Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose?
Abstract
:1. Melatonin: A Universal and Ubiquitous Molecule
2. Vesicle Secretion or Membrane Diffusion?
2.1. Vesicles in the Pineal Gland
2.2. Chemical Features of Melatonin and Membrane Diffusion
2.3. Melatonin and Interactions with Lipid Membranes
3. An Alternative View: Protein-Facilitated Transport
4. Melatonin and Glucose: An Ancient Relationship?
4.1. Glucose Effect on Melatonin Secretion
4.2. Melatonin and Insulin
4.3. Melatonin and Glucose in Invertebrates and Protozoans.
5. Concluding Remarks
Funding
Conflicts of Interest
References
- Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
- Lerner, A.B.; Case, J.D.D.; Takahashi, Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J. Biol. Chem. 1960, 235, 1992–1997. [Google Scholar] [PubMed]
- McCord, C.P.; Allen, F.P. Evidences associating pineal gland function with alterations in pigmentation. J. Exp. Zool. 1917, 23, 207–224. [Google Scholar] [CrossRef]
- Axelrod, J.; Weissbach, H. Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 1960, 131, 1312. [Google Scholar] [CrossRef] [PubMed]
- Wurtman, R.J.; Axelrod, J.; Phillips, L.S. Melatonin synthesis in the pineal gland: Control by light. Science (80-) 1963, 142, 1071–1073. [Google Scholar] [CrossRef]
- Reiter, R.J. The pineal and its hormones in the control of reproduction in mammals. Endocr. Rev. 1980, 1, 109–131. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.A.; Reiter, R.J. Pineal gland influence on gonads of male Hamsters. Science 1965, 148, 1609–1611. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J. Comparative Physiology: Pineal Gland. Annu. Rev. Physiol. 1973, 35, 305–328. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Hoffman, J.C.; Rubin, P.H. Pineal gland: Influence on gonads of male rats treated with androgen 3 days after birth. Science (80-) 1968, 160, 420–421. [Google Scholar] [CrossRef]
- Arendt, J. Role of the pineal gland and melatonin in seasonal reproductive function in mammals. Oxf. Rev. Reprod. Biol. 1986, 8, 266–320. [Google Scholar] [PubMed]
- Brainard, G.C.; Richardson, B.A.; King, T.S.; Reiter, R.J. The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster. Brain Res. 1984, 294, 333–339. [Google Scholar] [CrossRef]
- Reiter, R.J. Action Spectra, Dose-Response Relationships, and Temporal Aspects of Light’s Effects on the Pineal Gland. Ann. N. Y. Acad. Sci. 1985, 453, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Craft, C.M.; Johnson, J.E.; King, T.S.; Richardson, B.A.; Vaughan, G.M.; Vaughan, M.K. Age-associated reduction in nocturnal pineal melatonin levels in female rats. Endocrinology 1981, 109, 1295–1297. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.F.; Tang, P.L. Decreased serum and pineal concentrations of melatonin and N-acetylserotonin in aged male hamsters. Horm. Res. 1983, 17, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J. The ageing pineal gland and its physiological consequences. BioEssays 1992, 14, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J. Melatonin: The chemical expression of darkness. Mol. Cell. Endocrinol. 1991, 79, C153–C158. [Google Scholar] [CrossRef]
- Guo, X.H.; Li, Y.H.; Zhao, Y.S.; Zhai, Y.Z.; Zhang, L.C. Anti-aging effects of melatonin on the myocardial mitochondria of rats and associated mechanisms. Mol. Med. Rep. 2017, 15, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Odinokova, I.; Baburina, Y.; Kruglov, A.; Fadeeva, I.; Zvyagina, A.; Sotnikova, L.; Akatov, V.; Krestinina, O. Effect of melatonin on rat heart mitochondria in acute heart failure in aged rats. Int. J. Mol. Sci. 2018, 19, 1555. [Google Scholar] [CrossRef] [PubMed]
- Maestroni, G.J.M.M. The immunoneuroendocrine role of melatonin. J. Pineal Res. 1993, 14, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartsch, C.; Bartsch, H. Melatonin in cancer patients and in tumor-bearing animals. Adv. Exp. Med. Biol. 1999, 467, 247–264. [Google Scholar] [PubMed]
- Blask, D.E.; Dauchy, R.T.; Sauer, L.A.; Krause, J.A.; Brainard, G.C. Light during darkness, melatonin suppression and cancer progression. Neuroendocrinol. Lett. 2002, 23, 52–56. [Google Scholar] [PubMed]
- Tamarkin, L.; Cohen, M.; Reichert, C.; Reichert, C.; Lippman, M.; Chabner, B. Melatonin Inhibition and Pinealectomy Enhancement of 7,12-Dimethylbenz(a)anthracene-induced Mammary Tumors in the Rat. Cancer Res. 1981, 41, 4432–4436. [Google Scholar] [PubMed]
- Chen, S.J.; Huang, S.H.; Chen, J.W.; Wang, K.C.; Yang, Y.R.; Liu, P.F.; Lin, G.J.; Sytwu, H.K. Melatonin enhances interleukin-10 expression and suppresses chemotaxis to inhibit inflammation in situ and reduce the severity of experimental autoimmune encephalomyelitis. Int. Immunopharmacol. 2016, 31, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Mocikova, K.; Mnichova, M.; Kubatka, P.; Bojkova, B.; Ahlers, I.; Ahlersova, E. Mammary carcinogenesis induced in Wistar:Han rats by the combination of ionizing radiation and dimethylbenz(a)anthracene: Prevention with melatonin. Neoplasma 2000, 47, 227–229. [Google Scholar]
- Ozaki, Y.; Lynch, H.J. Presence of melatonin in plasma and urine of pinealectomized rats. Endocrinology 1976, 99, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, D.P.; Wurtman, R.J. Hydroxyindole-O-Methyl Transferases in Rat Pineal, Retina and Harderian Gland. Endocrinology 1972, 91, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Bubenik, G.A.; Brown, G.M.; Uhlir, I.; Grota, L.J. Immunohistological localization of N-acetylindolealkylamines in pineal gland, retina and cerebellum. Brain Res. 1974, 81, 233–242. [Google Scholar] [CrossRef]
- Raikhlin, N.T.; Kvetnoy, I.M.; Tolkachev, V.N. Melatonin may be synthesised in enterochromaffin cells. Nature 1975, 255, 344–345. [Google Scholar] [CrossRef] [PubMed]
- Bubenik, G.A.; Brown, G.M.; Grota, L.J. Immunohistochemical localization of melatonin in the rat Harderian gland. J. Histochem. Cytochem. 1976, 24, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Arendt, J.; Paunier, L.; Sizonenko, P.C. Melatonin radioimmunoassay. J. Clin. Endocrinol. Metab. 1975, 40, 347–350. [Google Scholar] [CrossRef] [PubMed]
- Vakkuri, O.; Lamsa, E.; Rahkamaa, E.; Ruotsalainen, H.; Leppaluoto, J. Iodinated melatonin: Preparation and characterization of the molecular structure by mass and 1H NMR spectroscopy. Anal. Biochem. 1984, 142, 284–289. [Google Scholar] [CrossRef]
- Vakkuri, O.; Leppaluoto, J.; Vuolteenaho, O. Development and validation of a melatonin radioimmunoassay using radioiodinated melatonin as tracer. Eur. J. Endocrinol. 1984, 106, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Laudon, M.; Zisapel, N. Characterization of central melatonin receptors using 125I-melatonin. FEBS Lett. 1986, 197, 9–12. [Google Scholar] [CrossRef]
- Duncan, M.J.; Takahashi, J.S.; Dubocovich, M.L. Characterization of 2-[125I]iodomelatonin binding sites in hamster brain. Eur. J. Pharmacol. 1986, 132, 333–334. [Google Scholar] [CrossRef]
- Weaver, D.R.; Namboodiri, M.A.A.; Reppert, S.M. Iodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain. FEBS Lett. 1988, 228, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.; Stopa, E.G. Putative melatonin receptors in a human biological clock. Science 1988, 242, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Hevia, D.; Botas, C.; Sainz, R.M.; Quiros, I.; Blanco, D.; Tan, D.X.; Gomez-Cordoves, C.; Mayo, J.C. Development and validation of new methods for the determination of melatonin and its oxidative metabolites by high performance liquid chromatography and capillary electrophoresis, using multivariate optimization. J. Chromatogr. A 2010, 1217, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.E.; Lima-Cabello, E.; López, L.C.; Rosales-Corral, S.; Tan, D.X.; Reiter, R.J. Extrapineal melatonin: Sources, regulation, and potential functions. Cell. Mol. Life Sci. 2014, 71, 2997–3025. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Q.; Fichna, J.; Bashashati, M.; Li, Y.Y.; Storr, M. Distribution, function and physiological role of melatonin in the lower gut. World J. Gastroenterol. 2011, 17, 3888–3898. [Google Scholar] [CrossRef] [PubMed]
- Bähr, I.; Muhlbauer, E.; Schucht, H.; Peschke, E. Melatonin stimulates glucagon secretion in vitro and in vivo. J. Pineal Res. 2011, 50, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Hardeland, R.; Zmijewski, M.A.; Slominski, R.M.; Reiter, R.J.; Paus, R. Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions. J. Investig. Dermatol. 2018, 138, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A. The cutaneous serotoninergic/melatoninergic system: Securing a place under the sun. FASEB J. 2005, 19, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Lv, Y.; Shi, Y.; Li, T.; Chen, Y.; Zhao, D.; Zhao, Z. The Role of Phyto-Melatonin and Related Metabolites in Response to Stress. Molecules 2018, 23, 1887. [Google Scholar] [CrossRef] [PubMed]
- Pöggeler, B.; Balzer, I.; Hardeland, R.; Lerchl, A. Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften 1991, 78, 268–269. [Google Scholar] [CrossRef]
- Manchester, L.C.; Poeggeler, B.; Alvares, F.L.; Ogden, G.B.; Reiter, R.J. Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: Implications for an ancient antioxidant system. Cell. Mol. Biol. Res. 1995, 41, 391–395. [Google Scholar] [PubMed]
- Balzer, I. Recent progress in understanding the temporal behavior of unicellular organisms. Braz. J. Med. Biol. Res. 1996, 29, 95–99. [Google Scholar] [PubMed]
- Macías, M.; Rodríguez-Cabezas, M.N.; Reiter, R.J.; Osuna, A.; Acuña-Castroviejo, D. Presence and effects of melatonin in Trypanosoma cruzi. J. Pineal Res. 1999, 27, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Mummaneni, P.; Steinbach, P.J.; Klein, D.C.; Coon, S.L. Characterization of the Saccharomyces cerevisiae Homolog of the Melatonin Rhythm Enzyme Arylalkylamine N-Acetyltransferase (EC 2.3.1.87). J. Biol. Chem. 2001, 276, 47239–47247. [Google Scholar] [CrossRef] [PubMed]
- Vivien-Roels, B.; Pevet, P.; Beck, O.; Fevre-Montange, M. Identification of melatonin in the compound eyes of an insect, the locust (Locusta migratoria), by radioimmunoassay and gas chromatography-mass spectrometry. Neurosci. Lett. 1984, 49, 153–157. [Google Scholar] [CrossRef]
- Arnoult, F.; Vivien-Roels, B.; Pévet, P.; Vernet, G. Melatonin in the nemertine worm lineus lacteus: Identification and daily variations. NeuroSignals 1994, 3, 296–301. [Google Scholar] [CrossRef]
- Blanc, A.; Vivien-Roels, B.; Pévet, P.; Attia, J.; Buisson, B. Melatonin and 5-methoxytryptophol (5-ML) in nervous and/or neurosensory structures of a gastropod mollusc (Helix aspersa maxima): Synthesis and diurnal rhythms. Gen. Comp. Endocrinol. 2003, 131, 168–175. [Google Scholar] [CrossRef]
- Vivien-Roels, B.; Pevet, P. Is melatonin an evolutionary conservative molecule involved in the transduction of photoperiodic information in all living organisms? Adv. Pineal Res. 1986, 1, 61–68. [Google Scholar]
- Balzer, I.; Kapp, H. Occurrence and comparative physiology of melatonin in evolutionary diverse organisms. In The Redox State and Circadian Rhythms; Vanden Driessche, T., Petiau-de Vries, G.M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 95–119. ISBN 0-7923-6453-8. [Google Scholar]
- Dubbels, R.; Reiter, R.J.J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C.; Schiwara, H.W.W.; Schloot, W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 1995, 18, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Hattori, A.; Migitaka, H.; Iigo, M.; Itoh, M.; Yamamoto, K.; Ohtani-Kaneko, R.; Hara, M.; Suzuki, T.; Reiter, R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 1995, 35, 627–634. [Google Scholar] [PubMed]
- Tan, D.X.; Hardeland, R.; Manchester, L.C.; Korkmaz, A.; Ma, S.; Rosales-Corral, S.; Reiter, R.J. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot. 2012, 63, 577–597. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Hardeland, R.; Manchester, L.C.; Paredes, S.D.; Korkmaz, A.; Sainz, R.M.; Mayo, J.C.; Fuentes-Broto, L.; Reiter, R.J. The changing biological roles of melatonin during evolution: From an antioxidant to signals of darkness, sexual selection and fitness. Biol. Rev. 2010, 85, 607–623. [Google Scholar] [CrossRef] [PubMed]
- Hardeland, R. Melatonin in plants and other phototrophs: Advances and gaps concerning the diversity of functions. J. Exp. Bot. 2015, 66, 627–646. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Functions of melatonin in plants: A review. J. Pineal Res. 2015, 59, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Rosales-Corral, S.; Manchester, L.C. The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives. Mini-Rev. Med. Chem. 2013, 13, 373–384. [Google Scholar] [PubMed]
- Quay, W.B. Retinal and pineal hydroxyindole-o-methyl transferase activity in vertebrates. Life Sci. 1965, 4, 983–991. [Google Scholar] [CrossRef]
- Raikhlin, N.T.; Kvetnoy, I.M. Melatonin and enterochromaffine cells. Acta Histochem. 1976, 55, 19–24. [Google Scholar] [CrossRef]
- Kvetnoy, I.; Yuzhakov, V. Extrapineal melatonin: Non-traditional localization and possible significance for oncology. In Advances in Pineal Research; Maestroni, G.J.M., Conti, A., Reiter, R.J., Eds.; John Libbey and Company: London, UK, 1994; Volume 7, pp. 199–212. [Google Scholar]
- Kvetnoy, I.M.; Kvetnaia, T.V.; Yuzhakov, V.V. Role of Extrapineal Melatonin and Related APUD Series Peptides in Malignancy. In The Pineal Gland and Cancer; Springer: Berlin/Heidelberg, Germany, 2001; pp. 259–274. [Google Scholar]
- Bubenik, G.A.; Brown, G.M.; Grota, L.J. Immunohistological investigations of N-Acetylserotonin in the rat cerebellum after parachlorophenylalanine treatment. Experientia 1976, 32, 579–581. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.F.; Brown, G.M.; Grota, L.J.; Chambers, J.W.; Rodman, R.L. Determination of N-acetylserotonin and melatonin activities in the pineal gland, retina, harderian gland, brain and serum of rats and chickens. Neuroendocrinology 1977, 23, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Menendez-Pelaez, A.; Howes, K.A.; Gonzalez-Brito, A.; Reiter, R.J. N-Acetyltransferase activity, hydroxyindole-O-methyltransferase activity, and melatonin levels in the Harderian glands of the female Syrian hamster: Changes during the light: Dark cycle and the effect of 6-parachlorophenylalanine administration. Biochem. Biophys. Res. Commun. 1987, 145, 1231–1238. [Google Scholar] [CrossRef]
- Bubenik, G.A. Localization of Melatonin in the Digestive Tract of the Rat. Horm. Res. 1980, 12, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Biesalski, H.K.; Welker, H.A.; Thalmann, R.; Vollrath, L. Melatonin and other serotonin derivatives in the guinea pig membranous cochlea. Neurosci. Lett. 1988, 91, 41–46. [Google Scholar] [CrossRef]
- Lopez-Gonzalez, M.A.; Guerrero, J.M.; Delgado, F. Presence of the pineal hormone melatonin in rat cochlea: Its variations with lighting conditions. Neurosci. Lett. 1997, 238, 81–83. [Google Scholar] [CrossRef]
- Finocchiaro, L.M.; Nahmod, V.E.; Launay, J.M. Melatonin biosynthesis and metabolism in peripheral blood mononuclear leucocytes. Biochem. J. 1991, 280 Pt 3, 727–731. [Google Scholar] [CrossRef]
- Abe, M.; Itoh, M.T.; Miyata, M.; Ishikawa, S.; Sumi, Y. Detection of melatonin, its precursors and related enzyme activities in rabbit lens. Exp. Eye Res. 1999, 68, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Pisarchik, A.; Semak, I.; Sweatman, T.; Wortsman, J.; Szczesniewski, A.; Slugocki, G.; McNulty, J.; Kauser, S.; Tobin, D.J.; et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J. 2002, 16, 896–898. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Baker, J.; Rosano, T.G.; Guisti, L.W.; Ermak, G.; Grande, M.; Gaudet, S.J. Metabolism of serotonin to N-acetylserotonin, melatonin, and 5-methoxytryptamine in hamster skin culture. J. Biol. Chem. 1996, 271, 12281–12286. [Google Scholar] [CrossRef] [PubMed]
- Tijmes, M.; Pedraza, R.; Valladares, L. Melatonin in the rat testis: Evidence for local synthesis. Steroids 1996, 61, 65–68. [Google Scholar] [CrossRef]
- Itoh, M.T.; Ishizuka, B.; Kuribayashi, Y.; Amemiya, A.; Sumi, Y. Melatonin, its precursors, and synthesizing enzyme activities in the human ovary. Mol. Hum. Reprod. 1999, 5, 402–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoh, M.T.; Ishizuka, B.; Kudo, Y.; Fusama, S.; Amemiya, A.; Sumi, Y. Detection of melatonin and serotonin N-acetyltransferase and hydroxyindole-O-methyltransferase activities in rat ovary. Mol. Cell. Endocrinol. 1998, 136, 7–13. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.C.; Reiter, R.J.; Qi, W.B.; Zhang, M.; Weintraub, S.T.; Cabrera, J.; Sainz, R.M.; Mayo, J.C. Identification of highly elevated levels of melatonin in bone marrow: Its origin and significance. Biochim. Biophys. Acta Gen. Subj. 1999, 1472, 206–214. [Google Scholar] [CrossRef]
- Conti, A.; Conconi, S.; Hertens, E.; Skwarlo-Sonta, K.; Markowska, M.; Maestroni, J.M. Evidence for melatonin synthesis in mouse and human bone marrow cells. J. Pineal Res. 2000, 28, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Vico, A.; Calvo, J.R.; Abreu, P.; Lardone, P.J.; García-Mauriño, S.; Reiter, R.J.; Guerrero, J.M. Evidence of melatonin synthesis by human lymphocytes and its physiological significance: Possible role as intracrine, autocrine, and/or paracrine substance. FASEB J. 2004, 18, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, S.; Nakazawa, K.; Sakai, J.; Kometani, K.; Iwashita, M.; Yoshimura, Y.; Maruyama, T. Melatonin as a local regulator of human placental function. J. Pineal Res. 2005, 39, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, M.D.; Mora-Santos, M.; Naji, L.; Carrascosa-Salmoral, M.P.; Naranjo, M.C.; Calvo, J.R. Evidence of melatonin synthesis and release by mast cells. Possible modulatory role on inflammation. Pharmacol. Res. 2010, 62, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Tilden, A.R.; Becker, M.A.; Amma, L.L.; Arciniega, J.; McGaw, A.K. Melatonin production in an aerobic photosynthetic bacterium: An evolutionarily early association with darkness. J. Pineal Res. 1997, 22, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Ma, Y.; Chen, S.; Liu, C.; Song, Y.; Qin, Y.; Yuan, C.; Liu, Y. Melatonin-Producing Endophytic Bacteria from Grapevine Roots Promote the Abiotic Stress-Induced Production of Endogenous Melatonin in Their Hosts. Front. Plant Sci. 2016, 7, 1387. [Google Scholar] [CrossRef] [PubMed]
- Balzer, I.; Hardeland, R. Metatonin in algae and higher plants—Possible new roles as a phytohormone and antioxidant. Bot. Acta 1996, 109, 180–183. [Google Scholar] [CrossRef]
- Poeggeler, B.; Hardeland, R. Detection and quantification of melatonin in a dinoflagellate, Gonyaulax polyedra: Solutions to the problem of methoxyindole destruction in non-vertebrate material. J. Pineal Res. 1994, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, J.; Hardeland, R.; Fuhrberg, B.; Han, S.-Z. Melatonin and Other 5-Methoxylated lndoles in Yeast: Presence in High Concentrations and Dependence on Tryptophan Availability. Cytologia (Tokyo) 1999, 64, 209–213. [Google Scholar] [CrossRef]
- Köhidai, L.; Vakkuri, O.; Keresztesi, M.; Leppäluoto, J.; Csaba, G. Induction of melatonin synthesis in Tetrahymena pyriformis by hormonal imprinting—A unicellular “factory” of the indoleamine. Cell. Mol. Biol. (Noisy-le-grand) 2003, 49, 521–524. [Google Scholar]
- Itoh, M.T.; Shinozawa, T.; Sumi, Y. Circadian rhythms of melatonin-synthesizing enzyme activities and melatonin levels in planarians. Brain Res. 1999, 830, 165–173. [Google Scholar] [CrossRef]
- Migliori, M.L.; Romanowski, A.; Simonetta, S.H.; Valdez, D.; Guido, M.; Golombek, D.A. Daily variation in melatonin synthesis and arylalkylamine N-acetyltransferase activity in the nematode Caenorhabditis elegans. J. Pineal Res. 2012, 53, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Subaraja, M.; Vanisree, A.J. Neurotransmissional, structural, and conduction velocity changes in cerebral ganglions of Lumbricus terrestris on exposure to acrylamide. Environ. Sci. Pollut. Res. 2016, 23, 17123–17131. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, L.; Callebert, J.; Launay, J.M.; Jallon, J.M. Melatonin Biosynthesis in Drosophila: Its Nature and Its Effects. J. Neurochem. 1988, 50, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Richter, K.; Peschke, E.; Peschke, D. A neuroendocrine releasing effect of melatonin in the brain of an insect, Periplaneta americana (L.). J. Pineal Res. 2000, 28, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Wetterberg, L.; Hayes, D.K.; Halberg, F. Circadian rhythm of melatonin in the brain of the face fly, Musca autumnalis De Geer. Chronobiologia 1987, 14, 377–381. [Google Scholar] [PubMed]
- Markowska, M.; Bentkowski, P.; Kloc, M.; Pijanowska, J. Presence of melatonin in Daphnia magna. J. Pineal Res. 2009, 46, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Vivien-Roels, B.; Pévet, P. Melatonin: Presence and formation in invertebrates. Experientia 1993, 49, 642–647. [Google Scholar] [CrossRef]
- Tilden, A.R.; Rasmussen, P.; Awantang, R.M.; Furlan, S.; Goldstein, J.; Palsgrove, M.; Sauer, A. Melatonin cycle in the fiddler crab Uca pugilator and influence of melatonin on limb regeneration. J. Pineal Res. 1997, 23, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Aguzzi, J.; Sanchez-Pardo, J.; García, J.A.; Sardà, F. Day-night and depth differences in haemolymph melatonin of the Norway lobster, Nephrops norvegicus (L.). Deep Sea Res. Part I Oceanogr. Res. Pap. 2009, 56, 1894–1905. [Google Scholar] [CrossRef]
- Farca Luna, A.J.; Heinrich, R.; Reischig, T. The circadian biology of the marbled crayfish. Front. Biosci. (Elite Ed.) 2010, 2, 1414–1431. [Google Scholar] [PubMed]
- Maciel, F.E.; Geihs, M.A.; Cruz, B.P.; Vargas, M.A.; Allodi, S.; Marins, L.F.; Nery, L.E.M. Melatonin as a signaling molecule for metabolism regulation in response to hypoxia in the crab Neohelice granulata. Int. J. Mol. Sci. 2014, 15, 22405–22420. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xu, M.; Huang, G.; Zhang, C.; Pang, Y.; Yang, Z.; Cheng, Y. The hyperglycemic effect of melatonin in the Chinese mitten crab, Eriocheir sinensis. Front. Physiol. 2018, 9, 270. [Google Scholar] [CrossRef] [PubMed]
- Mechawar, N.; Anctil, M. Melatonin in a primitive metazoan: Seasonal changes of levels and immunohistochemical visualization in neurons. J. Comp. Neurol. 1997, 387, 243–254. [Google Scholar] [CrossRef]
- Abran, D.; Anctil, M.; Ali, M.A. Melatonin activity rhythms in eyes and cerebral ganglia of Aplysia californica. Gen. Comp. Endocrinol. 1994, 96, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.X.; Chen, L.D.; Poeggeler, B.; Manchester, L.; Reiter, R.J. Melatonin: A potent, endogenous hydroxyl radical scavenger. Endocr. J. 1993, 1, 59–60. [Google Scholar]
- Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016, 61, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Semak, I.; Fischer, T.W.; Kim, T.K.; Kleszczyński, K.; Hardeland, R.; Reiter, R.J. Metabolism of melatonin in the skin: Why is it important? Exp. Dermatol. 2017, 26, 563–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueck, M.; Wake, K. The pinealocyte—A paraneuron? A review. Arch. Histol. Jpn. 1977, 40, 261–278. [Google Scholar] [CrossRef] [PubMed]
- McNulty, J.A.; Fox, L.M.; Lisco, S.J. Pinealocyte Dense-Cored Vesicles and Synaptic Ribbons: A Correlative Ultrastructural-Biochemical Investigation in Rats and Mice. J. Pineal Res. 1987, 4, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Romijn, H.J.; Mud, M.T.; Wolters, P.S. Diurnal variations in number of Golgi-dense core vesicles in light pinealocytes of the rabbit. J. Neural Transm. 1976, 38, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Benson, B.; Krasovich, M. Circadian rhythm in the number of granulated vesicles in the pinealocytes of mice. Effects of sympathectomy and melatonin treatment. Cell Tissue Res. 1977, 184, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Kappers, J.A. Localization of indoleamine and protein synthesis in the mammalian pineal gland. J. Neural Transm.Suppl. 1978, 13, 13–24. [Google Scholar]
- Juillard, M.T.; Collin, J.P. Pools of serotonin in the pineal gland of the mouse: The mammalian pinealocyte as a component of the diffuse neuroendocrine system. Cell Tissue Res. 1980, 213, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Tricoire, H.; Malpaux, B.; Møller, M. Cellular lining of the sheep pineal recess studied by light-, transmission-, and scanning electron microscopy: Morphologic indications for a direct secretion of melatonin from the pineal gland to the cerebrospinal fluid. J. Comp. Neurol. 2003, 456, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Miguez, J.M.; Simonneaux, V.; Pevet, P. The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes. J. Pineal Res. 1997, 23, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Olcese, J.; Münker, M. Extracellular serotonin promotes melatonin release from cultured rat pinealocytes: Evidence for an S2-type receptor-mediated autocrine feedback. Brain Res. 1994, 643, 150–154. [Google Scholar] [CrossRef]
- Moriyama, Y.; Hayashi, M.; Yamada, H.; Yatsushiro, S.; Ishio, S.; Yamamoto, A. Synaptic-like microvesicles, synaptic vesicle counterparts in endocrine cells, are involved in a novel regulatory mechanism for the synthesis and secretion of hormones. J. Exp. Biol. 2000, 203, 117–125. [Google Scholar] [PubMed]
- Shida, C.; Castrucci, A.M.L.; Lamy-Freund, M.T. High melatonin solubility in aqueous medium. J. Pineal Res. 1994, 16, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S. Binding of glutathione and melatonin to human serum albumin: A comparative study. Colloids Surf. B Biointerfaces 2015, 125, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Oren, I.; Fleishman, S.J.; Kessel, A.; Ben-Tal, N. Free diffusion of steroid hormones across biomembranes: A simplex search with implicit solvent model calculations. Biophys. J. 2004, 87, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.J.X.; Lopes, R.H.; Lamy-Freund, M.T. Permeability of pure lipid bilayers to melatonin. J. Pineal Res. 1995, 19, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.J.X.; Shida, C.S.; Biaggi, M.H.; Ito, A.S.; Lamy-Freund, M.T. How melatonin interacts with lipid bilayers: A study by fluorescence and ESR spectroscopies. FEBS Lett. 1997, 416, 103–106. [Google Scholar] [CrossRef]
- Saija, A.; Tomaino, A.; Trombetta, D.; Pellegrino, M.L.; Tita, B.; Caruso, S.; Castelli, F. Interaction of melatonin with model membranes and possible implications in its photoprotective activity. Eur. J. Pharm. Biopharm. 2002, 53, 209–215. [Google Scholar] [CrossRef]
- Severcan, F.; Sahin, I.; Kazanci, N. Melatonin strongly interacts with zwitterionic model membranes-evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. Biochim. Biophys. Acta Biomembr. 2005, 1668, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Dies, H.; Cheung, B.; Tang, J.; Rheinstädter, M.C. The organization of melatonin in lipid membranes. Biochim. Biophys. Acta Biomembr. 2015, 1848, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Venegas, C.; García, J.A.; Escames, G.; Ortiz, F.; López, A.; Doerrier, C.; García-Corzo, L.; López, L.C.; Reiter, R.J.; Acuña-Castroviejo, D. Extrapineal melatonin: Analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 2012, 52, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Melchiorri, D.; Reiter, R.J.; Sewerynek, E.; Chen, L.D.; Nisticó, G. Melatonin reduces kainate-induced lipid peroxidation in homogenates of different brain regions. FASEB J. 1995, 9, 1205–1210. [Google Scholar] [CrossRef] [PubMed]
- García, J.J.; Reiter, R.J.; Guerrero, J.M.; Escames, G.; Yu, B.P.; Oh, C.S.; Muñoz-Hoyos, A. Melatonin prevents changes in microsomal membrane fluidity during induced lipid peroxidation. FEBS Lett. 1997, 408, 297–300. [Google Scholar] [CrossRef] [Green Version]
- García, J.J.; Lõpez-Pingarrõn, L.; Almeida-Souza, P.; Tres, A.; Escudero, P.; García-Gil, F.A.; Tan, D.X.; Reiter, R.J.; Ramírez, J.M.; Bernal-Pérez, M. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: A review. J. Pineal Res. 2014, 56, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Dickson, E.J.; Jung, S.-R.; Koh, D.-S.; Hille, B. High membrane permeability for melatonin. J. Gen. Physiol. 2016, 147, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Bubenik, G.A.; Purtill, R.A.; Brown, G.M.; Grota, L.J. Melatonin in the retina and the harderian gland. Ontogeny, diurnal variations and melatonin treatment. Exp. Eye Res. 1978, 27, 323–333. [Google Scholar] [CrossRef]
- Escames, G.; López, L.C.; Tapias, V.; Utrilla, P.; Reiter, R.J.; Hitos, A.B.; León, J.; Rodríguez, M.I.; Acuña-Castroviejo, D. Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. J. Pineal Res. 2006, 40, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Mayo, J.C.; Sainz, R.M.; González-Menéndez, P.; Hevia, D.; Cernuda-Cernuda, R. Melatonin transport into mitochondria. Cell. Mol. Life Sci. 2017, 74, 3927–3940. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a mitochondria-targeted antioxidant: One of evolution’s best ideas. Cell. Mol. Life Sci. 2017, 74, 3863–3881. [Google Scholar] [CrossRef] [PubMed]
- Hevia, D.; Sainz, R.M.; Blanco, D.; Quirós, I.; Tan, D.X.; Rodríguez, C.; Mayo, J.C. Melatonin uptake in prostate cancer cells: Intracellular transport versus simple passive diffusion. J. Pineal Res. 2008, 45, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Hevia, D.; Rodriguez-Garcia, A.; Alonso-Gervós, M.; Quirós-González, I.; Cimadevilla, H.M.; Gómez-Cordovés, C.; Sainz, R.M.; Mayo, J.C.; Hevia, D.; Rodriguez-Garcia, A.; et al. Cell Volume and Geometric Parameters Determination in Living Cells Using Confocal Microscopy and 3D Reconstruction. Available online: http://www.nature.com/protocolexchange/protocols/2264%0Ahttp://www.nature.com/protocolexchange/protocols/2264#/anticipated_results (accessed on 13 June 2017).
- Hevia, D.; González-Menéndez, P.; Quiros-González, I.; Miar, A.; Rodríguez-García, A.; Tan, D.X.; Reiter, R.J.; Mayo, J.C.; Sainz, R.M. Melatonin uptake through glucose transporters: A new target for melatonin inhibition of cancer. J. Pineal Res. 2015, 58, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Xu, C.; Sun, P.; Wu, J.; Yan, C.; Hu, M.; Yan, N. Crystal structure of the human glucose transporter GLUT1. Nature 2014, 510, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Rumsey, S.C.; Kwon, O.; Xu, G.W.; Burant, C.F.; Simpson, I.; Levine, M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J. Biol. Chem. 1997, 272, 18982–18989. [Google Scholar] [CrossRef] [PubMed]
- Montel-Hagen, A.; Kinet, S.; Manel, N.; Mongellaz, C.; Prohaska, R.; Battini, J.L.; Delaunay, J.; Sitbon, M.; Taylor, N. Erythrocyte Glut1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell 2008, 132, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Wang, C.; Yu, Z.; Peng, Y.; Wang, S.; Feng, S.; Zhang, S.; Tian, X.; Sun, C.; Liu, K.; et al. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J. Pineal Res. 2017, 62, e12390. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.I.; Shiraga, T.; Morita, K.; Yamamoto, H.; Haga, H.; Taketani, Y.; Tamai, I.; Sai, Y.; Tsuji, A.; Takeda, E. Sequence, tissue distribution and developmental changes in rat intestinal oligopeptide transporter. Biochim. Biophys. Acta Gene Struct. Exp. 1996, 1305, 34–38. [Google Scholar] [CrossRef]
- Bailey, M.J.; Coon, S.L.; Carter, D.A.; Humphries, A.; Kim, J.S.; Shi, Q.; Gaildrat, P.; Morin, F.; Ganguly, S.; Hogenesch, J.B.; et al. Night/day changes in pineal expression of >600 genes: Central role of adrenergic/cAMP signaling. J. Biol. Chem. 2009, 284, 7606–7622. [Google Scholar] [CrossRef] [PubMed]
- Milcou, I.; Nanu, L.; Marcean, R. Existence of a hypoglycemic pineal hormone synergistic with insulin. Ann. Endocrinol. (Paris) 1957, 18, 612–620. [Google Scholar] [PubMed]
- Röjdmark, S.; Wetterberg, L. Short-term fasting inhibits the nocturnal melatonin secretion in healthy man. Clin. Endocrinol. (Oxf.) 1989, 30, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Röjdmark, S. Influence of short-term fasting on the pituitary-testicular axis in normal men. Horm. Res. 1987, 25, 140–146. [Google Scholar] [PubMed]
- Röjdmark, S.; Rössner, S.; Wetterberg, L. Effect of short-term fasting on nocturnal melatonin secretion in obesity. Metabolism 1992, 41, 1106–1109. [Google Scholar] [CrossRef]
- Welker, H.A.; Vollrath, L. The effects of a number of short-term exogenous stimuli on pineal serotonin-N-acetyltransferase activity in rats. J. Neural Transm. 1984, 59, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Wolgast, S.; Bazwinsky, I.; Pönicke, K.; Muhlbauer, E. Increased melatonin synthesis in pineal glands of rats in streptozotocin induced type 1 diabetes. J. Pineal Res. 2008, 45, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Do Carmo Buonfiglio, C.; Peliciari-Garcia, R.A.; do Amaral, F.G.; Peres, R.; Araujo Nogueira, T.C.; Afeche, S.C.; Cipolla-Neto, J. Early-stage retinal melatonin synthesis impairment in streptozotocin-induced diabetic wistar rats. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7416–7422. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Frese, T.; Chankiewitz, E.; Peschke, D.; Preiss, U.; Schneyer, U.; Spessert, R.; Mühlbauer, E. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J. Pineal Res. 2006, 40, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Frese, T.; Bach, A.G.; Mühlbauer, E.; Pönicke, K.; Brömme, H.J.; Welp, A.; Peschke, E. Pineal melatonin synthesis is decreased in type 2 diabetic Goto-Kakizaki rats. Life Sci. 2009, 85, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Corbalán-Tutau, D.; Madrid, J.A.; Nicolás, F.; Garaulet, M. Daily profile in two circadian markers “melatonin and cortisol” and associations with metabolic syndrome components. Physiol. Behav. 2014, 123, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Cano, P.; Jiménez-Ortega, V.; Larrad, Á.; Toso, C.F.R.; Cardinali, D.P.; Esquifino, A.I. Effect of a high-fat diet on 24-h pattern of circulating levels of prolactin, luteinizing hormone, testosterone, corticosterone, thyroid-stimulating hormone and glucose, and pineal melatonin content, in rats. Endocrine 2008, 33, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Bizot-Espiard, J.G.; Double, A.; Guardiola-Lemaitre, B.; Delagrange, P.; Ktorza, A.; Penicaud, L. Diurnal rhythms in plasma glucose, insulin, growth hormone and melatonin levels in fasted and hyperglycaemic rats. Diabetes Metab. 1998, 24, 235–240. [Google Scholar] [PubMed]
- Peschke, E.; Bähr, I.; Mühlbauer, E. Melatonin and pancreatic islets: Interrelationships between melatonin, insulin and glucagon. Int. J. Mol. Sci. 2013, 14, 6981–7015. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E. Melatonin, endocrine pancreas and diabetes. J. Pineal Res. 2008, 44, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Lardone, P.J.; Sanchez, N.; Guerrero, J.M. Melatonin and Glucose Metabolism: Clinical Relevance. Curr. Pharm. Des. 2014, 20, 4841–4853. [Google Scholar] [PubMed]
- Qian, J.; Scheer, F.A.J.L. Circadian System and Glucose Metabolism: Implications for Physiology and Disease. Trends Endocrinol. Metab. 2016, 27, 282–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, C.J.; Atkins, T.W.; Matty, A.J. Melatonin inhibition of insulin secretion in the rat and mouse. Horm. Res. Paediatr. 1974, 5, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Gorray, K.; Quay, W.; Ewart, R.B. Effects of Pinealectomy and Pineal Incubation Medium and Sonicates on Insulin Release by Isolated Pancreatic Islets In Vitro. Horm. Metab. Res. 1979, 11, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Diaz, B.; Blázquez, E. Effect of pinealectomy on plasma glucose, insulin and glucagon levels in the rat. Horm. Metab. Res. 1986, 18, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.B.; Machado, U.F.; Bartol, I.; Seraphim, P.M.; Sumida, D.H.; Moraes, S.M.; Hell, N.S.; Okamoto, M.M.; Saad, M.J.; Carvalho, C.R.; et al. Pinealectomy causes glucose intolerance and decreases adipose cell responsiveness to insulin in rats. Am. J. Physiol. 1998, 275, E934–E941. [Google Scholar] [CrossRef] [PubMed]
- Champney, T.H.; Brainard, G.C.; Richardson, B.A.; Reiter, R.J. Experimentally-induced diabetes reduces nocturnal pineal melatonin content in the Syrian hamster. Comp. Biochem. Physiol. Part A Physiol. 1983, 76, 199–201. [Google Scholar] [CrossRef]
- Nagorny, C.L.F.; Sathanoori, R.; Voss, U.; Mulder, H.; Wierup, N. Distribution of melatonin receptors in murine pancreatic islets. J. Pineal Res. 2011, 50, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Mühlbauer, E.; Albrecht, E.; Hofmann, K.; Bazwinsky-Wutschke, I.; Peschke, E. Melatonin inhibits insulin secretion in rat insulinoma β-cells (INS-1) heterologously expressing the human melatonin receptor isoform MT2. J. Pineal Res. 2011, 51, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Bazwinsky-Wutschke, I.; Mühlbauer, E.; Albrecht, E.; Peschke, E. Calcium-signaling components in rat insulinoma ß-cells (INS-1) and pancreatic islets are differentially influenced by melatonin. J. Pineal Res. 2014, 56, 439–449. [Google Scholar] [CrossRef] [PubMed]
- She, M.; Laudon, M.; Yin, W. Melatonin receptors in diabetes: A potential new therapeutical target? Eur. J. Pharmacol. 2015, 744, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Zibolka, J.; Mühlbauer, E.; Peschke, E. Melatonin influences somatostatin secretion from human pancreatic δ-cells via MT1 and MT2 receptors. J. Pineal Res. 2015, 58, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, I.; Mühlbauer, E.; Peschke, E. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic β-cells. J. Pineal Res. 2008, 45, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Bach, A.G.; Mühlbauer, E. Parallel signaling pathways of melatonin in the pancreatic β-cell. J. Pineal Res. 2006, 40, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, H.; Liu, N.; Cao, X.; Yang, Z.; Lu, B.; Hu, R.; Wang, X.; Wang, J.; Li, Y.; et al. Melatonin exerts an inhibitory effect on insulin gene transcription via MTNR1B and the downstream Raf-1/ERK signaling pathway. Int. J. Mol. Med. 2018, 41, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Mssig, K.; Staiger, H.; MacHicao, F.; Hring, H.U.; Fritsche, A. Genetic variants in MTNR1B affecting insulin secretion. Ann. Med. 2010, 42, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.H.T.; Ho, J.S.K.; Wang, Y.; Lee, H.M.; Lam, V.K.L.; Germer, S.; Martin, M.; So, W.Y.; Ma, R.C.W.; Chan, J.C.N.; et al. Common polymorphisms in MTNR1B, G6PC2 and GCK are associated with increased fasting plasma glucose and impaired beta-cell function in Chinese subjects. PLoS ONE 2010, 5, e11428. [Google Scholar] [CrossRef] [PubMed]
- Sparsø, T.; Bonnefond, A.; Andersson, E.; Bouatia-Naji, N.; Holmkvist, J.; Wegner, L.; Grarup, N.; Gjesing, A.P.; Banasik, K.; Cavalcanti-Proença, C.; et al. G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release: Studies involving 19,605 Europeans. Diabetes 2009, 58, 1450–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuomi, T.; Nagorny, C.L.F.F.; Singh, P.; Bennet, H.; Yu, Q.; Alenkvist, I.; Isomaa, B.; Östman, B.; Söderström, J.; Pesonen, A.K.; et al. Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes. Cell Metab. 2016, 23, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Mulder, H. Melatonin signalling and type 2 diabetes risk: Too little, too much or just right? Diabetologia 2017, 60, 826–829. [Google Scholar] [CrossRef] [PubMed]
- Simões, D.; Riva, P.; Peliciari-Garcia, R.A.; Cruzat, V.F.; Graciano, M.F.; Munhoz, A.C.; Taneda, M.; Cipolla-Neto, J.; Carpinelli, A.R. Melatonin modifies basal and stimulated insulin secretion via NADPH oxidase. J. Endocrinol. 2016, 231, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Shim, H.M.; Na, A.Y.; Bae, K.C.; Bae, J.H.; Im, S.S.; Cho, H.C.; Song, D.K. Melatonin prevents pancreatic β-cell loss due to glucotoxicity: The relationship between oxidative stress and endoplasmic reticulum stress. J. Pineal Res. 2014, 56, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Costes, S.; Boss, M.; Thomas, A.P.; Matveyenko, A.V. Activation of Melatonin Signaling Promotes β-Cell Survival and Function. Mol. Endocrinol. 2015, 29, 682–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Ni, L.; Zhao, Z.; Liu, X.; Lai, Z.; Di, X.; Xie, Z.; Song, X.; Wang, X.; Zhang, R.; et al. Melatonin attenuates smoking-induced hyperglycemia via preserving insulin secretion and hepatic glycogen synthesis in rats. J. Pineal Res. 2018, 64, e12475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayo, J.C.; Hevia, D.; Quiros-Gonzalez, I.; Rodriguez-Garcia, A.; Gonzalez-Menendez, P.; Cepas, V.; Gonzalez-Pola, I.; Sainz, R.M. IGFBP3 and MAPK/ERK signaling mediates melatonin-induced antitumor activity in prostate cancer. J. Pineal Res. 2017, 62, e12373. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, H.; Ahmad, N.; Mishra, P.; Tiwari, A. The role of melatonin in diabetes: Therapeutic implications. Arch. Endocrinol. Metab. 2015, 59, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.C.; Lin, S.H.; Chang, J.S.; Chien, Y.W. Effects of melatonin on glucose homeostasis, antioxidant ability, and adipokine secretion in ICR mice with NA/STZ-induced hyperglycemia. Nutrients 2017, 9, 1187. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Sastre, P.; Scheer, F.A.J.L.; Gómez-Abellán, P.; Madrid, J.A.; Garaulet, M. Acute Melatonin Administration in Humans Impairs Glucose Tolerance in Both the Morning and Evening. Sleep 2014, 37, 1715–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigas, A.N.; Bittles, A.H.; Hadden, D.R.; Montgomery, D.A. Circadian variation of glucose, insulin, and free fatty acids during long-term use of oral hypoglycaemic agents in diabetes mellitus. Br. Med. J. 1968, 4, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Gagliardino, J.J.; Hernández, R.E. Circadian variation of the serum glucose and immunoreactive insulin levels. Endocrinology 1971, 88, 1532–1534. [Google Scholar] [CrossRef] [PubMed]
- Boden, G.; Ruiz, J.; Urbain, J.L.; Chen, X. Evidence for a circadian rhythm of insulin secretion. Am. J. Physiol. Metab. 1996, 271, E246–E252. [Google Scholar] [CrossRef] [PubMed]
- Zibolka, J.; Bazwinsky-Wutschke, I.; Mühlbauer, E.; Peschke, E. Distribution and density of melatonin receptors in human main pancreatic islet cell types. J. Pineal Res. 2018, 65, e12480. [Google Scholar] [CrossRef] [PubMed]
- Bouatia-Naji, N.; Bonnefond, A.; Cavalcanti-Proença, C.; Sparsø, T.; Holmkvist, J.; Marchand, M.; Delplanque, J.; Lobbens, S.; Rocheleau, G.; Durand, E.; et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 2009, 41, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Tilden, A.; McGann, L.; Schwartz, J.; Bowe, A.; Salazar, C. Effect of melatonin on hemolymph glucose and lactate levels in the fiddler crab Uca pugilator. J. Exp. Zool. 2001, 290, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Köhidai, L.; Vakkuri, O.; Keresztesi, M.; Leppäluoto, J.; Csaba, G. Melatonin in the unicellular Tetrahymena pyriformis: Effects of different lighting conditions. Cell Biochem. Funct. 2002, 20, 269–272. [Google Scholar] [CrossRef] [PubMed]
Organ/Tissue | Strategy | Original Reference(s) | |
---|---|---|---|
Retina, cerebellum | Immunohistochemical localization of aaNAT | Bubenik et al. (1974) [27]; Quay (1983) [61]. | |
Gut (Enterochromaffin cells) | Frog skin melanophores lightening of enterochromaffin cells extracts | Raikhlin et al. (1975) [28]; Raikhlin & Kvetnoy (1976) [62] | |
Airway epithelium, adrenal, thyroid gland, liver, renal cortex, gallbladder, inner ear, ovary, endometrium, placenta, mast cells, NK cells, eosinophils, thymus | Immunohistochemistry | Raikhlin et al. (1975) [28]; Raikhlin & Kvetnoy (1994) [63]; Kvetnoy et al. (2001) [64] | |
Harderian gland | NAT/ASMT enzymatic activities, immunohistochemical localization, RIA, NAT and ASMT enzymatic activities, immunohistochemistry of melatonin | Cardinali & Wurtman (1972) [26]; Bubenik et al. (1976a y 1976b) [29,65]; Pang et al. (1977) [66]; Menéndez-Peláez et al. (1987) [67]; Bubenik, G.A. (1980) [68] | |
Digestive tract | |||
Cochlea (inner ear) | RIA, TLC (detection of radio-labelled metabolites after primary culture in medium supplemented with [14C]5-HT) Direct enzyme-linked immunosorbent assay | Biesalski et al. (1988) [69]; López-González et al. (1997) [70] | |
Peripheral blood mononuclear cell (PBMCs) | HPLC, TLC, Mass Spectrometry, RIA | Finocchiaro et al. (1991) [71] | |
Eye | Ciliary body | HPLC (electrochemical detection), NAT/ASMT enzymatic activities | Martin et al. (1992) [71] |
Crystalline | RIA, HPLC (for precursors), NAT/ASMT enzymatic activities | Abe et al. (1999) [72] | |
Skin | HPLC (fluorometric detection), Mass spectrometry, NAT/ASMT activity and expression (RT-PCR) | Slominski et al. (1996; 2002) [73,74] | |
Testis | TLC, NAT/ASMT enzymatic activities | Tijmes et al. (1996) [75] | |
Ovary | HPLC (fluorometric detection), RIA, NAT/ASMT enzymatic activities | Itoh et al. (1997; 1999) [76,77]. | |
Bone marrow | RIA, HPLC (electrochemical detection), Mass spectrometry Immunocytochemistry, NAT enzymatic activity, ASMT expression | Tan et al. (1999) [78]; Conti et al. (2000) [79] | |
Thymus, spleen, lung, heart, kidney, muscle, liver, stomach, gut, testis, spinal cord, brain, platelets | NAT/ASMT expression | Stefulj et al. (2001) [79] | |
Thymus | HPLC (fluorometric detection), NAT/ASMT enzymatic activities | Jiménez-Jorge et al. (2005) [79] | |
Lymphocytes | HPLC (fluorometric detection), NAT/ASMT activity and expression | Carrillo-Vico et al. (2004) [80] | |
Placenta | NAT/ASMT expression (RT-PCR) | Iwasaki et al. (2005) [81] | |
Liver, kidney, heart | ELISA, NAT/ASMT expression (RT-PCR) | Sánchez-Hidalgo et al. (2009) [81] | |
Mast cells | ELISA, NAT/ASMT activity and expression (RT-PCR) | Maldonado et al. (2010) [82] |
Organism | Strategy for Detection | Original Reference(s) |
---|---|---|
EUBACTERIA | ||
Rhodospirilluym rubrum | RIA | Manchester et al. (1995) [45] |
Erythrobacter longus | RIA | Tilden et al. (1997) [83] |
Bacillus sp. | UPLC-MS/MS | Jiao et al. (2016) [84] |
Euglena gracilis | HPLC | Balzer et al. (1996) [85] |
PROTISTS | ||
Lingulodinium (syn Gonyaulax) polyedra (Dinoflagellate) | HPLC | Poeggeler and Hardeland (1994) [86] |
Saccharomyces cerevisiae (Yeast) | HPLC | Sprenger et al. (1999) [87] |
Euglena gracilis | HPLC | Pandi-Perumal and Cardinali (2007) [87] |
Trypanosoma cruzi | RIA | Macías et al. (1999) [47] |
Other Dinoflagellates including: Alexandrium (sp.), Ceratium horridum, Amphidinium carterae, Pyrocystis lunula, Noctiluca scintillans | HPLC/RIA | Data obtained from abstracts or proceedings |
Ciliates: Tetrahymena thermophila | HPLC | Kohidai et al. (2003) [88] |
LOWER INVERTEBRATES | ||
Dugesia japonica | Biosynthetic enzymes | Itoh et al. (1999) [89] |
Caenorhabditis elegans | Biosynthetic enzymes | Migliori et al. (2012) [90] |
Lumbricus terrestris | Spectrophotometry | Subaraja and Vanisree (2016) [91] |
ARTHROPODA | ||
Locusta migratoria | RIA | Vivien-Roels et al(1984) [49] |
Drosophila melanogaster, Periplaneta americana | TLC | Finocchiaro et al. (1988) [92]; Richter et al. (2000) [93] |
Musa autumnalis | RIA | Wetterberg et al. (1987) [94] |
Daphnia magna | ELISA/IHC | Markowska et al. (2009) [95] |
Decapoda: Carcinus maenas, Uca pugilator, Nephrops norvegicus, Procambarus sp., Neohelice granulat, Eriocheir sinensis | RIA/HPLC | Vivien-Roels and Pevet (1993) [96]; Tilden et al. (1997) [97]; Aguzzi et al. (2009) [98]; Farca-Luna et al. (2010) [99]; Maciel et al. (2014) [100]; Yang et al. (2018) [101] |
COELENTERATES | ||
Renilla koellikeri | RIA | Mechawar and Anctil (1997) [102] |
MOLLUSCA | ||
Aplysia californica | HPLC | Abran et al. (1994) [103] |
Sepia officinalis | RIA | Vivien-Roels and Pevet (1986) [52] |
Evidence/Finding Reported | Type of Assay/Molecular Mechanism Demonstrated | Reference(s) |
---|---|---|
Glucose Influence on Melatonin Secretion | ||
Short-term fasting inhibits melatonin secretion (H. sapiens) | N/A | Röjdmark & Wetterberg (1989) [144] |
Glucose affects AANAT activity (R. norvegicus) | Enzyme activity | Welker & Vollrath (1984) [147] |
Streptozotocin increases pineal AANAT (R. norvegicus) | Enzyme activity | Peschke et al. (2008) [148] |
Streptozotocin decreases retinal AANAT (R. norvegicus) | Enzyme activity, melatonin content (RIA) | Buonfiglio et al. (2011) [149] |
Type 2 diabetes patients display reduced night melatonin | Melatonin content (RIA); urine 6-sulfatoxymelatonin (RIA) | Peschke et al. (2006) [150]; McMullan et al. (2013) [150] |
Type 2 diabetic Goto-Kakizaki rats display reduced night pineal melatonin | Plasma and pineal melatonin and precursors content (RIA) | Peschke et al. (2006) [150]; Frese et al. (2009 ) [151] |
Metabolic syndrome women show lower nigh melatonin | Melatonin content (RIA) | Corbalán-Tutau et al. (2014) [152] |
Hyperglycemia (high fat diet, R. norvegicus) shifts melatonin peak | Melatonin content (RIA) | Cano et al. (2008) [153] |
Induced diabetes reduces night pineal melatonin content (R. norvegicus) | Melatonin content (RIA) | Champney et al. (1983) [163] |
Melatonin and Insulin Secretion | ||
Circadian rhythm in insulin secretion (R. norvegicus, H. sapiens) | RIA, Immunoreaction | Rigas et al. (1968) [185]; Gagliardino y Henández (1971) [186]; Boden et al. (1996) [187] |
Correlation between melatonin and insulin levels | RIA | Bizot-Spinard et al. (1998) [154]; Peschke et al. (2013) [155] |
Pinealectomy-increase in insulin secretion | N/A | Bailey et al. (1974) [159]; Gorray et al. (1979) [160] |
Pinealectomy increases glucose intolerance | Immunoreaction | Díaz y Blázquez (1986) [161] |
Presence of melatonin receptors in pancreatic cells | Western blotting/IHC | Nagorny et al. (2011) [164]; Zibolka et al. (2018) [188] |
Melatonin inhibits insulin secretion from pancreatic beta-cells | MTNR1B receptor-mediated/cGMP Raf-1/ERK mediated/NADPH oxidase | Stumpf et al. (2008) [169]; Mühlbauer et al. (2011) [165]; Li et al. (2018) [171]; Simoes et al. (2016) [177] |
Melatonin influences somatostatin and glucagon | MTNR1A/B receptor-mediated | Bähr et al. (2011) [40]; Zibolka et al. (2015) [168] |
Melatonin protects against glucotoxicity | Prevents ER stress | Park et al. 2014 [178] |
MTNR1 polymorphisms and type 2 diabetes association | Genetic polimorphisms/altered MTNR1 signalling pathway | Bouatia-Naji et al. (2009) [189]; Sparso et al. 2009 [174]; Mssig et al. (2010) [172]; Tam et al. (2010) [173]; Tuomi et al. 2016 [175]; Mulder 2017 [176] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayo, J.C.; Aguado, A.; Cernuda-Cernuda, R.; Álvarez-Artime, A.; Cepas, V.; Quirós-González, I.; Hevia, D.; Sáinz, R.M. Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose? Molecules 2018, 23, 1999. https://doi.org/10.3390/molecules23081999
Mayo JC, Aguado A, Cernuda-Cernuda R, Álvarez-Artime A, Cepas V, Quirós-González I, Hevia D, Sáinz RM. Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose? Molecules. 2018; 23(8):1999. https://doi.org/10.3390/molecules23081999
Chicago/Turabian StyleMayo, Juan C., Arturo Aguado, Rafael Cernuda-Cernuda, Alejandro Álvarez-Artime, Vanesa Cepas, Isabel Quirós-González, David Hevia, and Rosa M. Sáinz. 2018. "Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose?" Molecules 23, no. 8: 1999. https://doi.org/10.3390/molecules23081999
APA StyleMayo, J. C., Aguado, A., Cernuda-Cernuda, R., Álvarez-Artime, A., Cepas, V., Quirós-González, I., Hevia, D., & Sáinz, R. M. (2018). Melatonin Uptake by Cells: An Answer to Its Relationship with Glucose? Molecules, 23(8), 1999. https://doi.org/10.3390/molecules23081999