Hyaluronic Acid Coated Acid-Sensitive Nanoparticles for Targeted Therapy of Adjuvant-Induced Arthritis in Rats
Abstract
:1. Introduction
2. Results
2.1. Characterization of Nanoparticles
2.2. Stability of the Nanoparticles
2.3. Hemolysis Assay
2.4. In Vitro Release of Dex from Nanoparticles
2.5. Cytotoxicity Assays
2.6. Cellular Uptake Study
2.7. In Vivo Therapeutic Efficacy of HAPNPs/Dex
2.8. Histological Analysis
2.9. Cytokine Assay
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Nanoparticles
4.3. Characterization of Nanoparticles
4.4. Stability of Nanoparticles
4.5. Hemolysis Assay
4.6. In Vitro Release of Dex from Nanoparticles
4.7. Cellular Uptake Study
4.8. Cytotoxicity Study
4.9. In Vivo Therapeutic Efficacy of HAPNPs/Dex
4.10. Cytokine Assay
4.11. Histological Analysis
4.12. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
RA | rheumatoid arthritis |
HA | hyaluronic acid |
HAPNPs | hyaluronic acid coated acid-sensitive polymeric nanoparticles |
egg PC | egg phosphatidylcholine |
PEI | polyethylenimine |
PCADK | poly (cyclohexane-1,4-diyl acetone dimethylene ketal) |
Dex | dexamethasone |
TNF-α | tumor necrosis factor alpha |
IL-6 | interleukin-6 |
IL-1β | interleukin-1β |
ELVIS | extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration |
PNPs | polymeric nanoparticles |
PDI | polydispersity index |
DL | drug loading |
EE | encapsulation efficiency |
SEM | scanning electron microscope |
PBS | phosphate buffered saline |
FBS | Fetal bovine serum |
CLSM | confocal laser scanning microscope |
DAPI | Diamidino-2-phenylindole dihydrochloride |
LPS | lipopolysaccharide |
AIA | adjuvant-induced arthritis |
ELISA | enzyme-linked immunosorbent assay |
H&E | hematoxylin and eosin |
PVA | polyvinyl alcohol |
CFA | Complete Freund’s adjuvant |
DLS | dynamic light scattering |
HPLC | high-performance liquid chromatography |
RBCs | red blood cells |
DMEM | Dulbecco’s modified Eagle’s medium |
SD | standard deviation |
References
- O’Dell, J.R. Drug therapy—Therapeutic strategies for rheumatoid arthritis. N. Engl. J. Med. 2004, 350, 2591–2602. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, J.Y.; Chen, W.F.; Jiang, H.; Zhang, Z.R.; Sun, X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J. Control. Release 2016, 230, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature 2003, 423, 356–361. [Google Scholar] [CrossRef]
- Choy, E.H.S.; Panayi, G.S. Mechanisms of disease: Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 2001, 344, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Kim, S.H.; Thambi, T.; You, D.G.; Jeon, J.; Lee, J.O.; Chung, B.Y.; Jo, D.G.; Park, J.H. A hyaluronic acid-methotrexate conjugate for targeted therapy of rheumatoid arthritis. Chem. Commun. 2014, 50, 7632–7635. [Google Scholar] [CrossRef]
- Kim, Y.J.; Chae, S.Y.; Jin, C.H.; Sivasubramanian, M.; Son, S.; Choi, K.Y.; Jo, D.G.; Kim, K.; Kwon, I.C.; Lee, K.C.; et al. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials 2010, 31, 9057–9064. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.D.; Ding, J.X.; Zhang, Y.; Chang, F.; Wang, J.C.; Gao, Z.L.; Zhuang, X.L.; Chen, X.S. Activated macrophage-targeted dextran-methotrexate/folate conjugate prevents deterioration of collagen-induced arthritis in mice. J. Mater. Chem. B 2016, 4, 2102–2113. [Google Scholar] [CrossRef]
- Yang, M.; Feng, X.; Ding, J.; Chang, F.; Chen, X. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release 2017, 252, 108–124. [Google Scholar] [CrossRef]
- Pure, E.; Cuff, C.A. A crucial role for CD44 in inflammation. Trends Mol. Med. 2001, 7, 213–221. [Google Scholar] [CrossRef]
- Choi, K.Y.; Chung, H.; Min, K.H.; Yoon, H.Y.; Kim, K.; Park, J.H.; Kwon, I.C.; Jeong, S.Y. Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 2010, 31, 106–114. [Google Scholar] [CrossRef]
- Naor, D.; Nedvetzki, S. CD44 in rheumatoid arthritis. Arthritis Res. Ther. 2003, 5, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Heo, R.; Park, J.S.; Jang, H.J.; Kim, S.H.; Shin, J.M.; Suh, Y.D.; Jeong, J.H.; Jo, D.G.; Park, J.H. Hyaluronan nanoparticles bearing gamma-secretase inhibitor: In vivo therapeutic effects on rheumatoid arthritis. J. Control. Release 2014, 192, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Min, K.H.; Na, J.H.; Choi, K.; Kim, K.; Park, J.H.; Kwon, I.C.; Jeong, S.Y. Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J. Mater. Chem. 2009, 19, 4102–4107. [Google Scholar] [CrossRef]
- Lapcik, L., Jr.; Lapcik, L.; De Smedt, S.; Demeester, J.; Chabrecek, P. Hyaluronan: Preparation, Structure, Properties, and Applications. Chem. Rev. 1998, 98, 2663–2684. [Google Scholar] [CrossRef]
- Oliveira, I.M.; Goncalves, C.; Reis, R.L.; Oliveira, J.M. Engineering nanoparticles for targeting rheumatoid arthritis: Past, present, and future trends. Nano Res. 2018, 11, 4489–4506. [Google Scholar] [CrossRef]
- Haynes, B.F.; Hale, L.P.; Patton, K.L.; Martin, M.E.; McCallum, R.M. Measurement of an adhesion molecule as an indicator of inflammatory disease activity. Up-regulation of the receptor for hyaluronate (CD44) in rheumatoid arthritis. Arthritis Rheum. 1991, 34, 1434–1443. [Google Scholar] [CrossRef]
- Baschant, U.; Lane, N.E.; Tuckermann, J. The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat. Rev. Rheumatol. 2012, 8, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Krasselt, M.; Baerwald, C. The current relevance and use of prednisone in rheumatoid arthritis. Expert Rev. Clin. Immunol. 2014, 10, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.T.; Zhao, J.L.; Zhang, Z.K.; Gao, Y.; Zhou, Y.L.; Teng, L.S.; Li, Y.X. Enhanced delivery of Paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Int. J. Pharm. 2016, 497, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.L.; Zhao, M.H.; Yu, C.H.; Zhang, X.Y.; Liu, J.X.; Cheng, X.W.; Lee, R.J.; Sun, F.Y.; Teng, L.S.; Li, Y.X. Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis. Int. J. Nanomed. 2017, 12, 6735–6746. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Goldring, S.R. The bone, the joints and the Balm of Gilead. Mol. Pharm. 2011, 8, 991–993. [Google Scholar] [CrossRef] [PubMed]
- Adamo, V.; Ricciardi, G.; Schifano, S.; Russo, A.; Gebbia, V.; Blasi, L.; Giuffrida, D.; Scandurra, G.; Savarino, A.; Butera, A.; et al. Safety and efficacy of the treatment with Nab-paclitaxel in mEtastatic bREast cancer In elDerly patiEnts: NEREIDE study. Ann. Oncol. 2017, 28. [Google Scholar] [CrossRef]
- Lee, H.; Lee, M.Y.; Bhang, S.H.; Kim, B.S.; Kim, Y.S.; Ju, J.H.; Kim, K.S.; Hahn, S.K. Hyaluronate-Gold Nanoparticle/Tocilizumab Complex for the Treatment of Rheumatoid Arthritis. ACS Nano 2014, 8, 4790–4798. [Google Scholar] [CrossRef] [PubMed]
- Desai, P.R.; Marepally, S.; Patel, A.R.; Voshavar, C.; Chaudhuri, A.; Singh, M. Topical delivery of anti-TNF alpha siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J. Control. Release 2013, 170, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Grailer, J.J.; Rowland, I.J.; Javadi, A.; Hurley, S.A.; Matson, V.Z.; Steeber, D.A.; Gong, S. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano 2010, 4, 6805–6817. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.E. Angiogenesis as a target in rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 60–67. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Sun, X.; Zhao, M.; Yu, C.; Lee, R.J.; Sun, F.; Zhou, Y.; Li, Y.; Teng, L. Dual-functional lipid polymeric hybrid pH-responsive nanoparticles decorated with cell penetrating peptide and folate for therapy against rheumatoid arthritis. Eur. J. Pharm. Biopharm. 2018, 130, 39–47. [Google Scholar] [CrossRef]
- Yang, S.C.; Bhide, M.; Crispe, I.N.; Pierce, R.H.; Murthy, N. Polyketal copolymers: A new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjugate Chem. 2008, 19, 1164–1169. [Google Scholar] [CrossRef]
- Fiore, V.F.; Lofton, M.C.; Roser-Page, S.; Yang, S.C.; Roman, J.; Murthy, N.; Barker, T.H. Polyketal microparticles for therapeutic delivery to the lung. Biomaterials 2010, 31, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Yang, S.C.; Heffernan, M.J.; Taylor, W.R.; Murthy, N. Polyketal microparticles: A new delivery vehicle for superoxide dismutase. Bioconjugate Chem. 2007, 18, 4–7. [Google Scholar] [CrossRef]
- Heffernan, M.J.; Murthy, N. Polyketal nanoparticles: A new pH-sensitive biodegradable drug delivery vehicle. Bioconjugate Chem. 2005, 16, 1340–1342. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.H.; Yu, C.H.; Yu, K.T.; Teng, L.S.; Liu, J.X.; Wang, X.S.; Sun, F.Y.; Li, Y.X. Improving Protein Stability and Controlling Protein Release by Adding Poly (Cyclohexane-1, 4-diyl Acetone Dimethylene Ketal) to PLGA Microspheres. Curr. Drug Deliv. 2016, 12, 726–735. [Google Scholar] [CrossRef]
- Wang, C.; Yu, C.; Liu, J.; Sun, F.; Teng, L.; Li, Y. Stabilization of Human Immunoglobulin G Encapsulated within Biodegradable Poly (Cyclohexane-1, 4-diyl Acetone Dimethylene Ketal) (PCADK)/ Poly (Lactic-co-Glycolic Acid) (PLGA) Blend Microspheres. Protein Peptide Lett. 2015, 22, 963–971. [Google Scholar] [CrossRef]
- Wang, C.H.; Yu, C.H.; Liu, J.X.; Teng, L.S.; Sun, F.Y.; Li, Y.X. Preparation and in vivo evaluation of PCADK/PLGA microspheres for improving stability and efficacy of rhGH. Int. J. Pharm. 2015, 495, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Rejinold, N.S.; Jayakumar, R.; Kim, Y.C. Radio frequency responsive nano-biomaterials for cancer therapy. J. Control. Release 2015, 204, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Park, J.S.; Lee, S.J.; Jang, J.; Park, J.S.; Back, S.H.; Bahn, G.; Park, J.H.; Kang, Y.M.; Kim, S.H.; et al. Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. J. Control. Release 2015, 216, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Mitragotri, S.; Yoo, J.-W. Designing Micro- and Nano-particles for Treating Rheumatoid Arthritis. Arch. Pharm. Res. 2011, 34, 1887–1897. [Google Scholar] [CrossRef]
- Cassano, D.; Pocovi-Martinez, S.; Voliani, V. Ultrasmall-in-Nano Approach: Enabling the Translation of Metal Nanomaterials to Clinics. Bioconjugate Chem. 2018, 29, 4–16. [Google Scholar] [CrossRef]
- Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011, 63, 131–135. [Google Scholar] [CrossRef]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
- Gouveia, V.M.; Lopes-de-Araujo, J.; Lima, S.A.C.; Nunes, C.; Reis, S. Hyaluronic acid-conjugated pH-sensitive liposomes for targeted delivery of prednisolone on rheumatoid arthritis therapy. Nanomedicine 2018, 13, 1037–1049. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Han, H.S.; Sung, S.; Kang, J.H.; Sa, K.H.; Al Faruque, H.; Hong, J.; Nam, E.J.; Kim, I.S.; Park, J.H.; et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J. Control. Release 2017, 252, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Ulmansky, R.; Turjeman, K.; Baru, M.; Katzavian, G.; Harel, M.; Sigal, A.; Naparstek, Y.; Barenholz, Y. Glucocorticoids in nano-liposomes administered intravenously and subcutaneously to adjuvant arthritis rats are superior to the free drugs in suppressing arthritis and inflammatory cytokines. J. Control. Release 2012, 160, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.P.; Zhang, J.M.; Wang, Y.T.; Chen, M.W. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine 2016, 12, 411–420. [Google Scholar] [CrossRef] [PubMed]
- De Castro Costa, M.; De Sutter, P.; Gybels, J.; Van Hees, J. Adjuvant-induced arthritis in rats: a possible animal model of chronic pain. Pain 1981, 10, 173–185. [Google Scholar] [CrossRef]
- Nakamachi, Y.; Ohnuma, K.; Uto, K.; Noguchi, Y.; Saegusa, J.; Kawano, S. MicroRNA-124 inhibits the progression of adjuvant-induced arthritis in rats. Ann. Rheum. Dis. 2016, 75, 601–608. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Batch | PCADK (mg) | Egg PC (mg) | PEI (mg) | Size (d.nm) | PDI | Zeta Potential (mV) |
---|---|---|---|---|---|---|
F1 | 20 | - | - | 177.8 ± 6.90 | 0.116 ± 0.012 | −0.79 ± 2.44 |
F2 | 2 | 163.8 ± 5.0 | 0.153 ± 0.025 | −3.77 ± 2.31 | ||
F3 | 4 | 148.8 ± 8.89 | 0.202 ± 0.060 | −8.61 ± 1.64 | ||
F4 | 6 | 123.6 ± 4.79 | 0.209 ± 0.052 | −14.35 ± 2.39 | ||
F5 | 8 | 116.8 ± 1.41 | 0.336 ± 0.042 | −16.00 ± 0.17 | ||
F6 | 10 | 115.7 ± 1.42 | 0.254 ± 0.112 | −17.10 ± 3.81 | ||
F7 | 8 | 0.2 | 118.6 ± 5.91 | 0.158 ± 0.010 | −9.07 ± 4.25 | |
F8 | 0.4 | 118.3 ± 3.55 | 0.159 ± 0.010 | 8.33 ± 4.47 | ||
F9 | 0.6 | 119.1 ± 3.55 | 0.164 ± 0.057 | 11.67 ± 3.31 | ||
F10 | 0.8 | 121.2 ± 5.61 | 0.162 ± 0.011 | 16.20 ± 3.19 | ||
F11 | 1 | 121.6 ± 2.21 | 0.167 ± 0.013 | 25.83 ± 4.78 | ||
F12 | 1.2 | 122.6 ± 3.27 | 0.169 ± 0.016 | 24.18 ± 5.51 |
Batch | HA (μL) | Size (d.nm) | PDI | Zeta Potential (mV) |
---|---|---|---|---|
F13 | 0 | 121.6 ± 2.21 | 0.167 ± 0.013 | 25.83 ± 4.78 |
F14 | 200 | 129.3 ± 2.89 | 0.260 ± 0.010 | 17.50 ± 0.57 |
F15 | 500 | 150.5 ± 2.47 | 0.167 ± 0.015 | −2.84 ± 0.53 |
F16 | 600 | 509.5 ± 12.42 | 0.33 ± 0.014 | −11.75 ± 1.13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Li, X.; Hou, Y.; Meng, X.; Wang, D.; Liu, J.; Sun, F.; Li, Y. Hyaluronic Acid Coated Acid-Sensitive Nanoparticles for Targeted Therapy of Adjuvant-Induced Arthritis in Rats. Molecules 2019, 24, 146. https://doi.org/10.3390/molecules24010146
Yu C, Li X, Hou Y, Meng X, Wang D, Liu J, Sun F, Li Y. Hyaluronic Acid Coated Acid-Sensitive Nanoparticles for Targeted Therapy of Adjuvant-Induced Arthritis in Rats. Molecules. 2019; 24(1):146. https://doi.org/10.3390/molecules24010146
Chicago/Turabian StyleYu, Changhui, Xiangyu Li, Yufei Hou, Xiangxue Meng, Deli Wang, Jiaxin Liu, Fengying Sun, and Youxin Li. 2019. "Hyaluronic Acid Coated Acid-Sensitive Nanoparticles for Targeted Therapy of Adjuvant-Induced Arthritis in Rats" Molecules 24, no. 1: 146. https://doi.org/10.3390/molecules24010146
APA StyleYu, C., Li, X., Hou, Y., Meng, X., Wang, D., Liu, J., Sun, F., & Li, Y. (2019). Hyaluronic Acid Coated Acid-Sensitive Nanoparticles for Targeted Therapy of Adjuvant-Induced Arthritis in Rats. Molecules, 24(1), 146. https://doi.org/10.3390/molecules24010146