Strong Coupling of Folded Phonons with Plasmons in 6H-SiC Micro/Nanocrystals
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Wang, G.; Wang, S.; Yang, J.; Chen, L.; Qin, X.; Song, B.; Wang, B.; Chen, X. Defect-Induced Magnetism in Neutron Irradiated 6H-SiC Single Crystals. Phys. Rev. Lett. 2011, 106, 087205. [Google Scholar] [CrossRef] [PubMed]
- Itoh, A.; Kimoto, T.; Matsunami, H. High Performance of High-Voltage 4H-SiC Schottky Barrier Diodes. IEEE Electr. Device Lett. 1995, 16, 280–282. [Google Scholar] [CrossRef]
- Casady, J.B.; Johnson, R.W. Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review. Solid State Electron. 1996, 39, 1409–1422. [Google Scholar] [CrossRef]
- Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation. Phys. Rev. Lett. 2009, 103, 246804. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Fan, J.Y.; Qiu, T.; Yang, X.; Siu, G.G.; Chu, P.K. Experimental Evidence for the Quantum Confinement Effect in 3C-SiC Nanocrystallites. Phys. Rev. Lett. 2005, 94, 026102. [Google Scholar] [CrossRef] [PubMed]
- Bracher, D.; Hu, E. Fabrication of High-Q Nanobeam Photonic Crystals in Epitaxially Grown 4H-SiC. Nano Lett. 2015, 15, 6202–6207. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zheng, J.; Wang, M.; Wei, G.; Yang, W. Piezoresistance Behaviors of p-type 6H-SiC Nanowires. Chem. Commun. 2011, 47, 11993–11995. [Google Scholar] [CrossRef] [PubMed]
- Csóré, A.; Bardeleben, H.J.V.; Cantin, J.L.; Gali, A. Characterization and Formation of NV Centers in 3C, 4H, and 6H SiC: An Ab Initio Study. Phys. Rev. B 2017, 96, 085204. [Google Scholar] [CrossRef]
- Bechstedt, F.; Fissel, A.; Furthmüller, J.; Kaiser, U.; Weissker, H.C.; Wesch, W. Quantum Structures in SiC. Appl. Surf. Sci. 2003, 212, 820–825. [Google Scholar] [CrossRef]
- Perova, T.; Wasyluk, J.; Kukushkin, S.; Osipov, A.; Feoktistov, N.; Grudinkin, S. Micro-Raman Mapping of 3C-SiC Thin Films Grown by Solid-Gas Phase Epitaxy on Si (111). Nanoscale Res. Lett. 2010, 5, 1507–1511. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.; Jayalakshmi, G.; Panigrahi, B.; Hübner, R. Strain and Particle Size Analysis in Ion Beam Synthesized SiC Nanoparticles Using Raman Scattering Studies. Cryst. Res. Technol. 2017, 52, 1600391. [Google Scholar] [CrossRef]
- Klein, M.V.; Ganguly, B.N.; Colwell, P.J. Theoretical and Experimental Study of Raman Scattering from Coupled LO-Phonon-Plasmon Modes in Silicon Carbide. Phys. Rev. B 1972, 6, 2380. [Google Scholar] [CrossRef]
- Ulrich, C.; Debernardi, A.; Anastassakis, E.; Syassen, K.; Cardona, M. Raman Linewidths of Phonons in Si, Ge, and SiC under Pressure. Phys. Status Solidi B 1999, 211, 293–300. [Google Scholar] [CrossRef]
- Wan, L.; Zhao, D.; Wang, F.; Xu, G.; Lin, T.; Tin, C.; Feng, Z. Quality Evaluation of Homopetaxial 4H-SiC Thin Films by a Raman Scattering Study of Forbidden Modes. Opt. Mater. Express 2017, 8, 119–127. [Google Scholar] [CrossRef]
- Wasyluk, J.; Perova, T.; Kukushkin, S.; Osipov, A.; Feoktistov, N.; Grudinkin, S. Raman Investigation of Different Polytypes in SiC Thin Films Grown by Solid-Gas Phase Epitaxy on Si (111) and 6H-SiC Substrates. Mater. Sci. Forum 2010, 645, 359–362. [Google Scholar] [CrossRef]
- Feidman, D.W.; Parker, J.H.; Choyke, W.J.; Patrick, L. Raman Scattering in 6H SiC. Phys. Rev. 1968, 170, 698. [Google Scholar] [CrossRef]
- Patrick, L. Infrared Absorption in SiC Polytypes. Phys. Rev. 1968, 167, 809. [Google Scholar] [CrossRef]
- Loudon, R. The Raman Effect in Crystals. Adv. Phys. 1964, 13, 423–482. [Google Scholar] [CrossRef]
- Patrick, L. Inequivalent Sites and Multiple Donor and Acceptor Levels in SiC Polytypes. Phys. Rev. 1962, 127, 1878. [Google Scholar] [CrossRef]
- Liu, L.Z.; Wang, J.; Wu, X.L.; Li, T.H.; Chu, P.K. Longitudinal Optical Phonon-Plasmon Coupling in Luminescent 3C-SiC Nanocrystal Films. Opt. Lett. 2010, 35, 4024–4026. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Q.; Xiong, S.J.; Wu, X.L.; Liu, L.Z.; Li, T.H.; Chu, P.K. Strong Phonon-Plasmon Coupling at the Interface of 3C-SiC/Metal Oxide Nanoparticles. Acta Mater. 2015, 83, 113–119. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials Enhanced Surface Plasmon Resonance for Biological and Chemical Sensing Applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef] [PubMed]
- Tótha, S.; Némethc, P.; Rácza, P.; Himicsa, L.; Dombia, P.; Koós, M. Silicon Carbide Nanocrystals Produced by Femtosecond Laser Pulses. Diam. Relat. Mater. 2018, 81, 96–102. [Google Scholar] [CrossRef]
- Lee, C.P.; Luna, L.E.; DelaCruz, S.; Ortaboy, S.; Rossi, F.; Salviati, G.; Carraro, C.; Maboudian, R. Hierarchical Cobalt Oxide-Functionalized Silicon Carbide Nanowire Array for Efficient and Robust Oxygen Evolution Electro-Catalysis. Materialstoday Energy 2018, 7, 37–43. [Google Scholar] [CrossRef]
- Lin, S.; Chen, Z.; Li, L.; Yang, C. Effect of Impurities on the Raman Scattering of 6H-SiC Crystals. Mater. Res. 2012, 15, 833–836. [Google Scholar] [CrossRef]
- Scheerer, U.; Wulff, C. Reduced Dynamics for Momentum Maps with Cocycles Dynamique Réduite Pour Les Applications Moment Avec Des Cocycles. C. R. L’académie Des. Sci. Ser. Math 2001, 333, 999–1004. [Google Scholar]
- Wang, H.C.; He, Y.T.; Sun, H.Y.; Qiu, Z.R.; Xie, D.; Mei, T.; Tin, C.; Feng, Z.C. Temperature Dependence of Raman Scattering in 4H-SiC Films under Different Growth Conditions. Chin. Phys. Lett. 2015, 32, 047801. [Google Scholar] [CrossRef]
- Lin, S.H.; Chen, Z.M.; Li, L.B.; Ba, Y.T.; Liu, S.J.; Yang, M.C. Investigation of Micropipes in 6H-SiC by Raman Scattering. Phys. B Condens. Matter 2012, 407, 670–673. [Google Scholar] [CrossRef]
- Wu, X.L.; Xiong, S.J.; Zhu, J.; Wang, J.; Shen, J.C.; Chu, P.K. Identification of Surface Structures on 3C-SiC Nanocrystals with Hydrogen and Hydroxyl Bonding by Photoluminescence. Nano Lett. 2009, 9, 4053–4060. [Google Scholar] [CrossRef] [PubMed]
- Mutschke, H.; Andersen, A.C.; Clement, D.; Henning, T.; Peiter, G. Infrared Properties of SiC Particles. Astron. Astrophys. 1999, 345, 187. [Google Scholar]
- Feldman, D.W.; Parker, J.H.; Choyke, W.J.; Patrick, L. Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3C, 4H, 6H, 15R, and 21R. Phys. Rev. 1968, 173, 787. [Google Scholar] [CrossRef]
- Limmer, W.; Glunk, M.; Mascheck, S.; Koeder, A.; Klarer, D.; Schoch, W.; Thonke, K.; Sauer, R.; Waag, A. Coupled Plasmon-LO-Phonon Modes in Ga1-xMnxAs. Phys. Rev. B 2002, 66, 205209. [Google Scholar] [CrossRef]
- Chafai, M.; Jaouhari, A.; Torres, A.; Antón, R.; Martın, E.; Jiménez, J.; Mitchel, W. Raman Scattering from LO Phonon-Plasmon Coupled Modes and Hall-Effect in n-type Silicon Carbide 4H-SiC. J. Appl. Phys. 2001, 90, 5211–5215. [Google Scholar] [CrossRef]
- Jeganathan, K.; Debnath, R.; Meijers, R.; Stoica, T.; Calarco, R.; Grützmacher, D.; Lüth, H. Raman Scattering of Phonon-Plasmon Coupled Modes in Self-Assembled GaN Nanowires. J. Appl. Phys. 2009, 105, 123707. [Google Scholar] [CrossRef]
- Martin, T.; Genzel, L. Raman Scattering in Small Crystals. Phys. Rev. B 1973, 8, 1630. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kimura, K.; Ueda, M.; Kasahara, H.; Okada, T. Infrared Absorption by Coupled Surface-Phonon-Surface-Plasmon Modes in Small GaAs Crystals. J. Phys. C Solid State Phys. 1985, 18, 2361. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Mean Size | 1.25 μm | 0.55 μm | ||||
---|---|---|---|---|---|---|
Thickness (μm) | 0.5 | 1.5 | 2.6 | 3.6 | 1.5 | 3.6 |
FTO(1) | 765.0 | 760.0 | 756.0 | 750.0 | 757.5 | 747.5 |
FTO(2/3) | 776.0 | 773.5 | 766.0 | 761.5 | 772.0 | 759.5 |
FTO(1/3) | 786.5 | 782.0 | 776.5 | 772.0 | 780.0 | 770.0 |
FTO(0) | 795.5 | 790.0 | 784.0 | 782.5 | 788.0 | 780.5 |
FLO(1) | 881.5 | 882.0 | 883.5 | 885.5 | 880.0 | 881.0 |
FLO(2/3) | 926.5 | 924.5 | 922.5 | 920.0 | 921.0 | 913.5 |
FLO(1/3) | 944.5 | 941.5 | 938.5 | 935.0 | 939.0 | 930.0 |
FLO(0) | 966.5 | 960.5 | 955.5 | 950.5 | 958.0 | 946.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yang, R.; Xiong, S.; Chen, J.; Wu, X. Strong Coupling of Folded Phonons with Plasmons in 6H-SiC Micro/Nanocrystals. Molecules 2018, 23, 2296. https://doi.org/10.3390/molecules23092296
Huang Y, Yang R, Xiong S, Chen J, Wu X. Strong Coupling of Folded Phonons with Plasmons in 6H-SiC Micro/Nanocrystals. Molecules. 2018; 23(9):2296. https://doi.org/10.3390/molecules23092296
Chicago/Turabian StyleHuang, Yao, Run Yang, Shijie Xiong, Jian Chen, and Xinglong Wu. 2018. "Strong Coupling of Folded Phonons with Plasmons in 6H-SiC Micro/Nanocrystals" Molecules 23, no. 9: 2296. https://doi.org/10.3390/molecules23092296
APA StyleHuang, Y., Yang, R., Xiong, S., Chen, J., & Wu, X. (2018). Strong Coupling of Folded Phonons with Plasmons in 6H-SiC Micro/Nanocrystals. Molecules, 23(9), 2296. https://doi.org/10.3390/molecules23092296