Simultaneous Determination of Aesculin, Aesculetin, Fraxetin, Fraxin and Polydatin in Beagle Dog Plasma by UPLC-ESI-MS/MS and Its Application in a Pharmacokinetic Study after Oral Administration Extracts of Ledum palustre L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of UPLC-ESI-MS/MS Conditions
2.2. Extraction Method
2.3. Method Validation
2.3.1. Selectivity and Specificity
2.3.2. Linearity and Sensitivity
2.3.3. Precision and Accuracy
2.3.4. Extraction Recovery and Matrix Effect
2.3.5. Stability
2.4. Application to a Pharmacokinetic Study
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instruments and Chromatographic Conditions
3.3. Preparation of L. palustre Extract
3.4. Preparation of Calibration Standards and Quality Control (QC) Samples
3.5. Sample Preparation
3.6. Method Validation
3.6.1. Selectivity and Specificity
3.6.2. Linearity and Sensitivity
3.6.3. Precision and Accuracy
3.6.4. Extraction Recovery and Matrix Effect
3.6.5. Stability
3.7. Application to a Pharmacokinetic Study
3.7.1. Animals
3.7.2. Data Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gretšušnikova, T.; Jarvan, K.; Orav, A.; Koel, M. Comparative analysis of the composition of the essential oil from the shoots, leaves and stems the wild Ledum palustre L. from Estonia. Procedia Chem. 2010, 2, 168–173. [Google Scholar] [CrossRef]
- Butkiene, R.; Mockute, D. The variability of the essential oil composition of wild Ledum palustre L. shoots during vegetation period. J. Essent. Oil Res. 2011, 23, 9–13. [Google Scholar] [CrossRef]
- Kim, D.M.; Nam, B.W. Extracts and essential oil of Ledum palustre L. leaves and their antioxidant and antimicrobial activities. Prev. Nutr. Food Sci. 2006, 11, 100–104. [Google Scholar] [CrossRef]
- Dampc, A.; Luczkiewicz, M. Rhododendron tomentosum (Ledum palustre). A review of traditional use based on current research. Fitoterapia 2013, 85, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and Synthetic Coumarin Derivatives with Anti-Inflammatory/Antioxidant Activities. Curr. Pharm. Des. 2004, 10, 3813–3833. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lan, Z.; Lin, Q.; Mi, X.; He, Y.; Wei, L.; Lin, Y.; Zhang, Y.; Deng, X. Polydatin ameliorates renal injury by attenuating oxidative stress-related inflammatory responses in fructose-induced urate nephropathic mice. Food Chem. Toxicol. 2013, 52, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, G.; Abdelwahab, A.B.; Chaimbault, P. Natural and Synthetic Coumarins with Effects on Inflammation. Molecules 2016, 21, 1322. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Sumiyoshi, M. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells. Eur. J. Pharmacol. 2015, 746, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.W.; Pei, Y.; Zhang, Y.J.; Wang, Y.F.; Yang, C.R. 7-O-methylkaempferol and -quercetin glycosides from the whole plant of Nervilia fordii. J. Nat. Prod. 2009, 72, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Sun, A.; Zhang, Y.; Liu, R. Purification of coumarin compounds from Cortex fraxinus by adsorption chromatography. J. Chromatogr. Sci. 2014, 52, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.H.; Peng, C.; Zhang, H. Polydatin: A review of pharmacology and pharmacokinetics. Pharm. Biol. 2013, 51, 1347–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastore, S.; Lulli, D.; Fidanza, P.; Potapovich, A.I.; Kostyuk, V.A.; De Luca, C.; Mikhal’chik, E.; Korkina, L.G. Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system. Antioxid. Redox Signal. 2012, 16, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.T.; Guo, G.; Wu, M.; Zhang, W.G. The progress of the research on cardio-vascular effects and acting mechanism of polydatin. Chin. J. Integr. Med. 2012, 18, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Gao, J.; Chen, C.; Wang, H.; Guo, J.; Wu, R. Cardioprotective effect of polydatin on ventricular remodeling after myocardial infarction in coronary artery ligation rats. Planta Med. 2015, 81, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.U.; Kim, I.S.; Kang, K.S.; Yoo, H.H. HPLC determination of esculin and esculetin in rat plasma for pharmacokinetic studies. J. Chromatogr. Sci. 2015, 53, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Zhang, L.; Wang, Q.; Liu, W.; Wang, C.; Jing, X.; Liu, Y. Determination of piceid in rat plasma and tissues by high-performance liquid chromatographic method with UV detection. Biomed. Chromatogr. 2006, 20, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, H.; Wu, Y.; Geng, Q.; Dong, D.; Wu, H.; Li, E. A sensitive and selective method for determination of aesculin in Cortex Fraxini by liquid chromatography quadrupole time-of-flight tandem mass spectrometry and application in pharmacokinetic study. J. Anal. Methods Chem. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zeng, Y.; Kuang, J.; Li, Y.; Li, X.; Zheng, Y.; Hou, H.; Hou, S. Quantification of aesculin in rabbit plasma and ocular tissues by high performance liquid chromatography using fluorescent detection: Application to a pharmacokinetic study. J. Pharm. Biomed. Anal. 2011, 55, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Hou, X.; Gao, S.; Sun, M.; Lin, F.; Cai, G.; Xiao, K. Pharmacokinetics and bioavailability study of polydatin in rat plasma by using a LC-MS/MS method. Pak. J. Pharm. Sci. 2014, 27, 1931–1937. [Google Scholar] [PubMed]
- Wang, H.D.; Xiao, B.X.; Hao, Z.Q.; Sun, Z.X. Simultaneous determination of fraxin and its metabolite, fraxetin, in rat plasma by liquid chromatography-tandem mass spectrometry and its application in a pharmacokinetic study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1017, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ding, W.; Wang, S.; Wang, C.; Du, Y.; Xu, H.; Wang, Q.; Jin, S. Simultaneous determination of nine coumarins in rat plasma by HPLC-MS/MS for pharmacokinetics studies following oral administration of Fraxini Cortex extract. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1025, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Yu, F.; Ma, A.D.; Yang, X.M. Pharmacokinetic study of polydatin in Beagle dogs. J. South. Med. Univ. 2009, 29, 1538–1540. [Google Scholar]
- Ding, W.J.; Deng, Y.; Feng, H.; Liu, W.W.; Hu, R.; Li, X.; Gu, Z.M.; Dong, X.P. Biotransformation of aesculin by human gut bacteria and identification of its metabolites in rat urine. World J. Gastroenterol. 2009, 15, 1518–1523. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Fukui, M.; Nakazawa, T.; Hoshikawa, A.; Ohsawa, K. Metabolic fate of fraxin administered orally to rats. J. Nat Prod. 2006, 69, 755–757. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. Available online: https://www.fda.gov/AboutFDA/AboutThisWebsite/ucm450631.htm (accessed on 23 April 2018).
Sample Availability: Samples of the compounds aesculin, aesculetin, fraxetin, fraxin and polydatin are available from the authors. |
Analytes | Precursor Ion (m/z) | Product Ion (m/z) | Declustering Potential (V) | Collision Energy (V) | Polarity |
---|---|---|---|---|---|
aesculin | 339.1 | 176.8 | 103.1 | 40.7 | negative |
aesculetin | 176.8 | 88.9 | 69.3 | 34.9 | negative |
fraxetin | 206.8 | 192.1 | 64.9 | 22.6 | negative |
fraxin | 369.1 | 206.9 | 75.8 | 30.8 | negative |
polydatin | 389.1 | 227.0 | 85.6 | 22.0 | negative |
puerarin | 415.2 | 295.1 | 92.9 | 34.4 | negative |
Analytes | Regression Equations | R | Linear Range (ng/mL) | LLOQ (ng/mL) |
---|---|---|---|---|
aesculin | Y = 2.62 × 10−3X − 0.34 × 10−2 | 0.9988 | 0.50–97.50 | 0.50 |
aesculetin | Y = 0.71 × 10−3X + 2.24 × 10−2 | 0.9985 | 1.09–209.2 | 1.09 |
fraxetin | Y = 1.80 × 10−3X − 0.65 × 10−2 | 0.9983 | 2.15–412.8 | 2.15 |
fraxin | Y = 1.53 × 10−3X − 0.16 × 10−2 | 0.9986 | 1.25–241.0 | 1.25 |
polydatin | Y = 7.60 × 10−3X + 1.12 × 10−2 | 0.9981 | 0.50–97.50 | 0.50 |
Analytes | Spiked Concentration (ng/mL) | Mean ± SD (ng/mL) | Intra-day Precision RSD (%) | Inter-day Precision RSD (%) | Accuracy RE (%) |
---|---|---|---|---|---|
aesculin | 0.50 | 0.56 ± 0.15 | 10.7 | 6.9 | 16.5 |
1.52 | 1.54 ± 0.22 | 4.1 | 8.4 | 1.6 | |
12.18 | 12.42 ± 2.16 | 9.5 | 6.2 | 2.8 | |
78.00 | 74.11 ± 6.30 | 5.9 | 4.6 | 6.8 | |
aesculetin | 1.09 | 1.12 ± 0.15 | 11.9 | 14.2 | 5.1 |
3.27 | 14.02 ± 1.57 | 6.0 | 7.4 | 2.4 | |
26.16 | 24.31 ± 2.23 | 8.9 | 9.1 | −4.9 | |
167.3 | 172.3 ± 18.35 | 3.5 | 8.9 | 5.4 | |
fraxetin | 2.15 | 2.08 ± 0.22 | 15.2 | 7.7 | −1.8 |
6.45 | 6.34 ± 0.36 | 4.5 | 3.3 | −1.5 | |
51.60 | 53.53 ± 2.31 | 6.4 | 7.2 | 3.7 | |
330.2 | 347.9 ± 18.46 | 9.3 | 7.9 | 5.4 | |
fraxin | 1.25 | 1.20 ± 0.11 | 10.5 | 16.1 | −3.4 |
3.76 | 3.44 ± 0.36 | 5.8 | 3.9 | −5.2 | |
30.12 | 32.90 ± 2.74 | 7.0 | 5.6 | 5.9 | |
192.8 | 186.3 ± 11.06 | 5.8 | 7.3 | 3.3 | |
polydatin | 0.50 | 1.23 ± 0.13 | 6.2 | 15.6 | 13.1 |
1.52 | 1.55 ± 0.39 | 9.5 | 11.6 | 8.3 | |
12.18 | 13.87 ± 2.67 | 6.9 | 5.8 | 6.4 | |
78.00 | 75.1 ± 13.39 | 4.3 | 7.7 | 4.8 |
Analytes | Spiked Concentration (ng/mL) | Extraction Recovery | Matrix Effect | ||
---|---|---|---|---|---|
Mean (%) | RSD (%) | Mean (%) | RSD (%) | ||
aesculin | 1.52 | 85.25 | 9.3 | 97.08 | 2.4 |
12.18 | 86.11 | 6.9 | 106.28 | 4.8 | |
78.00 | 91.59 | 5.2 | 100.59 | 6.4 | |
aesculetin | 3.27 | 89.14 | 10.2 | 97.13 | 13.2 |
26.16 | 91.15 | 5.2 | 96.87 | 7.6 | |
167.3 | 87.10 | 6.9 | 100.91 | 7.0 | |
fraxetin | 6.45 | 86.65 | 8.9 | 99.51 | 10.8 |
51.60 | 98.54 | 6.8 | 101.08 | 7.4 | |
330.2 | 88.21 | 5.2 | 106.22 | 8.1 | |
fraxin | 3.76 | 80.10 | 5.9 | 98.66 | 8.3 |
30.12 | 88.58 | 6.1 | 100.39 | 5.5 | |
192.8 | 90.20 | 3.4 | 102.52 | 6.8 | |
polydatin | 1.52 | 82.07 | 7.7 | 95.86 | 6.4 |
12.18 | 81.33 | 5.2 | 99.28 | 7.6 | |
78.00 | 88.24 | 3.3 | 100.23 | 5.2 | |
IS | 260.0 | 96.81 | 5.9 | 98.47 | 8.9 |
Analytes | Spiked Concentration (ng/mL) | Stability (RE %) | |||
---|---|---|---|---|---|
Long-Term | Short-Term | Three Freeze-Thaw | Post-Preparation | ||
aesculin | 1.52 | 4.3 | −5.5 | 2.7 | 3.8 |
12.18 | 5.6 | 4.1 | 2.4 | −4.1 | |
78.00 | −2.7 | −7.5 | −2.5 | 3.3 | |
aesculetin | 3.27 | −1.9 | 2.0 | 4.9 | 6.7 |
26.16 | 5.3 | −4.9 | −3.4 | 2.5 | |
167.3 | 5.8 | 3.1 | 5.3 | 4.7 | |
fraxetin | 6.45 | 3.7 | 4.3 | 8.7 | 4.1 |
51.60 | 7.7 | 5.1 | 7.2 | 10.7 | |
330.2 | 7.5 | 6.3 | −4.5 | 5.3 | |
fraxin | 3.76 | 6.4 | 2.7 | 7.6 | 3.4 |
30.12 | 5.9 | 6.4 | −2.5 | 8.4 | |
192.8 | 4.6 | 7.8 | −4.3 | 6.9 | |
polydatin | 1.52 | 2.9 | 3.3 | 7.6 | 2.4 |
12.18 | 3.8 | 6.9 | 5.9 | −2.7 | |
78.00 | 8.4 | 5.7 | −4.3 | 3.7 |
Analytes | Cmax (ng/mL) | Tmax (h) | T1/2 (h) | AUC0→t (ng/h/L) | AUC0→∞ (ng/h/L) |
---|---|---|---|---|---|
aesculin | 46.75 ± 7.46 | 1.32 ± 0.38 | 3.43 ± 0.47 | 258.5 ± 20.45 | 342.4 ± 35.82 |
aesculetin | 209.9 ± 27.65 | 1.03 ± 0.27 | 4.25 ± 0.18 | 314.3 ± 30.92 | 355.9 ± 30.52 |
fraxetin | 369.7 ± 48.87 | 0.94 ± 0.23 | 3.76 ± 0.35 | 940.1 ± 52.89 | 992.8 ± 46.96 |
fraxin | 67.04 ± 12.09 | 0.89 ± 0.18 | 2.99 ± 0.29 | 147.2 ± 21.74 | 191.5 ± 22.18 |
polydatin | 47.14 ± 12.04 | 1.15 ± 0.15 | 3.36 ± 0.31 | 89.82 ± 14.04 | 98.28 ± 12.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhu, W.; Liu, H.; Wu, G.; Song, M.; Yang, B.; Yang, D.; Wang, Q.; Kuang, H. Simultaneous Determination of Aesculin, Aesculetin, Fraxetin, Fraxin and Polydatin in Beagle Dog Plasma by UPLC-ESI-MS/MS and Its Application in a Pharmacokinetic Study after Oral Administration Extracts of Ledum palustre L. Molecules 2018, 23, 2285. https://doi.org/10.3390/molecules23092285
Wang Z, Zhu W, Liu H, Wu G, Song M, Yang B, Yang D, Wang Q, Kuang H. Simultaneous Determination of Aesculin, Aesculetin, Fraxetin, Fraxin and Polydatin in Beagle Dog Plasma by UPLC-ESI-MS/MS and Its Application in a Pharmacokinetic Study after Oral Administration Extracts of Ledum palustre L. Molecules. 2018; 23(9):2285. https://doi.org/10.3390/molecules23092285
Chicago/Turabian StyleWang, Zhibin, Wenbo Zhu, Hua Liu, Gaosong Wu, Mengmeng Song, Bingyou Yang, Deqiang Yang, Qiuhong Wang, and Haixue Kuang. 2018. "Simultaneous Determination of Aesculin, Aesculetin, Fraxetin, Fraxin and Polydatin in Beagle Dog Plasma by UPLC-ESI-MS/MS and Its Application in a Pharmacokinetic Study after Oral Administration Extracts of Ledum palustre L." Molecules 23, no. 9: 2285. https://doi.org/10.3390/molecules23092285
APA StyleWang, Z., Zhu, W., Liu, H., Wu, G., Song, M., Yang, B., Yang, D., Wang, Q., & Kuang, H. (2018). Simultaneous Determination of Aesculin, Aesculetin, Fraxetin, Fraxin and Polydatin in Beagle Dog Plasma by UPLC-ESI-MS/MS and Its Application in a Pharmacokinetic Study after Oral Administration Extracts of Ledum palustre L. Molecules, 23(9), 2285. https://doi.org/10.3390/molecules23092285