Phenolic Compounds and Bioactivity of Cytisus villosus Pourr.
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Characterization of C. villosus Aqueous and Ethyl Acetate Extracts
2.2. Antioxidant Activity
2.3. Antimicrobial Activity
2.4. Antiproliferative Activity
3. Materials and Methods
3.1. Samples and Extract Preparation
3.2. Characterization of Phenolic Compounds by HPLC-DAD-ESI/MSn
3.3. Antioxidant Activities
3.3.1. Scavenging Activity of DPPH Radical
3.3.2. Scavenging Activity of ABTS Radical
3.4. Antimicrobial Activity
3.4.1. Microorganisms
3.4.2. Determination of Median Inhibitory Concentration (IC50)
3.5. Antiproliferative Activity
3.5.1. Cell Lines and Cell Viability
3.5.2. MTT Assay
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nirmal, J.; Babu, C.S.; Harisudhan, T.; Ramanathan, M. Evaluation of behavioural and antioxidant activity of Cytisus scoparius Link in rats exposed to chronic unpredictable mild stress. BMC Complement. Altern. Med. 2008, 8. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Cabrita, L.; Boas, M.V.; Carvalho, A.M.; Ferreira, I.C.F.R. Chemical, biochemical and electrochemical assays to evaluate phytochemicals and antioxidant activity of wild plants. Food Chem. 2011, 127, 1600–1608. [Google Scholar] [CrossRef] [Green Version]
- González, N.; Ribeiro, D.; Fernandes, E.; Nogueira, D.R.; Conde, E.; Moure, A.; Vinardell, M.P.; Mitjans, M.; Domínguez, H. Potential use of Cytisus scoparius extracts in topical applications for skin protection against oxidative damage. J. Photochem. Photobiol. B Biol. 2013, 125, 83–891. [Google Scholar] [CrossRef] [PubMed]
- Pereira, O.R.; Macias, R.I.R.; Perez, M.J.; Marin, J.J.G.; Cardoso, S.M. Protective effects of phenolic constituents from Cytisus multiflorus, Lamium album L. and Thymus citriodorus on liver cells. J. Funct. Foods 2013, 5, 1170–1179. [Google Scholar] [CrossRef]
- Goel, A.K.; Kulshreshtha, D.K.; Dubey, M.P.; Rajendran, S.M. Screening of Indian plants for biological activity: Part XVI. Indian J. Exp. Biol. 2002, 40, 812–827. [Google Scholar] [PubMed]
- Nedelcheva, A.M.; Dogan, Y.; Guarrera, P.M. Plants traditionally used to make brooms in several European countries. J. Ethnobiol. Ethnomed. 2007, 3. [Google Scholar] [CrossRef] [PubMed]
- Quezel, P.; Santa, S. Nouvelle Flore de L’Algérie et des Régions Désertiques Méridionales; Universidad Autónoma Chapingo: Texcoco, Mexico, 1963; Volume 2, ISBN 9788578110796. [Google Scholar]
- Larit, F.; Nael, M.A.; Benyahia, S.; Radwan, M.M.; León, F.; Jasicka-Misiak, I.; Poliwoda, A.; Wieczorek, D.; Benayache, F.; Benayache, S.; et al. Secondary metabolites from the aerial parts of Cytisus villosus Pourr. Phytochem. Lett. 2018, 24, 1–5. [Google Scholar] [CrossRef]
- Nderitu, A.M.; Dykes, L.; Awika, J.M.; Minnaar, A.; Duodu, K.G. Phenolic composition and inhibitory effect against oxidative DNA damage of cooked cowpeas as affected by simulated in vitro gastrointestinal digestion. Food Chem. 2013, 141, 1763–1771. [Google Scholar] [CrossRef] [PubMed]
- Bystrom, L.M.; Lewis, B.A.; Brown, D.L.; Rodriguez, E.; Obendorf, R.L. Characterisation of phenolics by LC-UV/Vis, LC-MS/MS and sugars by GC in Melicoccus bijugatus Jacq. “Montgomery” fruits. Food Chem. 2008, 111, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Gori, A.; Ferrini, F.; Marzano, M.C.; Tattini, M.; Centritto, M.; Baratto, M.C.; Pogni, R.; Brunetti, C. Characterisation and antioxidant activity of crude extract and polyphenolic rich fractions from C. incanus leaves. Int. J. Mol. Sci. 2016, 17, 1344. [Google Scholar] [CrossRef] [PubMed]
- Carazzone, C.; Mascherpa, D.; Gazzani, G.; Papetti, A. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem. 2013, 138, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Tala, V.R.S.; Da Silva, V.C.; Rodrigues, C.M.; Nkengfack, A.E.; Dos Santos, L.C.; Vilegas, W. Characterization of proanthocyanidins from Parkia biglobosa (Jacq.) G. Don. (Fabaceae) by flow injection analysis—Electrospray ionization ion trap tandem mass spectrometry and liquid chromatography/electrospray ionization mass spectrometry. Molecules 2013, 18, 2803–2820. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Jin, J.S.; Kwak, Y.S.; Hwang, G.S. Metabolic Response of Strawberry (Fragaria x ananassa) Leaves Exposed to the Angular Leaf Spot Bacterium (Xanthomonas fragariae). J. Agric. Food Chem. 2016, 64, 1889–1898. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.X.; Zhang, H.; Marcone, M.F.; Pauls, K.P.; Liu, R.; Tang, Y.; Zhang, B.; Renaud, J.B.; Tsao, R. Anti-inflammatory effects of phenolic-rich cranberry bean (Phaseolus vulgaris L.) extracts and enhanced cellular antioxidant enzyme activities in Caco-2 cells. J. Funct. Foods 2017, 38, 675–685. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil-Izquierdo, A.; Andrade, P.B.; Valentão, P.; Tomás-Barberán, F.A. Characterization of C-glycosyl flavones O-glycosylated by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2007, 1161, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Jabeur, I.; Martins, N.; Barros, L.; Calhelha, R.C.; Vaz, J.; Achour, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Contribution of the phenolic composition to the antioxidant, anti-inflammatory and antitumor potential of Equisetum giganteum L. and Tilia platyphyllos Scop. Food Funct. 2017, 8, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Ait-KaciAourahoun, K.; Fazouane, F.; Benayache, S. Pharmacological potential of Cytisus triflorus l’Hérit. Extracts as antioxidant and anti-inflammatory agent. Pharm. Lett. 2015, 7, 104–110. [Google Scholar]
- Freeman, B.L.; Eggett, D.L.; Parker, T.L. Synergistic and antagonistic interactions of phenolic compounds found in navel oranges. J. Food Sci. 2010, 75, C570–C576. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H.; Tsai, T.H.; Chien, Y.C.; Lee, C.W.; Tsai, P.J. In vitro antimicrobial activities against cariogenic streptococci and their antioxidant capacities: A comparative study of green tea versus different herbs. Food Chem. 2008, 110, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Geoghegan, F.; Tsui, V.W.K.; Wong, R.W.K.; Rabie, A.B.M. Inhibitory effect of quercetin on periodontal pathogens. Ann. R. Australas. Coll. Dent. Surg. 2008, 19, 157–158. [Google Scholar] [PubMed]
- Kim, M.E.; Ha, T.K.; Yoon, J.H.; Lee, J.S. Myricetin induces cell death of human colon cancer cells via BAX/BCL2-dependent pathway. Anticancer Res. 2014, 34, 701–706. [Google Scholar] [PubMed]
- Kim, S.H.; Choi, K.C. Anti-cancer effect and underlying mechanism(s) of Kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol. Res. 2013, 29, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, Y.; Zhang, Y.; Wan, X.; Li, J.; Liu, K.; Wang, F.; Liu, Q.; Yang, C.; Yu, P.; et al. Anti-Cancer Activities of Tea Epigallocatechin-3-Gallate in Breast Cancer Patients under Radiotherapy. Curr. Mol. Med. 2012, 12, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, M.; Yu, L.; Zhao, Y.; He, N.; Yang, X. Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines. Food Chem. Toxicol. 2012, 50, 1589–1599. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Rankin, G.O.; Liu, L.; Daddysman, M.K.; Jiang, B.H.; Chen, Y.C. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells. Nutr. Cancer 2009, 61, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef]
- Boulanouar, B.; Abdelaziz, G.; Aazza, S.; Gago, C.; Miguel, M.G. Antioxidant activities of eight Algerian plant extracts and two essential oils. Ind. Crops Prod. 2013, 46, 85–96. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Bardaweel, S.K.; Darwish, R.M.; Alzweiri, M.H.; Al-Hiari, Y.M. Synergism and Efficacy of Some Naturally Occurring D-Amino Acids against Clinically Relevant Bacterial and Fungal Species. Jordan J. Pharm. Sci. 2014, 7, 199–213. [Google Scholar] [CrossRef]
- Bardaweel, S.K.; Hudaib, M.M.; Tawaha, K.A.; Bashatwah, R.M. Studies on the in vitro antiproliferative, antimicrobial, antioxidant, and acetylcholinesterase inhibition activities associated with Chrysanthemum coronarium essential oil. Evid.-Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Rana, A.D.; Almomani, N.F. An in vitro based investigation into the cytotoxic effects of D-amino acids. Acta Pharm. 2013, 63, 467–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples are available from the authors. |
Peak | Rt (min) | λmax (nm) | [M − H]− (m/z) | MS2 (m/z) | Tentative Identification | Quantification (µg/g·dw) | Reference Used for Identification | ||
---|---|---|---|---|---|---|---|---|---|
Aqueous Extract | Ethyl Acetate Extract | Student’s t-Test | |||||||
1 | 4.0 | 271 | 609 | 483 (14), 441 (100), 423 (28), 305 (11) | (Epi)gallocatechindimer (1) | 156 ± 2 | 7.8 ± 0.2 | <0.001 | Tala et al. [13] |
2 | 4.4 | 272 | 305 | 219 (78), 179 (100), 125 (12) | (Epi)gallocatechin isomer 1 (1) | 70 ± 3 | 59 ± 2 | <0.001 | Tala et al. [13] |
3 | 4.9 | 271 | 305 | 219 (77), 179 (100), 125 (15) | (Epi)gallocatechin isomer 2 (1) | 111 ± 5 | 20.35 ± 0.08 | <0.001 | Tala et al. [13] |
4 | 5.4 | 271 | 305 | 219 (70), 179 (100), 125 (20) | (Epi)gallocatechin isomer 3 (1) | 85 ± 2 | 23.3 ± 0.4 | <0.001 | Tala et al. [13] |
5 | 6.5 | 273 | 633 | 467 (23), 301 (100) | Galloyl-HHDP-glucoside (2) | 74 ± 2 | nd | - | Kim et al. [14] |
6 | 7.0 | 278 | 289 | 245 (100), 205 (35), 137 (5) | (+)-Catechin (1) | nd | 36.1 ± 0.7 | - | DAD/MS; Chen et al. [15] |
7 | 10.1 | 330 | 593 | 503 (28), 473 (100), 383 (10), 353 (19), 311 (8) | Apigenin-C-hexoside-C-hexoside (3) | 13.7 ± 0.4 | nd | - | Ferreres et al. [16] |
8 | 14.8 | 353 | 625 | 317 (100) | Myricetin-3-O-rutinoside (4) | 8.7 ± 0.4 | nd | - | Bystrom et al. [10] |
9 | 15.2 | 356 | 479 | 317 (100) | Myricetin-3-O-glucoside (4) | 25.0 ± 0.8 | 32.1 ± 0.2 | <0.001 | DAD/MS; Nderitu et al. [9] |
10 | 15.5 | 356 | 479 | 317 (100) | Myricetin-O-hexoside (4) | 18.7 ± 0.5 | 19.1 ± 0.3 | 0.215 | Gori et al. [11] |
11 | 16.0 | 354 | 565 | 521 (100), 479 (22), 317 (57) | Myricetin-O-malonylhexoside (4) | 13.0 ± 0.2 | nd | - | Carazzone et al. [12] |
12 | 16.8 | 356 | 565 | 521 (100), 479 (16), 317 (63) | Myricetin-O-malonylhexoside (4) | 24.2 ± 0.9 | 20.99 ± 0.08 | 0.001 | Carazzone et al. [12] |
13 | 17.8 | 351 | 463 | 317 (100) | Myricetin-O-rhamnoside (4) | 38.1 ± 0.5 | 226 ± 9 | <0.001 | Gori et al. [11] |
14 | 18.7 | 352 | 463 | 301 (100) | Quercetin-3-O-glucoside (4) | 13.5 ± 0.5 | 34.9 ± 1 | <0.001 | DAD/MS |
15 | 19.2 | 351 | 463 | 317 (100) | Myricetin-O-deoxyhexoside (4) | 13.3 ± 0.3 | 30.4 ± 0.6 | <0.001 | Gori et al. [11] |
16 | 20.6 | 353 | 549 | 505 (100), 463 (15), 301 (44) | Quercetin-O-malonylhexoside (4) | 13.7 ± 0.2 | 20.7 ± 0.4 | <0.001 | Carazzone et al. [12] |
17 | 21.2 | 340 | 593 | 285 (100) | Kaempferol-3-O-rutinoside (4) | 11.8 ± 0.2 | nd | - | DAD/MS |
18 | 21.5 | 354 | 433 | 301 (100) | Quercetin-O-pentoside (4) | nd | 26.3 ± 0.8 | - | Gori et al. [11] |
19 | 22.2 | - | 771 | 625 (100), 317 (15) | Myricetin-O-coumaroylrutinoside (4) | 11.11 ± 0.09 | nd | - | DAD/MS |
20 | 22.7 | 350 | 447 | 301 (100) | Quercetin-O-rhamnoside (4) | 11.7 ± 0.1 | 111 ± 2 | <0.001 | Gori et al. [11] |
21 | 33.1 | 314 | 593 | 447(18), 285(100) | Kaempferol-O-coumaroylhexoside (4) | nd | 27.4 ± 0.5 | - | Jabeur et al. [17] |
Total flavan-3-ols | 496 ± 1 | 147 ± 2 | <0.001 | - | |||||
Total flavonols | 203.3 ± 4.1 | 550 ± 12 | <0.001 | - | |||||
Total flavones | 13.7 ± 0.4 | nd | - | - | |||||
Total phenolic compounds | 712 ± 3 | 697 ± 10 | 0.019 | - |
Extract | Antioxidant Activity a | Antimicrobial Activity b | Antiproliferative Activity c | ||||||
---|---|---|---|---|---|---|---|---|---|
DPPH Scavenging Activity | ABTS Scavenging Activity | Staphylococcus epidermidis | Escherichia coli | Pseudomonas aeruginosa | Candida glabrata | T47D | MCF-7 | HCT-116 | |
Aqueous | 59 ± 2 | 468 ± 34 | 186 ± 9 | 1029 ± 32 | 1158 ± 12 | 467 ± 13 | 3.8 ± 0.2 | 2.6 ± 0.1 | 5.4 ± 0.1 |
Ethyl acetate | 31 ± 2 | 232 ± 2 | 92 ± 3 | 1149 ± 28 | 887 ± 10 | 226 ± 9 | 1.57 ± 0.06 | 2.2 ±0.1 | 3.2 ± 0.2 |
Student’s t-test | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouziane, A.; Bakchiche, B.; Dias, M.I.; Barros, L.; Ferreira, I.C.F.R.; AlSalamat, H.A.; Bardaweel, S.K. Phenolic Compounds and Bioactivity of Cytisus villosus Pourr. Molecules 2018, 23, 1994. https://doi.org/10.3390/molecules23081994
Bouziane A, Bakchiche B, Dias MI, Barros L, Ferreira ICFR, AlSalamat HA, Bardaweel SK. Phenolic Compounds and Bioactivity of Cytisus villosus Pourr. Molecules. 2018; 23(8):1994. https://doi.org/10.3390/molecules23081994
Chicago/Turabian StyleBouziane, Amel, Boulanouar Bakchiche, Maria Inês Dias, Lillian Barros, Isabel C.F.R. Ferreira, Husam A. AlSalamat, and Sanaa K. Bardaweel. 2018. "Phenolic Compounds and Bioactivity of Cytisus villosus Pourr." Molecules 23, no. 8: 1994. https://doi.org/10.3390/molecules23081994
APA StyleBouziane, A., Bakchiche, B., Dias, M. I., Barros, L., Ferreira, I. C. F. R., AlSalamat, H. A., & Bardaweel, S. K. (2018). Phenolic Compounds and Bioactivity of Cytisus villosus Pourr. Molecules, 23(8), 1994. https://doi.org/10.3390/molecules23081994