Design, Synthesis, and Antimicrobial Evaluation of Novel Pyrazoles and Pyrazolyl 1,3,4-Thiadiazine Derivatives
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Antimicrobial Activity
3. Experimental Section
3.1. General Information
3.2. Synthesis
3.2.1. General procedure for synthesis compounds 5, 8, 12, 15, 17, and 20
3.2.2. General procedure for synthesis 21a–c
3.3. Antimicrobial Evaluation
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kardas, P.; Devine, S.; Golembesky, A.; Roberts, C. A systematic review and meta analysis of misuse of antibiotic therapies in the community. Int. J. Antimicrob. Agents 2005, 26, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.G. The history of antimicrobial drug development and the current situation. Infect. Chemother. 2012, 44, 263–268. [Google Scholar] [CrossRef]
- Abdel Aziz, M.; Gamal El-Din, A.; Abuo-Rahma, A.H.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem. 2005, 44, 3480–3487. [Google Scholar] [CrossRef] [PubMed]
- Dinesha, V.S.; Priya, B.K.; Pai, K.S.R.; Naveen, S.; Lokanath, N.K.; Nagaraja, G.K. Synthesis and pharmacological evaluation of some new fluorine containing hydroxypyrazolines as potential anticancer and antioxidant agents. Eur. J. Med. Chem. 2015, 104, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Bandgar, B.P.; Gawande, S.S.; Bodade, R.G. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. Bioorg. Med. Chem. 2009, 17, 8168–8173. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.-C.; Li, H.-Q.; Sun, J.; Zhou, Y.; Zhu, H.-L. Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents. Bioorg. Med. Chem. 2010, 18, 4606–4614. [Google Scholar] [CrossRef] [PubMed]
- Radini, I.A.M.; Khidre, R.E.; El-Telbani, E.M. Synthesis and antimicrobial evaluation of new pyrazoline and pyrazolinyl thiazole derivatives bearing tetrazolo[1,5-a]quinoline moiety. Lett. Drug Des. Discov. 2016, 13, 921–931. [Google Scholar] [CrossRef]
- Altıntop, M.D.; Abu Mohsen, U.; Karaca, H.; Canturk, Z.; Ozdemir, A. Synthesis and Evaluation of Bis-pyrazoline Derivatives as Potential Antimicrobial Agents. Lett. Drug Des. Discov. 2014, 11, 1199–1203. [Google Scholar] [CrossRef]
- Bai, L.S.; Wang, Y.; Liu, X.H.; Zhu, H.L.; Song, B.A. Novel dihydropyrazole derivatives linked with multi(hetero)aromatic ring: Synthesis and antibacterial activity. Chin. Chem. Lett. 2009, 20, 427–430. [Google Scholar] [CrossRef]
- Ouyang, G.P.; Cai, X.J.; Chen, Z.; Song, B.-A.; Bhadury, P.S.; Yang, S.; Jin, L.-H.; Xue, W.; Hu, D.-Y.; Zeng, S. Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. J. Agric. Food Chem. 2008, 56, 10160–10167. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, G.P.; Chen, Z.; Cai, X.J.; Song, B.A.; Bhadury, P.S.; Yang, S.; Jin, L.H.; Xue, W.; Hu, D.Y.; Zeng, S. Synthesis and antiviral activity of novel pyrazole derivatives containing oxime esters group. Bioorg. Med. Chem. 2008, 16, 9699–9707. [Google Scholar] [CrossRef] [PubMed]
- Alagarsamy, V.; Saravanan, G. Synthesis and anticonvulsant activity of novel quinazolin-4(3H)-one derived pyrazole analogs. Med. Chem. Res. 2013, 22, 1711. [Google Scholar] [CrossRef]
- Song, H.J.; Liu, Y.X.; Xiong, L.X.; Li, Y.; Yang, N.; Wang, Q. Design, synthesis, and insecticidal evaluation of new pyrazole derivatives containing imine, oxime ether, and dihydroisoxazoline groups based on the inhibitor binding pocket of respiratory complex I. J. Agric. Food Chem. 2013, 61, 8730–8736. [Google Scholar] [CrossRef] [PubMed]
- Comber, R.N.; Gray, R.J.; Secrist, J.A. Acyclic analogues of pyrazofurin: Syntheses and antiviral evaluation. Carbohydr. Res. 1991, 216, 441–452. [Google Scholar] [CrossRef]
- Schroder, J.; Henke, A.; Wenzel, H.; Brandstetter, H.; Stammler, H.G.; Stammler, A.; Pfeiffer, W.D.; Tschesche, H. Structure-Based Design and Synthesis of Potent Matrix Metalloproteinase Inhibitors Derived from a 6H-1,3,4-Thiadiazine Scaffold. J. Med. Chem. 2001, 44, 3231–3243. [Google Scholar] [CrossRef] [PubMed]
- Sert-Ozgur, S.; Banu, C.T.; Somuncuoglu, E.I.; Kazkayasi, I.; Ertan, M.; Tozkoparan, B. Design and Synthesis of 1,2,4-Triazolo[3,2-b]-1,3,5-thiadiazine Derivatives as a Novel Template for Analgesic/Anti-Inflammatory Activity. Arch. Pharm. Chem. Life Sci. 2017, 350, e1700052. [Google Scholar] [CrossRef] [PubMed]
- Čačić, M.; Pavić, V.; Molnar, M.; Šarkanj, B.; Has-Schön, E. Design and Synthesis of Some New 1,3,4-Thiadiazines with Coumarin Moieties and Their Antioxidative and Antifungal Activity. Molecules 2014, 19, 1163–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Zaib, S.; Ibrar, A.; Rama, N.H.; Simpson, J.; Iqbal, J. Synthesis, crystal structure and biological evaluation of some novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines. Eur. J. Med. Chem. 2014, 78, 176–177. [Google Scholar] [CrossRef] [PubMed]
- Khidre, R.E.; Abdel-Wahab, B.F.; Awad, G.E.A. Multi-component one-pot synthesis of novel (1,3,4-thiadiazin-2-ylamino)isoindoline-1,3-diones as antimicrobial agents. Heterocycles 2017, 94, 314–325. [Google Scholar] [CrossRef]
- Radini, I.A.M.; Abdel-Wahab, B.F.; Khidre, R.E. Synthetic Routes to Imidazothiazines. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 844–856. [Google Scholar] [CrossRef]
- Khidre, R.E.; Rodini, I.M.; Ibrahim, D.A. Synthesis of a novel heterocyclic scaffold utilizing 2-cyano-N-(3-cyano-4,6-dimethyl-2-oxopyridin-1-yl)acetamide. ARKIVOC 2016, 301–317. [Google Scholar] [CrossRef]
- Khidre, R.E.; Radini, I.A.M.; Abdel-Wahab, B.F. Synthesis of new heterocycles incorporating 3-(N-phthalimidomethyl)-1,2,4-triazole as antimicrobial agents. Egypt. J. Chem. 2016, 59, 731–744. [Google Scholar]
- Radini, I.A.M.; Elsheikh, T.M.Y.; El-Telbani, E.M.; Khidre, R.E. New Potential Antimalarial Agents: Design, Synthesis and Biological Evaluation of Some Novel Quinoline Derivatives as Antimalarial Agents. Molecules 2016, 21, 909. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, V.V.; Zelenin, K.N.; Yakimovich, S.I. Synthesis of Pyrazole, 1,2,4,5-Tetrazine, and 1,2,4-Triazole Derivatives from Thiocarbonohydrazides and β-Dicarbonyl Compounds. Russ. J. Org. Chem. 1995, 31, 868–873. [Google Scholar]
- Pavurala, S.; Vaarla, K.; Vedula, R.R. One-Pot Three-Component Synthesis of Pyrazolyl-thiadiazinyl-2Hchromen-2-one Derivatives. J. Heterocycl. Chem. 2015, 52, 1503–1505. [Google Scholar] [CrossRef]
- Lawrence, P.G.; Harold, P.L.; Francis, O.G. Antibiotic and Chemotherapy; Edinburgh: London, UK, 1980; Volume 5, p. 1597. [Google Scholar]
- Koch, A.L. Bacterial wall as target for attack: Past, present, and future research. Clin. Microbiol. Rev. 2003, 16, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1a, 1b, 5a, 8a, 12, 15c, 17b, 20, 21b, and 22 are available from the author. |
Comp. No. | Fungi | Gram Positive Bacteria | Gram Negative Bacteria | |||
---|---|---|---|---|---|---|
Candida albicans | Aspergillus niger | Staphylococcus aureus | Bacillus subtilus | Klebsiella pneumoniae | Escherichia coli | |
5a | 15 ± 1 | 20 ± 1.53 | na c | na | na | 17 ± 1.00 |
5b | na | na | na | na | na | na |
5c | 12 ± 1.53 | na | na | na | na | 11 ± 0.58 |
8a | na | na | na | na | na | na |
8b | 20 ± 1.53 | 15 ± 2.65 | 13 ± 0.58 | 18 ± 0.58 | 11 ± 0.58 | na |
8c | 9 ± 0.58 | na | na | 15 ± 2.08 | na | na |
12 | na | na | na | na | na | na |
15a | na | 12 ± 0.00 | na | na | na | na |
15b | na | 12 ± 0.58 | na | na | na | na |
15c | na | na | 15 ± 0.58 | 29 ± 1.00 | 15 ± 1.15 | 23 ± 1.53 |
17a | na | na | na | na | na | na |
17b | na | na | na | 15 ± 0.58 | na | 14 ± 1.00 |
17c | na | na | 17 ± 1.15 | 16 ± 0.58 | na | 16 ± 0.58 |
20 | na | na | na | na | na | 12 ± 0.58 |
21a | 13 ± 0.00 | 35 ± 3.00 | 22 ± 1.15 | 30 ± 1.53 | 20 ± 0.58 | 27 ± 1.15 |
21b | 18 ± 3.06 | 32 ± 0.58 | 21 ± 0.58 | 25 ± 0.58 | 18 ± 2.08 | 25 ± 0.58 |
21c | 25 ± 3.00 | 29 ± 1.00 | 12 ± 1.53 | 23 ± 1.73 | 13 ± 0.58 | 25 ± 0.58 |
22 | na | 26 ± 0.58 | 15 ± 0.00 | 20 ± 0.58 | 17 ± 0.58 | 20 ± 1.53 |
Chloramphenicol | - | - | 25 ± 0.58 | 30 ± 1.73 | 24 ± 1.15 | 24 ± 1.00 |
Clotrimazole | 24 ± 4.51 | 20 ± 0.58 | - | - | - | - |
Minimum Inhibitory Concentration (MIC) | ||||||
---|---|---|---|---|---|---|
Comp. No. | Candida albicans | Aspergillus niger | Staphylococcus aureus | Bacillus subtilus | Klebsiella pneumoniae | Escherichia coli |
8b | 125 ± 2.52 | 187.5 ± 0.50 | 375 ± 3.00 | 500 ± 3.51 | 500 ± 4.51 | na |
21a | 7.8 ± 0.17 | 2.9 ± 0.06 | 125 ± 0.58 | 62.5 ± 0.50 | 62.5 ± 2.00 | 125 ± 2.52 |
21b | 15.6 ± 0.76 | 5.8 ± 0.26 | 250 ± 8.08 | 125 ± 0.00 | 125 ± 2.65 | 187.5 ± 8.23 |
21c | 11.6 ± 0.30 | 5.8 ± 0.65 | 187.5 ± 8.23 | 125 ± 1.00 | 125 ± 1.53 | 125 ± 0.00 |
22 | 93.7 ± 0.95 | 46.4 ± 0.84 | 250 ± 4.36 | 250 ± 4.58 | 250 ± 3.21 | 500 ± 8.00 |
Chloramphenicol | --- | --- | 187.5 ± 0.06 | 125 ± 0.58 | 125 ± 3.51 | 125 ± 1.73 |
Clotrimazole | 7.8 ± 0.06 | 5.8 ± 0.06 | ---- | ---- | ---- | --- |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radini, I.A.M. Design, Synthesis, and Antimicrobial Evaluation of Novel Pyrazoles and Pyrazolyl 1,3,4-Thiadiazine Derivatives. Molecules 2018, 23, 2092. https://doi.org/10.3390/molecules23092092
Radini IAM. Design, Synthesis, and Antimicrobial Evaluation of Novel Pyrazoles and Pyrazolyl 1,3,4-Thiadiazine Derivatives. Molecules. 2018; 23(9):2092. https://doi.org/10.3390/molecules23092092
Chicago/Turabian StyleRadini, Ibrahim Ali M. 2018. "Design, Synthesis, and Antimicrobial Evaluation of Novel Pyrazoles and Pyrazolyl 1,3,4-Thiadiazine Derivatives" Molecules 23, no. 9: 2092. https://doi.org/10.3390/molecules23092092
APA StyleRadini, I. A. M. (2018). Design, Synthesis, and Antimicrobial Evaluation of Novel Pyrazoles and Pyrazolyl 1,3,4-Thiadiazine Derivatives. Molecules, 23(9), 2092. https://doi.org/10.3390/molecules23092092