCG) | 0.1–0.5%TF, 0.1–0.5%ETG, 1–10 mM EGCG | 80 days testing period on female (n = 140); male (n = 220) TF, ETG, 1 mMEGCg) | Fat accumulation-suppressing effect of ETG in Drosophila larval fat body, which was more effective than that of TF or EGCG | TF and ETG activated fatty acid oxidation in mitochondria, EGCG activated fatty acid oxidation in peroxisomes. | [5] |
Male C57BL/6J mice with colonized microbial community using faecal samples from 5 volunteers | EGCG”Me (methylated EGCG found in oolong teas) | EGCG”Me was added to high fat diet at concentration of 0.1% | 8 weeks study using 3 groups: (HFD), (HFD + EGCG”Me), (LFD) | Compared to HFD group, EGCG”Me group showed significantly decreased body mass gains and improved stability of gut microbiota. | EGCG”Me significantly modulated intestinal microbiota and increased production of SCFA by anaerobic microbes. | [7] |
Male C57BL/6J mice | epigallocatechin gallate (EGCG) | 0.2% EGCG (w/w)-supplemented high-fat diet for 8 weeks | a high-fat control diet and a 0.2% EGCG (w/w)-supplemented high-fat diet for 8 weeks | The EGCG-supplemented group showed decreased body weight gain, and plasma and liver lipids. | EGCG may have anti-obesity properties through BAT thermogenesis and mitochondria biogenesis. | [10] |
10 healthy men | Green tea extract (GTE) | 3 types: (50 mg caffeine + 90 mg EGCG) or (50 mg caffeine) or placebo | On 3 separate occasions, subjects were randomly assigned one of 3 treatments | GTE treatment significantly increased 24 h energy expenditure (EE) (4%: p < 0.01). 50 mg caffeine alone had no effects on EE. | GTE promoted fat oxidation and thermogenesis beyond that explained by it’s caffeine content alone. | [16] |
High fat-fed obese C57bl/6J mice | EGCG | 0.32% EGCG diet | 6 weeks with mice fed high-fat diet alone or high-fat diet with EGCG | 44% decrease in body weight gain in high fat-fed obese mice (p < 0.01). | Increased fecal lipid content by 29.4% (p < 0.05) compared to high-fat control. | [20] |
240 men and women with visceral fat-type obesity. | Green tea with two different catechin contents | green tea containing 583 mg of catechins and 96 mg of catechins (control) per day | After a 2 weeks diet run-in period, a 12-week double-blind parallel multicenter trial was performed. | Decreases in body weight, body fat mass, waist circumference, visceral fat area, and subcutaneous fat area were greater in catechin group than control. | Further study necessary to elucidate the mechanism of action of catechins. | [21] |
Male Wistar rats | 15 min Green tea and Black tea decoctions brewed at 50 g tea leaves per L water (GTD)/(BTD) | GTD: 346 mg total phenolic compounds (TPC) and 73 mg caffeine BTD: 121.4 mg TPC and 89 mg caffeine | 10 weeks. Three groups; high-fat diet (HFD), HFD + GTD, HFD + BTD. | Adipose tissue gains reduced by 56.4% in GTD group, 60% in BTD group. Reduction of 21 and 55% of weight gains in GTD and BTD groups. | GTD and BTD prevented fat storage in liver and lowered blood lipids by increasing fecal triglyceride excretion, with a strong effect of BTD compared to GTD. | [22] |
Eight-week-old male Sprague-Dawley (SD) rats | Oxidized tea polyphenols (OTP) | Diet containing 2% OTP. | 12 weeks study on three groups: LFD; HFD; HFD + OTP | OTPs significantly decreased weight gain and alleviated lipid accumulation in liver and visceral white adipose tissue. OTPs Also promoted lipid excretion. | OTP + HFD group changed expression levels of PPARs, enhanced fatty acid oxidation, and enhanced biosynthesis of mitochondria in visceral WAT. | [23] |
Samples from six healthy volunteers (three females and three males, age 25–30) | Polyphenols from green tea, oolong tea, and black tea extracted with hot water (GTP, OTP, BTP) | 100 g of tea powder extracted with 1600 mL of distilled water. | 150 mcg of fecal mixture added to 1350 mcg of medium in anaerobic atomosphere. Samples taken at 36 h. | OTP and BTP showed better effects than GTP during fermentation. OTP performed best. | Microbes altered polyphenols to make them more bioavailable, while polyphenols proliferated SCFA-generating bacteria. | [24] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rothenberg, D.O.; Zhou, C.; Zhang, L. A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols. Molecules 2018, 23, 1176. https://doi.org/10.3390/molecules23051176
Rothenberg DO, Zhou C, Zhang L. A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols. Molecules. 2018; 23(5):1176. https://doi.org/10.3390/molecules23051176
Chicago/Turabian StyleRothenberg, Dylan O’Neill, Caibi Zhou, and Lingyun Zhang. 2018. "A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols" Molecules 23, no. 5: 1176. https://doi.org/10.3390/molecules23051176
APA StyleRothenberg, D. O., Zhou, C., & Zhang, L. (2018). A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols. Molecules, 23(5), 1176. https://doi.org/10.3390/molecules23051176