Hydrogen Peroxide Generation of Copper/Ascorbate Formulations on Cotton: Effect on Antibacterial and Fibroblast Activity for Wound Healing Application
Abstract
:1. Introduction
2. Results
2.1. Formation and Characterization of Copper Complexes on Cotton
2.2. Production of Hydrogen Peroxide Levels from Nonwoven Greige Cotton
2.3. Assessment of Hydrogen Peroxide Levels from Adsorbed versus In Situ Adhered Copper
2.4. Antibacterial Activity and Assessment of Non-Leaching Adherence of Copper Complexes to Cotton
2.5. Assessment of the Effect of Formulations on Fibroblasts and Implications for Design of Dressings
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, B.S.; Edwards, J.V. Textile materials and structures for wound care products. In Advanced Textiles for Wound Care; Woodhead Publishing: Sawston, UK, 2009; Volume 85, pp. 48–96. [Google Scholar]
- Rhee, S.G. Redox signaling: Hydrogen peroxide as intracellular messenger. Exp. Mol. Med. 1999, 31, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K.; Roy, S. Redox signals in wound healing. Biochim. Biophys. Acta 2008, 1780, 1348–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.; Khanna, S.; Nallu, K.; Hunt, T.K.; Sen, C.K. Dermal wound healing is subject to redox control. Mol. Ther. J. Am. Soc. Gene Ther. 2006, 13, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Niethammer, P.; Grabher, C.; Look, A.T.; Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 2009, 459, 996–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.; Wang, Q.; Lu, S.; Niu, Y. Hydrogen peroxide: A potential wound therapeutic target? Med. Princ. Pract. 2017, 26, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, R.J.; Chung, L.Y.; Turner, T.D. Quantification of hydrogen peroxide generation by granuflex (DuoDERM) hydrocolloid granules and its constituents (gelatin, sodium carboxymethylcellulose, and pectin). Br. J. Dermatol. 1993, 129, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.T.; Atci, E.; Babauta, J.T.; Falghoush, A.M.; Snekvik, K.R.; Call, D.R.; Beyenal, H. Electrochemical scaffold generates localized, low concentration of hydrogen peroxide that inhibits bacterial pathogens and biofilms. Sci. Rep. 2015, 5, 14908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, J.; Ghatak, P.D.; Roy, S.; Khanna, S.; Hemann, C.; Deng, B.; Das, A.; Zweier, J.L.; Wozniak, D.; Sen, C.K. Silver-zinc redox-coupled electroceutical wound dressing disrupts bacterial biofilm. PLoS ONE 2015, 10, e0119531. [Google Scholar] [CrossRef] [PubMed]
- Harding, A.C.; Gil, J.; Valdes, J.; Solis, M.; Davis, S.C. Efficacy of a bio-electric dressing in healing deep, partial-thickness wounds using a porcine model. Ostomy Wound Manag. 2012, 58, 50–55. [Google Scholar]
- Lu, M.; Hansen, E.N. Hydrogen peroxide wound irrigation in orthopaedic surgery. J. Bone Jt. Infect. 2017, 2, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Bang, L.M.; Buntting, C.; Molan, P. The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. J. Altern. Complement. Med. 2003, 9, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Tonks, A.J.; Cooper, R.A.; Jones, K.P.; Blair, S.; Parton, J.; Tonks, A. Honey stimulates inflammatory cytokine production from monocytes. Cytokine 2003, 21, 242–247. [Google Scholar] [CrossRef]
- Edwards, J.V.; Prevost, N.T.; Nam, S.; Hinchliffe, D.; Condon, B.; Yager, D. Induction of low-level hydrogen peroxide generation by unbleached cotton nonwovens as potential wound dressing materials. J. Funct. Biomater. 2017, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Fry, S.C. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem. J. 1998, 332 Pt 2, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Schweikert, C.; Liszkay, A.; Schopfer, P. Scission of polysaccharides by peroxidase-generated hydroxyl radicals. Phytochemistry 2000, 53, 565–570. [Google Scholar] [CrossRef]
- Kim, H.J.; Kato, N.; Kim, S.; Triplett, B. Cu/Zn superoxide dismutases in developing cotton fibers: Evidence for an extracellular form. Planta 2008, 228, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, S.H.; Yoon, H.S.; Kim, H.K.; Kim, K.S. Efficacy of oxidized regenerated cellulose, surgiguard®, in porcine surgery. Yonsei Med. J. 2017, 58, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Braccini, I.; Perez, S. Molecular basis of C(2+)-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.V.; Howley, P.; Yachmenev, V.; Lambert, A.; Condon, B. Development of a continuous finishing chemistry process for manufacture of a phosphorylated cotton chronic wound dressing. J. Ind. Text. 2009, 39, 27–43. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of highly stable dispersions of nanosized copper particles using l-ascorbic acid. Green Chem. 2011, 13, 900–904. [Google Scholar] [CrossRef]
- Dankovich, T.; Smith, J. Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res. 2014, 63, 245–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Mosher, B.P.; Zeng, T. One-step green route to narrowly dispersed copper nanocrystals. J. Nanopart. Res. 2006, 8, 965–969. [Google Scholar] [CrossRef]
- Tohidi, S.H.; Novinrooz, A.J.; Derhambakhsh, M.; Grigoryan, G.L. Dependence of spectroscopic properties of copper oxide based silica supported nanostructure on temperature. Nano Sci. Technol. Int. 2012, 8, 143–148. [Google Scholar]
- Buettner, G.R.; Jurkiewicz, B.A. Catalytic metals, ascorbate and free radicals: Combinations to avoid. Radiat. Res. 1996, 145, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Buettner, G.R. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: Ascorbate as a test for catalytic metals. J. Biochem. Biophys. Methods 1988, 16, 27–40. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, J.; Zhang, Y.; Liu, Y.; Liang, J.; Liu, B.; Zhang, W. Generation of hydrogen peroxide and hydroxyl radical resulting from oxygen-dependent oxidation of l-ascorbic acid via copper redox-catalyzed reactions. RSC Adv. 2016, 6, 38541–38547. [Google Scholar] [CrossRef]
- Nam, S.; Condon, B.D. Internally dispersed synthesis of uniform silver nanoparticles via in situ reduction of [Ag(NH3)2]+ along natural microfibrillar substructures of cotton fiber. Cellulose 2014, 21, 2963–2972. [Google Scholar] [CrossRef]
- Sawhney, P.; Allen, C.; Reynolds, M.; Condon, B.; Slopek, R. Effect of water pressure on absorbency of hydroentangled greige cotton non-woven fabrics. Text. Res. J. 2012, 82, 21–26. [Google Scholar] [CrossRef]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Qiu, W.Y.; Huo, Y.N.; Yao, Y.F.; Lou, M.F. Low levels of hydrogen peroxide stimulate corneal epithelial cell adhesion, migration, and wound healing. Investig. Ophthalmol. Visual Sci. 2011, 52, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Juven, B.J.; Pierson, M.D. Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation. J. Food Prot. 1996, 59, 1233–1241. [Google Scholar] [CrossRef]
- Schreml, S.; Meier, R.J.; Kirschbaum, M.; Kong, S.C.; Gehmert, S.; Felthaus, O.; Küchler, S.; Sharpe, J.R.; Wöltje, K.; Weiß, K.T.; et al. Luminescent dual sensors reveal extracellular pH-gradients and hypoxia on chronic wounds that disrupt epidermal repair. Theranostics 2014, 4, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Sedighi, A.; Montazer, M.; Hemmatinejad, N. Copper nanoparticles on bleached cotton fabric: In situ synthesis and characterization. Cellulose 2014, 21, 2119–2132. [Google Scholar] [CrossRef]
- Cady, N.C.; Behnke, J.L.; Strickland, A.D. Copper-based nanostructured coatings on natural cellulose: Nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv. Funct. Mater. 2011, 21, 2506–2514. [Google Scholar] [CrossRef]
- Eremenko, A.M.; Petrik, I.S.; Smirnova, N.P.; Rudenko, A.V.; Marikvas, Y.S. Antibacterial and antimycotic activity of cotton fabrics, impregnated with silver and binary silver/copper nanoparticles. Nanoscale Res. Lett. 2016, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef] [PubMed]
- Verghese, R.; Mathew, S.; David, A. Antimicrobial activity of vitamin c demonstrated on uropathogenic Escherichia coli and Klebsiella pneumoniae. J. Curr. Res. Sci. Med. 2017, 3, 88–93. [Google Scholar]
- Welch, C.M. Formaldehyde-free durable-press finishes. Rev. Prog. Color. Relat. Top. 1992, 22, 32–41. [Google Scholar] [CrossRef]
- Seo, S.M.; Lim, W.T.; Seff, K. Crystallographic verification that copper(II) coordinates to four of the oxygen atoms of zeolite 6-rings. Two single-crystal structures of fully dehydrated, largely Cu2+-exchanged zeolite Y (FAU, Si/Al = 1.56). J. Phys. Chem. C 2012, 116, 963–974. [Google Scholar] [CrossRef]
- Yuranova, T.; Rincon, A.G.; Pulgarin, C.; Laub, D.; Xantopoulos, N.; Mathieu, H.J.; Kiwi, J. Performance and characterization of Ag–cotton and Ag/TiO2 loaded textiles during the abatement of E. coli. J. Photochem. Photobiol. A Chem. 2006, 181, 363–369. [Google Scholar] [CrossRef]
- Suzuki, N.; Mittler, R. Reactive oxygen species-dependent wound responses in animals and plants. Free Radic. Biol. Med. 2012, 53, 2269–2276. [Google Scholar] [CrossRef] [PubMed]
- Loo, A.E.K.; Halliwell, B. Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing. Biochem. Biophys. Res. Commun. 2012, 423, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.C.; Jiang, F.; Peshavariya, H.M.; Dusting, G.J. Regulation of cell proliferation by nadph oxidase-mediated signaling: Potential roles in tissue repair, regenerative medicine and tissue engineering. Pharmacol. Ther. 2009, 122, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Beratis, N.G.; Yee, M.; LaBadie, G.U.; Hirschhorn, K. Effect of copper on menkes’ and normal cultured skin fibroblasts. Dev. Pharmacol. Ther. 1980, 1, 305–317. [Google Scholar] [PubMed]
- Cao, B.; Zheng, Y.; Xi, T.; Zhang, C.; Song, W.; Burugapalli, K.; Yang, H.; Ma, Y. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: Effects of copper ion release from TCu380A vs. TCu220C intra-uterine devices. Biomed. Microdevices 2012, 14, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.E.; Meneghini, R. Action of hydrogen peroxide on human fibroblast in culture. Photochem. Photobiol. 1979, 30, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Hirobe, T.; Shibata, T.; Sato, K. Human fibroblasts treated with hydrogen peroxide stimulate human melanoblast proliferation and melanocyte differentiation, but inhibit melanocyte proliferation in serum-free co-culture system. J. Dermatol. Sci. 2016, 84, 282–295. [Google Scholar] [CrossRef] [PubMed]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 2016, 1863, 2977–2992. [Google Scholar] [CrossRef] [PubMed]
- Rieger, S.; Sagasti, A. Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol. 2011, 9, e1000621. [Google Scholar] [CrossRef] [PubMed]
- Golkowski, M.; Leszczynski, J.; Plimpton, S.R.; McCollister, B.; Golkowski, C. In vitro and in vivo analysis of hydrogen peroxide-enhanced plasma-induced effluent for infection and contamination mitigation at research and medical facilities. Plasma Med. 2015, 5, 109–123. [Google Scholar] [CrossRef]
- Joiner, B.G. Determining antimicrobial efficacy and biocompatibility of treated articles using standard test methods. In Bioactive Fibers and Polymers; American Chemical Society: Washington, DC, USA, 2001; Volume 792, pp. 201–217. [Google Scholar]
- Sarabahi, S. Recent advances in topical wound care. Indian J. Plast. Surg. 2012, 45, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Elliott, I.M.Z.; Elliott, J.R. A Short History of Surgical Dressings; Pharmaceutical Press: London, UK, 1964. [Google Scholar]
- Dabiri, G.; Damstetter, E.; Phillips, T. Choosing a wound dressing based on common wound characteristics. Adv. Wound Care 2016, 5, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Ceilley, R. Chronic wound healing: A review of current management and treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Sample Description | Digested Fabric Copper (Total) mg/L | Calc. Total Copper Per Fabric (mg/g) | % Add-On b |
---|---|---|---|
5 mM CuCl2·2H2O + 125 mM Asc. Acid | 190.8 | 3.31 | - |
2 mM CuCl2·2H2O + 125 mM Asc. Acid | 82.4 | 1.51 | 0.25 |
2 mM CuCl2·2H2O + 50 mM Na. Asc. | 225.2 | 4.20 | 0.52 |
5 mM CuCl2·2H2O + 125 mM Na. Asc. | 756 | 14.64 | 0.75 |
2 mM CuCl2·2H2O + 10 mM Na. Asc. | 170 | 3.23 | 1.2 |
2 mM CuCl2·2H2O + 10 mM Asc. Acid | 152.8 | 2.53 | 0.96 |
Cotton c control | 0.52 | 0.01 | |
Untreated brown cotton d | 0.72 | 0.01 |
Concentration of Solution | Peroxide Concentration (µM) | ||||
---|---|---|---|---|---|
Components | 0 h | 0.5 h | 2 h | 3 h | 24 h |
200 µM Na Ascorbate | |||||
20 µM Cu | 13.43 | 26.80 | 26.33 | 26.27 | 29.06 |
2 µM Cu | 19.54 | 30.64 | 29.86 | 29.70 | 32.44 |
200 nM Cu | 5.03 | 16.09 | 16.29 | 16.38 | 21.71 |
20 nM Cu | 5.69 | 10.59 | 10.60 | 10.72 | 14.91 |
2 nM Cu | 6.04 | 9.53 | 9.49 | 9.61 | 13.71 |
200 pM Cu | 6.92 | 9.09 | 9.07 | 9.18 | 13.03 |
0 µM Cu-ascorbate only | 6.45 | 8.02 | 7.95 | 8.10 | 11.40 |
100 µM Na Ascorbate | |||||
20 µM Cu | 16.10 | 23.70 | 23.30 | 23.22 | 25.02 |
2 µM Cu | 18.98 | 25.45 | 25.00 | 24.91 | 27.83 |
200 nM Cu | 2.08 | 2.67 | 3.21 | 3.61 | 10.62 |
20 nM Cu | 0.83 | 0.85 | 0.99 | 1.09 | 4.38 |
2 nM Cu | 0.58 | 0.58 | 0.64 | 0.69 | 3.35 |
200 pM Cu | 0.52 | 0.54 | 0.58 | 0.63 | 3.09 |
0 µM Cu-ascorbate only | 0.51 | 0.53 | 0.57 | 0.61 | 2.83 |
20 µM Na Ascorbate | |||||
20 µM Cu | 3.96 | 4.60 | 4.55 | 4.57 | 5.45 |
2 µM Cu | 4.52 | 5.18 | 5.11 | 5.14 | 6.38 |
200 nM Cu | 0.77 | 0.80 | 0.93 | 0.99 | 1.65 |
20 nM Cu | 0.58 | 0.59 | 0.62 | 0.65 | 1.24 |
2 nM Cu | 0.55 | 0.55 | 0.57 | 0.59 | 1.10 |
200 pM Cu | 0.54 | 0.54 | 0.56 | 0.57 | 1.04 |
0 µM Cu-ascorbate only | 0.51 | 0.52 | 0.53 | 0.54 | 0.96 |
Sample Description | K. Pneumoniae | S. Aureus |
---|---|---|
@ 24 h | ||
2 mM Copper only | 99.98 | 99.99 |
2 mM Cu:10 mM Ascorbic Acid | 99.98 | 99.99 |
10 mM Ascorbic Acid only | 99.98 | 99.99 |
2 mM Cu:50 mM Ascorbic Acid (CuNP) | 99.98 | 99.99 |
2 mM Cu:10 mM Sodium ascorbate | 99.98 | 99.99 |
2 mM Cu:50 mM Sodium ascorbate (CuNP) | 99.98 | 99.99 |
Untreated Control | 0 | 0 |
SBSC Untreated Control | 9.54 × 106 CFU/mL | 7.4 × 104 CFU/mL |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edwards, J.V.; Prevost, N.T.; Santiago, M.; Von Hoven, T.; Condon, B.D.; Qureshi, H.; Yager, D.R. Hydrogen Peroxide Generation of Copper/Ascorbate Formulations on Cotton: Effect on Antibacterial and Fibroblast Activity for Wound Healing Application. Molecules 2018, 23, 2399. https://doi.org/10.3390/molecules23092399
Edwards JV, Prevost NT, Santiago M, Von Hoven T, Condon BD, Qureshi H, Yager DR. Hydrogen Peroxide Generation of Copper/Ascorbate Formulations on Cotton: Effect on Antibacterial and Fibroblast Activity for Wound Healing Application. Molecules. 2018; 23(9):2399. https://doi.org/10.3390/molecules23092399
Chicago/Turabian StyleEdwards, J. Vincent, Nicolette T. Prevost, Michael Santiago, Terri Von Hoven, Brian D. Condon, Huzaifah Qureshi, and Dorne R. Yager. 2018. "Hydrogen Peroxide Generation of Copper/Ascorbate Formulations on Cotton: Effect on Antibacterial and Fibroblast Activity for Wound Healing Application" Molecules 23, no. 9: 2399. https://doi.org/10.3390/molecules23092399
APA StyleEdwards, J. V., Prevost, N. T., Santiago, M., Von Hoven, T., Condon, B. D., Qureshi, H., & Yager, D. R. (2018). Hydrogen Peroxide Generation of Copper/Ascorbate Formulations on Cotton: Effect on Antibacterial and Fibroblast Activity for Wound Healing Application. Molecules, 23(9), 2399. https://doi.org/10.3390/molecules23092399