Cast-In-Situ, Large-Sized Monolithic Silica Xerogel Prepared in Aqueous System
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. Morphology and Appearance
3.2. Chemical Composition
3.3. Pore Structure and Specific Surface Area
3.4. Thermal Insulation Behavior
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Du, A.; Zhou, B.; Zhang, Z.; Shen, J. A special material or a new state of matter: A review and reconsideration of the aerogel. Materials 2013, 6, 941–968. [Google Scholar] [CrossRef] [PubMed]
- Hüsing, N.; Schubert, U. Aerogels-Airy materials: Chemistry, Structure, and Properties. Angew. Chem. Int. Ed. 1998, 37, 22–45. [Google Scholar] [CrossRef]
- Hrubesh, L.W. Aerogel applications. J. Non-Cryst. Solids 1998, 225, 335–342. [Google Scholar] [CrossRef]
- Schmidt, M.; Schwertfeger, F. Applications for silica aerogel products. J. Non-Cryst. Solids 1998, 225, 364–368. [Google Scholar] [CrossRef]
- Reim, M.; Reichenauer, G.; Körner, W.; Manara, J.; Arduini-Schuster, M.; Korder, S.; Beck, A.; Fricke, J. Silica-aerogel granulate-structural, optical and thermal properties. J. Non-Cryst. Solids 2004, 350, 358–363. [Google Scholar] [CrossRef]
- Li, G. Preparation of silica aerogels by non supercritical drying. Acta Phys.-Chim. Sin. 2003, 19, 504–508. [Google Scholar]
- Ackerman, W.C.; Vlachos, M.; Rouanet, S.; Fruendt, J. Use of surface treated aerogels derived from various silica precursors in translucent insulation panels. J. Non-Cryst. Solids 2001, 285, 264–271. [Google Scholar] [CrossRef]
- Wei, T.Y.; Lu, S.Y.; Chang, Y.C. A new class of opacified monolithic aerogels of ultralow high-temperature thermal conductivities. J. Phys. Chem. C 2009, 113, 7424–7428. [Google Scholar] [CrossRef]
- Rao, A.V.; Nilsen, E.; Einarsrud, M.A. Effect of precursors, methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure drying method. J. Non-Cryst. Solids 2001, 296, 165–171. [Google Scholar]
- Li, T.; Zhou, B.; Du, A.; Xiang, Y.; Wu, S.; Liu, M.; Ding, W.; Shen, J.; Zhang, Z. Microstructure control of the silica aerogels via pinhole drying. J. Sol-Gel Sci. Technol. 2017, 84, 96–103. [Google Scholar] [CrossRef]
- Hwang, S.W.; Kim, T.Y.; Hyun, S.H. Optimization of instantaneous solvent exchange/surface modification process for ambient synthesis of monolithic silica aerogels. J. Colloid Interface Sci. 2008, 322, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Shewale, P.M.; Rao, A.V.; Rao, A.P. Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels. Appl. Surf. Sci. 2008, 254, 6902–6907. [Google Scholar] [CrossRef]
- Rao, A.V.; Kulkarni, M.M.; Amalnerkar, D.P.; Seth, T. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Appl. Surf. Sci. 2003, 206, 262–270. [Google Scholar] [CrossRef]
- He, S.; Huang, D.; Bi, H.; Li, Z.; Yang, H.; Cheng, X. Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass. J. Non-Cryst. Solids 2015, 410, 58–64. [Google Scholar] [CrossRef]
- Nakanishi, K.; Nagakane, T.; Soga, N. Designing double pore structure in alkoxy-derived silica incorporated with nonionic surfactant. J. Porous Mater. 1998, 5, 103–110. [Google Scholar] [CrossRef]
- Guo, X.; Cai, X.; Song, J.; Zhu, Y.; Nakanishi, K.; Kanamori, K.; Yang, H. Facile synthesis of monolithic mayenite with well-defined macropores via an epoxide-mediated sol-gel process accompanied by phase separation. New J. Chem. 2014, 38, 5832–5839. [Google Scholar] [CrossRef]
- Kanamori, K.; Aizawa, M.; Nakanishi, K.; Hanada, T. New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv. Mater. 2007, 19, 1589–1593. [Google Scholar] [CrossRef]
- Guo, X.; Yu, H.; Yang, H.; Kanamori, K.; Zhu, Y.; Nakanishi, K. Pore structure control of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. J. Porous Mater. 2013, 20, 1477–1483. [Google Scholar] [CrossRef]
- Yun, S.; Guo, T.; Zhang, J.; He, L.; Li, Y.; Li, H.; Zhu, X.; Gao, Y. Facile synthesis of large-sized monolithic methyltrimethoxysilane-based silica aerogel via ambient pressure drying. J. Sol-Gel Sci. Technol. 2017, 83, 53–63. [Google Scholar] [CrossRef]
- Takahashi, R.; Nakanishi, K.; Soga, N. Insight on structural change in sol-gel-derived silica gel with aging under basic conditions for mesopore control. J. Sol-Gel Sci. Technol. 2005, 33, 159–167. [Google Scholar] [CrossRef]
- Nakanishi, K. Pore structure control of silica gels based on phase separation. J. Porous Mater. 1997, 4, 67–112. [Google Scholar] [CrossRef]
- Nakanishi, K.; Tanaka, N. Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 2007, 40, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Dzhurkov, V.; Nesheva, D.; Scepanovic, M.; Nedev, N.; Kaschieva, S.; Dmitriev, S.N.; Popovic, Z. Spectroscopic studies of SiOx films irradiated with high energy electrons. In Proceedings of the International School on Condensed Matter Physics: “Challenges of Nanoscale Science: Theory, Materials, Applications”, Varna, Bulgaria, 1–6 September 2014; Volume 558. [Google Scholar] [CrossRef]
- Yokogawa, H.; Yokoyama, M. Hydrophobic silica aerogels. J. Non-Cryst. Solids 1995, 186, 23–29. [Google Scholar] [CrossRef]
- Zu, G.; Shen, J.; Wang, W.; Zou, L.; Lian, Y.; Zhang, Z. Silica-titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds. ACS Appl. Mater. Interfaces 2015, 7, 5400–5409. [Google Scholar] [CrossRef] [PubMed]
- Sanli, D.; Erkey, C. Monolithic composites of silica aerogels by reactive supercritical deposition of hydroxy-terminated poly (dimethylsiloxane). ACS Appl. Mater. Interfaces 2013, 5, 11708–11717. [Google Scholar] [CrossRef] [PubMed]
- Tokudome, Y.; Miyasaka, A.; Nakanishi, K.; Hanada, T. Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol-gel reaction from ionic precursors. J. Sol-Gel Sci. Technol. 2011, 57, 269–278. [Google Scholar] [CrossRef]
- Zu, G.; Shen, J.; Wei, X.; Ni, X.; Zhang, Z.; Wang, J.; Liu, G. Preparation and characterization of monolithic alumina aerogels. J. Non-Cryst. Solids 2011, 357, 2903–2906. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). In Pure and Applied Chemistry; International Union of Pure and Applied Chemistry: Research Triangle Park, NC, USA, 1985; Volume 57, p. 603. [Google Scholar]
- Kong, Y.; Jiang, G.; Fan, M.; Shen, X.; Cui, S.; Russell, A.G. A new aerogel based CO2 adsorbent developed using a simple sol-gel method along with supercritical drying. Chem. Commun. 2014, 50, 12158–12161. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Du, A.; Xiang, Y.; Liu, M.; Li, T.; Shen, J.; Zhang, Z.; Li, C.; Zhou, B. Silica-aerogel-powders “jammed” polyimide aerogels with excellent hydrophobicity and conversion to ultra-light polyimide aerogel. RSC Adv. 2016, 6, 58268–58278. [Google Scholar] [CrossRef]
Sample Availability: Samples of the silica xerogels PEG-0, PEG-1, PEG-4 and PEG-8 are available from the authors. |
Samples | Silica sol/mL | Deionized Water/mL | HCl (0.15mol/L)/mL | NH3·H2O (0.08mol/L)/mL | CTAB/g | PEG400/mL |
---|---|---|---|---|---|---|
PEG-0 | 10 | 20 | 10 | 10 | 0.4 | 0 |
PEG-1 | 10 | 20 | 10 | 10 | 0.4 | 1 |
PEG-4 | 10 | 20 | 10 | 10 | 0.4 | 4 |
PEG-8 | 10 | 20 | 10 | 10 | 0.4 | 8 |
Samples | ρ (mg·cm−3) | Specific Surface Area (m2·g−1) | Average Pore Size (nm) | Linear Shrinkage (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ap | 400 °C | 600 °C | ap | 400 °C | 600 °C | ap | 400 °C | 600 °C | ap | 400 °C | 600 °C | |
PEG-0 | 250 | — | — | 127 | — | — | 18.7 | — | — | 2.9 | — | — |
PEG-1 | 302 | 223 | 221 | 130 | 220 | 233 | 24.3 | 14 | 15.8 | 1.9 | 2.3 | 2.9 |
PEG-4 | 624 | 281 | 273 | 35 | 212 | 170 | 19.3 | 15.1 | 19.5 | 1.9 | 2.5 | 3.3 |
PEG-8 | 969 | 271 | 266 | 19 | 232 | 143 | 9.6 | 14.4 | 19.1 | 3.5 | 4.1 | 5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, W.; Wang, X.; Chen, D.; Li, T.; Shen, J. Cast-In-Situ, Large-Sized Monolithic Silica Xerogel Prepared in Aqueous System. Molecules 2018, 23, 1178. https://doi.org/10.3390/molecules23051178
Ding W, Wang X, Chen D, Li T, Shen J. Cast-In-Situ, Large-Sized Monolithic Silica Xerogel Prepared in Aqueous System. Molecules. 2018; 23(5):1178. https://doi.org/10.3390/molecules23051178
Chicago/Turabian StyleDing, Wenhui, Xiaodong Wang, Dong Chen, Tiemin Li, and Jun Shen. 2018. "Cast-In-Situ, Large-Sized Monolithic Silica Xerogel Prepared in Aqueous System" Molecules 23, no. 5: 1178. https://doi.org/10.3390/molecules23051178
APA StyleDing, W., Wang, X., Chen, D., Li, T., & Shen, J. (2018). Cast-In-Situ, Large-Sized Monolithic Silica Xerogel Prepared in Aqueous System. Molecules, 23(5), 1178. https://doi.org/10.3390/molecules23051178