Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time
Abstract
:1. Introduction
2. Results
2.1. Improving Microalgae Anaerobic Digestion by Co-Digestion with Primary Sludge and Thermal Pretreatment
2.1.1. Anaerobic Co-Digestion of Microalgae and Primary Sludge in Batch Tests
2.1.2. Anaerobic Co-Digestion of Microalgae and Primary Sludge in Lab-Scale Reactors
2.2. Effect of the Thermal Pretreatment on Microalgae Anaerobic Digestion
2.2.1. Anaerobic Digestion of Thermally Pretreated Microalgae in Lab-Scale Reactors
2.2.2. Microscopic Analysis
2.3. Effect of the HRT on Microalgae Anaerobic Biodegradability
3. Discussion
4. Materials and Methods
4.1. Substrates Caracteristics
4.2. Thermal Pretreatment
4.3. Biochemical Methane Potential Tests
4.4. Continuous Anaerobic Digestion
4.5. Microscopic Analysis
4.6. Analitical Procedures
4.7. Statistics and Kinetic Data Analysis
4.8. Energy Assessment
Author Contributions
Funding
Conflicts of Interest
References
- Arashiro, L.T.; Montero, N.; Ferrer, I.; Acién, F.G.; Gómez, C.; Garfí, M. Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci. Total Environ. 2018, 622–623, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Uggetti, E.; Passos, F.; Solé, M.; Garfí, M.; Ferrer, I. Recent Achievements in the Production of Biogas from Microalgae. Waste Biomass Valorization 2017, 8, 129–139. [Google Scholar] [CrossRef]
- Ward, A.J.; Lewis, D.M.; Green, F.B. Anaerobic digestion of algae biomass: A review. Algal Res. 2014, 5, 204–214. [Google Scholar] [CrossRef]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.-P. Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels Bioprod. Biorefin. 2012, 6, 205–218. [Google Scholar] [CrossRef]
- Passos, F.; Uggetti, E.; Carrère, H.; Ferrer, I. Pretreatment of microalgae to improve biogas production: A review. Bioresour. Technol. 2014, 172, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, E.; Sahu, A.K.; Oleskowicz-Popiel, P. Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew. Sustain. Energy Rev. 2017, 75, 692–709. [Google Scholar] [CrossRef]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Passos, F.; Ferrer, I. Microalgae Conversion to Biogas: Thermal Pretreatment Contribution on Net Energy Production. Environ. Sci. Technol. 2014, 48, 7171–7178. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, C.; Kalita, N.; Wall, D.; Xia, A.; Murphy, J.D. Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresour. Technol. 2016, 214, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Ehimen, E.A.; Sun, Z.F.; Carrington, C.G.; Birch, E.J.; Eaton-Rye, J.J. Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl. Energy 2011, 88, 3454–3463. [Google Scholar] [CrossRef]
- Magdalena, J.; Ballesteros, M.; González-Fernandez, C. Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule. Molecules 2018, 23, 1098. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, A.; Fotidis, I.A.; Mancini, E.; Ballesteros, M.; González-Fernández, C.; Angelidaki, I. Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresour. Technol. 2017, 225, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Solé-Bundó, M.; Matamoros, V.; Garfí, M.; Ferrer, I. Co-digestion of primary sludge and microalgae from wastewater treatment systems: Effect on biogas production and emerging contaminants removal. Unpublished data. 2018; under preparation. [Google Scholar]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
- Mahdy, A.; Mendez, L.; Ballesteros, M.; González-Fernández, C. Algaculture integration in conventional wastewater treatment plants: Anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresour. Technol. 2015, 184, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Hlavínek, P.; Stvríteský, L.; Pešoutová, R.; Houdková, L. Biogas Production from Algal Biomass from Municipal Wastewater Treatment. Waste Biomass Valorization 2016, 7, 747–752. [Google Scholar] [CrossRef]
- Beltran, C.; Jeison, D.; Fermoso, F.G.; Borja, R. Batch anaerobic co-digestion of waste activated sludge and microalgae (Chlorella sorokiniana) at mesophilic temperature. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2016, 51, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Torres, A.; Fermoso, F.G.; Borja, R.; Jeison, D. Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode. Int. Biodeterior. Biodegrad. 2015, 100, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Astals, S.; Musenze, R.S.; Bai, X.; Tannock, S.; Tait, S.; Pratt, S.; Jensen, P.D. Anaerobic co-digestion of pig manure and algae: Impact of intracellular algal products recovery on co-digestion performance. Bioresour. Technol. 2015, 181, 97–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solé-Bundó, M.; Eskicioglu, C.; Garfí, M.; Carrère, H.; Ferrer, I. Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment. Bioresour. Technol. 2017, 237, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samson, R.; LeDuy, A. Improved performance of anaerobic digestion ofSpirulinamaxima algal biomass by addition of carbon-rich wastes. Biotechnol. Lett. 1983, 5, 677–682. [Google Scholar] [CrossRef]
- Peng, S.; Colosi, L.M. Anaerobic Digestion of Algae Biomass to Produce Energy during Wastewater Treatment. Water Environ. Res. 2016, 88, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, R.; Massé, D.I.; Singh, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, C.; Sialve, B.; Bernet, N.; Steyer, J.P. Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 2012, 40, 105–111. [Google Scholar] [CrossRef]
- Bohutskyi, P.; Betenbaugh, M.J.; Bouwer, E.J. The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresour. Technol. 2014, 155, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Passos, F.; Gutiérrez, R.; Brockmann, D.; Steyer, J.-P.; García, J.; Ferrer, I. Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Res. 2015, 10, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Passos, F.; Hernández-Mariné, M.; García, J.; Ferrer, I. Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res. 2014, 49, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Ometto, F.; Quiroga, G.; Pšenička, P.; Whitton, R.; Jefferson, B.; Villa, R. Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Res. 2014, 65, 350–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solé-Bundó, M.; Carrère, H.; Garfí, M.; Ferrer, I. Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). Algal Res. 2017, 24, 199–206. [Google Scholar] [CrossRef]
- Greses, S.; Zamorano-López, N.; Borrás, L.; Ferrer, J.; Seco, A.; Aguado, D. Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater. J. Environ. Manag. 2018, 218, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Passos, F.; Gutiérrez, R.; Uggetti, E.; Garfí, M.; García, J.; Ferrer, I. Towards energy neutral microalgae-based wastewater treatment plants. Algal Res. 2017, 28, 235–243. [Google Scholar] [CrossRef]
- Gutiérrez, R.; Ferrer, I.; González-Molina, A.; Salvadó, H.; García, J.; Uggetti, E. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds. Water Res. 2016, 106, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J.O. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Front. Microbiol. 2016, 7, 2106. [Google Scholar] [CrossRef] [PubMed]
- Arias, D.M.; Solé-Bundó, M.; Garfí, M.; Ferrer, I.; García, J.; Uggetti, E. Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresour. Technol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C.M. Algas en Los Abastecimientos de Agua. Manual Ilustrado Acerca de la Identificación, Importancia y Control de Las Algas en Los Abastecimientos de Agua; Editorial Interamericana: México City, México, 1962. [Google Scholar]
- Bourrelly, P. Les Algues D’eau Douce, in: Les Algues Vertes, 1st ed.; Societé nouvelle des éditions doubée: Paris, France, 1985. [Google Scholar]
- Salvadó, H.; Palomo, A.; Mas, M.; Puigagut, J.; Gracia, M. Dynamics of nematodes in a high organic loading rotating biological contactors. Water Res. 2004, 38, 2571–2578. [Google Scholar] [CrossRef] [PubMed]
- Abzazou, T.; Salvadó, H.; Bruguera-Casamada, C.; Simón, P.; Lardín, C.; Araujo, R.M. Assessment of total bacterial cells in extended aeration activated sludge plants using flow cytometry as a microbial monitoring tool. Environ. Sci. Pollut. Res. 2015, 22, 11446–11455. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA; AWWA: Singapore; WEF: Cologny, Switzerland, 2005. [Google Scholar]
- Solorzano, L. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceangr. 1969, 14. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Period I | Period II | |
---|---|---|
(HRT = 20 Days) | (HRT = 30 Days) | |
Digester 1 | 25% VS pretreated 1 microalgae + 75% VS primary sludge | Untreated microalgae |
Digester 2 | Pretreated 1 microalgae | Pretreated 1 microalgae |
Trial | Methane Yield (mL CH4/g VS) | First-Order Kinetics (k) (Day−1) | ||
---|---|---|---|---|
Experimental Values 1 | Calculated Values 2 | Experimental Values 1 | Calculated Values 3 | |
Microalgae (M) | 90 ± 2 | - | 0.07 (≤30) | - |
75% M + 25% PS 4 | 133 ± 6 | 162 | 0.27 (≤74) | 0.16 (70) |
50% M + 50% PS 4 | 216 ± 1 | 234 | 0.28 (≤80) | 0.20 (88) |
25% M + 75% PS 4 | 291 ± 9 | 306 | 0.27 (≤108) | 0.23 (113) |
Pretreated Microalgae (Mp) | 146 ± 6 | - | 0.16 (≤75) | - |
75% Mp + 25% PS 4 | 183 ± 2 | 204 | 0.25 (≤85) | 0.20 (72) |
50% Mp + 50% PS 4 | 249 ± 17 | 262 | 0.28 (≤99) | 0.22 (82) |
25% Mp + 75% PS 4 | 339 ± 2 | 320 | 0.25 (≤150) | 0.23 (107) |
Primary Sludge (PS) | 378 ± 4 | - | 0.24 (≤162) | - |
Period I | Period II | ||||
---|---|---|---|---|---|
Microalgae,p | Co-Digestion | Microalgae | Microalgae,p | ||
Operational Conditions | HRT (days) | 20 | 20 | 30 | 30 |
OLR (g VS/L·day) | 1.21 ± 0.06 | 1.17 ± 0.09 | 0.85 ± 0.01 | 0.81 ± 0.02 | |
Biogas Production | Methane production rate (L CH4/L·day) | 0.20 ± 0.05 | 0.53 ± 0.29 a | 0.12 ± 0.08 | 0.19 ± 0.07 b |
Methane yield (L CH4/g VS) | 0.16 ± 0.05 | 0.46 ± 0.27 a | 0.14 ± 0.07 | 0.24 ± 0.07 b | |
Methane content in biogas (% CH4) | 66.2 ± 2.62 | 71.7 ± 0.9 a | 67.6 ± 1.6 | 69.5 ± 1.7 | |
Removal Efficiency | TS removal (%) | 16.6 ± 4.1 | 19.0 ± 1.7 a | 18.6 ± 1.7 | 26.2 ± 3.7 b |
VS removal (%) | 27.9 ± 1.9 | 34.3 ± 2.4 a | 36.2 ± 2.5 | 39.5 ± 3.7 b | |
Influent Characteristics | TS [% (w/w)] | 3.87 ± 0.28 | 4.13 ± 0.29 | 3.63 ± 0.48 | 3.42 ± 0.28 |
VS [% (w/w)] | 2.47 ± 0.17 | 2.38 ± 0.15 | 2.42 ± 0.14 | 2.37 ± 0.10 | |
VS/TS (%) | 64 ± 3 a | 58 ± 3 | 56 ± 2 | 55 ± 2 | |
COD (g O2/L) | 42.0 ± 6.7 | 42.9 ± 7.7 | 26.6 ± 1.6 | 25.2 ± 1.8 | |
TKN (g/L) | n.a. | n.a. | 2.4 ± 0.1 | 2.3 ± 0.1 | |
N-NH4 (g/L) | 0.16 ± 0.07 | 0.13 ± 0.06 | 0.06 ± 0.01 | 0.26 ± 0.06 b | |
Effluent Characteristics | pH | 7.55 ± 0.15 a | 7.30 ± 0.08 | 7.35 ± 0.11 | 7.55 ± 0.08 b |
TS [% (w/w)] | 3.49 ± 0.34 | 3.53 ± 0.18 | 2.87 ± 0.16 | 2.67 ± 0.27 | |
VS [% (w/w)] | 1.77 ± 0.09 a | 1.62 ± 0.11 | 1.58 ± 0.06 | 1.45 ± 0.11 | |
VS/TS (%) | 51 ± 3 a | 46 ± 2 | 56 ± 2 | 55 ± 2 | |
COD (g/L) | 30.9 ± 2.1 | 29.0 ± 3.0 | 26.6 ± 1.6 | 25.2 ± 2.1 | |
N-NH4 (g/L) | 1.1 ± 0.2 a | 0.6 ± 0.1 | 0.7 ± 0.1 | 0.8 ± 0.1 | |
VFA (mg COD/L) | 124 (<756 1) | 44 (<757 1) | 0 (<0 1) | 130 (<596 1) | |
CST (s) | 982 ± 61 a | 290 ± 11 | 795 ± 71 | 919 ± 21 b |
Period I | Period II | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Microalgae,p | Co-Digestion | Microalgae | Microalgae,p | |||||||||
Q (m3/day) | 10 | 25 | 100 | 10 | 25 | 100 | 10 | 25 | 100 | 10 | 25 | 100 |
Ei (GJ/day) | 1.15 | 2.75 | 10.46 | 0.96 | 2.28 | 8.58 | 0.99 | 2.31 | 8.53 | 1.24 | 2.93 | 11.04 |
Eo (GJ/day) | 1.29 | 3.22 | 12.89 | 3.42 | 8.54 | 34.15 | 1.35 | 3.38 | 13.53 | 1.84 | 4.59 | 18.37 |
∆E = Eo − Ei (GJ/day) | 0.14 | 0.47 | 2.43 | 2.45 | 6.26 | 25.27 | 0.36 | 1.08 | 5.00 | 0.60 | 1.66 | 7.32 |
Eo/Ei (-) | 1.1 | 1.2 | 1.2 | 3.5 | 3.7 | 4.0 | 1.4 | 1.5 | 1.6 | 1.5 | 1.6 | 1.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solé-Bundó, M.; Salvadó, H.; Passos, F.; Garfí, M.; Ferrer, I. Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules 2018, 23, 2096. https://doi.org/10.3390/molecules23092096
Solé-Bundó M, Salvadó H, Passos F, Garfí M, Ferrer I. Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules. 2018; 23(9):2096. https://doi.org/10.3390/molecules23092096
Chicago/Turabian StyleSolé-Bundó, Maria, Humbert Salvadó, Fabiana Passos, Marianna Garfí, and Ivet Ferrer. 2018. "Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time" Molecules 23, no. 9: 2096. https://doi.org/10.3390/molecules23092096
APA StyleSolé-Bundó, M., Salvadó, H., Passos, F., Garfí, M., & Ferrer, I. (2018). Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules, 23(9), 2096. https://doi.org/10.3390/molecules23092096