Mechanism of Curcuma wenyujin Rhizoma on Acute Blood Stasis in Rats Based on a UPLC-Q/TOF-MS Metabolomics and Network Approach
Abstract
:1. Introduction
2. Results
2.1. Hemorheology and Related Functional Parameters Evaluation
2.2. Plasma Metabolomics Analysis
2.3. Identification of Potential Endogenous Metabolite Markers
2.4. Metabolic Pathway Analysis
2.5. Component-Target-Pathway Network Analysis
3. Discussion
3.1. Model Evaluation
3.2. Metabolic Pathway and Function Analysis
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Preparation of EZhu Sample
4.3. Animals and Drug Administration
4.4. Hemorheology and Related Functional Parameters
4.5. Plasma Sample Preparation
4.6. Mass Spectrum Analysis and Verification of Methodology
4.7. Multivariate Statistical Analysis
4.8. Network Target, Pathway Prediction of EZ Primary Components.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, L.; Lou, G.E. Metabolomic profiling of the effects of Curcumae rhizoma and Sparganii rhizome on stress-led blood stasis. Pak. J. Pharm. Sci. 2018, 31, 333–339. [Google Scholar]
- You, S.; Park, B. Accelerated RBC senescence as a novel pathologic mechanism of blood stasis syndrome in traditional East Asian medicine. Am. J. Transl. Res. 2015, 7, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, J. Composition of The Essential Oil From Danggui-zhiqiao Herb-Pair and Its Analgesic Activity and Effect on Hemorheology in Rats With Blood Stasis Syndrome. Pharmacogn. Mag. 2016, 12, 271–275. [Google Scholar] [PubMed]
- Ning, S.Y.; Jiang, B.P. Effect of Liangxuehuayu Recipe on hemorheology in rats with blood stasis syndrome. Asian Pac. J. Trop. Med. 2012, 5, 935–938. [Google Scholar] [CrossRef]
- Choi, T.Y.; Jun, J.H. Expert opinions on the concept of blood stasis in China: An interview study. Chin. J. Integr. Med. 2016, 22, 823–831. [Google Scholar] [CrossRef]
- Liao, J.; Liu, Y. Identification of more objective biomarkers for Blood-Stasis syndrome diagnosis. BMC Complement. Altern. Med. 2016, 16, 371. [Google Scholar] [CrossRef]
- Liao, J.; Wang, J. Modern researches on Blood Stasis syndrome 1989–2015: A bibliometric analysis. Medicine 2016, 95, e5533. [Google Scholar] [CrossRef]
- Hou, J.; Wang, J. Circulating MicroRNA Profiles Differ between Qi-Stagnation and Qi-Deficiency in Coronary Heart Disease Patients with Blood Stasis Syndrome. Evid. Based Complement. Alternat. Med. 2014, 2014, 926–962. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Fang, M. Transcriptome analysis of blood stasis syndrome in subjects with hypertension. J. Tradit. Chin. Med. 2016, 36, 173–180. [Google Scholar]
- Zhang, Y.; Zhou, A. Exploratory Factor Analysis for Validating Traditional Chinese Syndrome Patterns of Chronic Atrophic Gastritis. Evid. Based Complement. Alternat. Med. 2016, 2016, 6872890. [Google Scholar] [CrossRef]
- Qin, L.; Meng, J. Pattern characteristics in patients with primary liver cancer in different clinical stages. J. Tradit. Chin. Med. 2015, 35, 47–53. [Google Scholar] [CrossRef]
- He, H.; Chen, G. Xue-Fu-Zhu-Yu capsule in the treatment of qi stagnation and blood stasis syndrome: A study protocol for a randomized controlled pilot and feasibility trial. Trials 2018, 19, 515. [Google Scholar] [CrossRef]
- Cheng, C.W.; Wu, T.X. CONSORT extension for Chinese herbal medicine formulas 2017: Recommendations, explanation, and elaboration. Ann. Intern. Med. 2017, 167, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.W.; Chu, F.Y. A clinical epidemiological study of the quantitative diagnosis scale of blood stasis syndrome. Chin. J. Integr. Med. 2011, 17, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Pharmacopeia Commission of PRC. Pharmacopoeia of the People’s Republic of China, English ed.; China Medical Science Press: Beijing, China, 2015. [Google Scholar]
- Yang, F.Q.; Li, S.P. Optimization of GC-MS conditions based on resolution and stability of analytes for simultaneous determination of nine sesquiterpenoids in three species of Curcuma rhizomes. J. Pharm. Biomed. Anal. 2007, 43, 73–82. [Google Scholar] [CrossRef]
- Dang, Y.Y.; Li, X.C. Preparative isolation and purification of six volatile compounds from essential oil of Curcuma wenyujin using high-performance centrifugal partition chromatography. J. Sep. Sci. 2010, 33, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chen, X. Metabonomic study of Chinese medicine Shuanglong formula as an effective treatment for myocardial infarction in rats. J. Proteome Res. 2010, 10, 790. [Google Scholar] [CrossRef]
- Tan, G.; Liao, W. Metabonomic profiles delineate the effect of traditional Chinese medicine sini decoction on myocardial infarction in rats. PLoS ONE 2012, 7, e34157. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, A. Metabolomics coupled with proteomics advancing drug discovery toward more agile development of targeted combination therapies. Mol. Cell. Proteomics 2013, 12, 1226–1238. [Google Scholar] [CrossRef]
- Wang, M.; Lamers, R.J.A. Metabolomics in the context of systems biology: Bridging traditional Chinesemedicine and molecular pharmacology. Phytother. Res. 2005, 19, 173–182. [Google Scholar] [CrossRef]
- Kanani, H.; Chrysanthopoulos, P.K. Standardizing GC–MSmetabolomics. J. Chromatogr. B 2008, 871, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Trygg, J.; Gullberg, J. GC/MS analysis of the human blood plasma metabolome. Anal. Chem. 2005, 77, 8086–8094. [Google Scholar]
- Theodoridis, G.; Helen, G.G. LC–MS-based methodology for globalmetabolite profiling in metabonomics/metabolomics. Trends Anal. Chem. 2008, 27, 251–260. [Google Scholar] [CrossRef]
- Lu, X.; Zhao, X. LC–MS-based metabonomics analysis. J. Chromatogr. B 2008, 866, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Huang, Z. LC–MS based serum metabo-nomic analysis for renal cell carcinoma diagnosis, staging, and biomarker discovery. J. Proteome Res. 2011, 10, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Soininen, P.; Kangas, A.J. High-throughput serumNMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 2009, 134, 1781–1785. [Google Scholar] [CrossRef]
- Bernini, P.; Bertini, I. The cardiovascularrisk of healthy individuals studied by NMR metabonomics of plasma samples. J. Proteome Res. 2011, 10, 4983–4992. [Google Scholar] [CrossRef]
- Liu, K.; Song, Y. An integrated strategy using UPLC-QTOF-MSE and UPLC-QTOF-MRM (enhanced target) for pharmacokinetics study of wine processed Schisandra Chinensis fructus in rats. J. Pharm. Biomed. Anal. 2017, 30, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Su, D. Differential pharmacokinetics and the brain distribution of morphine and ephedrine constitutional isomers in rats after oral administration with Keke capsule using rapid-resolution LC-MS/MS. J. Sep. Sci. 2014, 37, 352–359. [Google Scholar] [CrossRef]
- Su, D.; Li, W. New metabolites of acteoside identified by ultra-performance liquid chromatography/quadrupole-time-of-flight MS (E) in rat plasma, urine, and feces. Fitoterapia 2016, 112, 45–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J. Interpretation of Euphorbia Kansui Stir-Fried with Vinegar Treating Malignant Ascites by a UPLC-Q-TOF/MS Based Rat Serum and Urine Metabolomics Strategy Coupled with Network Pharmacology. Molecules 2018, 23, 3246. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682. [Google Scholar] [CrossRef]
- Ma, Q.; Li, P.L. Effects of Tao-Hong-Si-Wu decoction on acute blood stasis in rats based on a LC-Q/TOF-MS metabolomics and network approach. Biomed. Chromatogr. 2018, 32, e4144. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Duan, J. Network-based biomarkers for cold coagulation blood stasis syndrome and the therapeutic effects of shaofu zhuyu decoction in rats. Evid. Based Complement. Alternat. Med. 2013, 2013, 901–943. [Google Scholar] [CrossRef]
- Ma, N.; Karam, I. UPLC-Q-TOF/MS-based urine and plasma metabonomics study on the ameliorative effects of aspirin eugenol ester in hyperlipidemia rats. Toxicol. Appl. Pharmacol. 2017, 332, 40–51. [Google Scholar] [CrossRef]
- Tan, J.; Wang, C. Comprehensive Metabolomics Analysis of Xueshuan Xinmaining Tablet in Blood Stasis Model Rats Using UPLC-Q/TOF-MS. Molecules 2018, 23, 1650. [Google Scholar] [CrossRef]
- Sultan, P.; Butwick, A. Platelet counts and coagulation tests prior to neuraxial anesthesia in patients with preeclampsia: A retrospective analysis. Clin. Appl. Thromb. Hemost. 2013, 19, 529–534. [Google Scholar] [CrossRef]
- Heberlein, K.R.; Straub, A.C. Plasminogen activator inhibitor-1 regulates myoendothelial junction formation. Circ. Res. 2010, 106, 1092–1102. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y. Effect of a traditional Chinese medicine preparation Xindi soft capsule on rat model of acute blood stasis: A urinary metabonomics study based on liquid chromatography-mass spectrometry. J. Chromatogr. B 2008, 873, 151–158. [Google Scholar] [CrossRef]
- Meng, X.S.; Jiang, M. Study on the mechanism of Chuanxiong of Chinese Medicine based on metabolomics on rats with cold blood stasis syndrome. Liaoning J. Tradit. Chin. Med. 2012, 39, 218–221. [Google Scholar]
- Jackson, S.K.; Abate, W. Lysophospholipid acyltransferases: Novel potential regulators of the inflammatory response and target for new drug discovery. Pharmacol. Ther. 2008, 119, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.Y.; Yang, K.M. A 1H-NMR-based metabonomic investigation of time-related metabolic trajectories of the plasma, urine and liver extracts of hyperlipidemic hamsters. PLoS ONE. 2013, 8, e66786. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, B.; Zieseniss, S. Tissue factor expression of human monocytes is suppressed by lysophosphatidylcholine, Arterioscler. Thromb. Vasc. Biol. 1999, 19, 47–53. [Google Scholar] [CrossRef]
- Burns, J.L.; Nakamura, M.T. Differentiating the biological effects of linoleic acid from arachidonic acid in health and disease. Prostaglandins Leukot Essent. Fatty Acids. 2018, 135, 1–4. [Google Scholar] [CrossRef]
- Das, U.N. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis. 2008, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Dang, X.; Miao, J.J. The antithrombotic effect of RSNK in blood-stasis model rats. J. Ethnopharmacol. 2015, 173, 266–272. [Google Scholar] [CrossRef]
- Mitsnefes, M.M.; Fitzpatrick, J. Plasma glucosylceramides and cardiovascular risk in incident hemodialysis patients. J. Clin. Lipidol. 2018, 12, 1513–1522. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. IDO in the tumor microenvironment: Inflammation, counter-regulation, and tolerance. Trends Immunol. 2016, 37, 193–207. [Google Scholar] [CrossRef]
- Nowak, E.C.; de Vries, V.C. Tryptophan hydroxylase-1 regulates immunetolerance and inflammation. J. Exp. Med. 2012, 209, 2127–2135. [Google Scholar] [CrossRef]
- Chen, Q. Pharmacology Research Methodology; People’s Medical Publishing House: Beijing, China, 2006; p. 554. [Google Scholar]
- Tian, Y.; Yang, Z.F. Pharmacokinetic comparisons of hydroxysafflower yellow A in normal and blood stasis syndrome rats. J. Ethnopharmacol. 2010, 129, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Duan, J.A. Taoren-Honghua herb pair and its main components promoting blood circulation through influencing on hemorheology, plasma coagulation and platelet aggregation. J. Ethnopharmacol. 2012, 139, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, Y. Comparison of fresh, dried and stir-frying gingers in decoction with blood stasis syndrome in rats based on a GC-TOF/MS metabolomics approach. J. Pharm. Biomed. Anal. 2016, 129, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Xu, C. The therapeutic effect of Ilex pubescens extract on blood stasis model rats according to serum metabolomics. J. Ethnopharmacol. 2018, 227, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Worley, B.; Powers, R. PCA as a practical indicator of OPLS-DA model reliability. Curr. Metab. 2016, 4, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.B.; Bai, X. Chemical differentiation of Da-Cheng-Qi-Tang, a Chinese medicine formula, prepared by traditional and modern decoction methods using UPLC/Q-TOFMS-based metabolomics approach. J. Pharm. Biomed Anal. 2013, 83, 34–42. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
No. | Model | ESI+ | ESI− | ||||
---|---|---|---|---|---|---|---|
R2X | R2Y | Q2 | R2X | R2Y | Q2 | ||
M1 | PCA | 0.731 | - | 0.423 | 0.706 | - | 0.403 |
M2 | OPLS-DA | 0.772 | 0.994 | 0.957 | 0.569 | 0.956 | 0.864 |
M3 | OPLS-DA | 0.687 | 0.998 | 0.880 | 0.616 | 0.843 | 0.734 |
No. | m/z | Rt | VIP | HMDB ID | Compound Name | Formula | ABS | EZ | Mode | Delta (ppm) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 173.0090 | 2.12 | 2.22 | HMDB0000094 | Citric acid | C6H8O7 | ↓* | ↑# | − | 2 |
2 | 205.0969 | 2.12 | 2.26 | HMDB0000929 | l-tryptophan | C11H12N2O2 | ↓* | ↑# | + | 1 |
3 | 163.0879 | 7.26 | 1.18 | HMDB0004076 | 5-hydroxykynurenamine | C9H12N2O2 | ↑* | ↓# | + | 4 |
4 | 275.1372 | 7.83 | 1.04 | HMDB0000086 | Glycerophosphocholine | C8H20NO6P | ↑* | ↓# | + | 2 |
5 | 330.2638 | 10.02 | 1.10 | HMDB0003871 | 13-l-hydroperoxylinoleic acid | C18H32O4 | ↑** | ↓# | + | 0 |
6 | 426.3573 | 15.06 | 1.13 | HMDB0004975 | Glucosylceramide | C48H91NO8 | ↑** | ↓## | + | 1 |
7 | 496.3400 | 15.32 | 20.05 | HMDB0010382 | LysoPC (16:0) | C24H50NO7P | ↓* | ↑## | + | 0 |
8 | 497.6450 | 15.32 | 1.21 | HMDB0010318 | Pregnanediol-3-glucuronide | C27H44O8 | ↓** | ↑## | + | 4 |
9 | 338.3410 | 16.89 | 5.32 | HMDB0003208 | Thromboxane A2 | C20H40O | ↑* | ↓# | + | 2 |
10 | 806.5437 | 17.29 | 1.97 | HMDB0012317 | Sulfatide | C42H79NO11S | ↑* | ↓# | + | 1 |
11 | 550.3879 | 17.67 | 2.65 | HMDB0011148 | PC (18:1(9Z) e/2:0) | C28H56NO7P | ↓* | ↑## | + | 2 |
12 | 510.3922 | 17.98 | 1.32 | HMDB0011149 | LysoPC (O-18:0) | C26H56NO6P | ↓** | ↑## | + | 1 |
13 | 297.2791 | 19.06 | 4.46 | HMDB0005368 | Triglyceride | C57H108O6 | ↓** | ↑# | + | 1 |
14 | 703.5755 | 20.48 | 1.76 | HMDB0010169 | Sphingomyelin | C39H80N2O6P | ↑* | ↓# | + | 0 |
15 | 359.3345 | 20.53 | 1.16 | HMDB0004951 | Ceramide | C38H75NO3 | ↓* | ↑# | + | 0 |
16 | 303.2339 | 20.91 | 1.55 | HMDB0001043 | Arachidonic acid | C20H32O2 | ↑** | ↓## | − | 3 |
17 | 830.5951 | 20.92 | 1.53 | HMDB0008974 | PE (16:1(9Z)/22:1(13Z)) | C43H82NO8P | ↓* | ↑## | − | 4 |
18 | 184.0741 | 21.08 | 1.12 | HMDB0001565 | Phosphorylcholine | C5H15NO4P | ↑* | ↓# | + | 1 |
19 | 784.5901 | 21.11 | 2.07 | HMDB0010164 | l-1-Phosphatidylserine | C44H86NO10P | ↑* | ↓## | + | 5 |
20 | 279.2342 | 21.31 | 1.57 | HMDB0000673 | Linoleic acid | C18H32O2 | ↓* | ↑# | − | 4 |
21 | 357.3004 | 21.62 | 2.54 | HMDB0004701 | 9,10-epoxyoctadecenoic acid | C18H32O3 | ↓* | ↑# | + | 0 |
22 | 371.1007 | 24.29 | 2.36 | HMDB0000125 | Glutathione | C10H17N3O6S | ↓* | ↑# | + | 3 |
23 | 352.2838 | 24.99 | 2.17 | HMDB0006752 | Dihydroceramide | C19H39NO3 | ↓* | ↑# | + | 5 |
24 | 366.2652 | 25.09 | 1.39 | HMDB0004370 | N-methyltryptamine | C11H14N2 | ↓** | ↑## | + | 0 |
25 | 759.5736 | 26.79 | 1.11 | HMDB0011158 | PE(P-16:0e/16:0) | C37H74NO7P | ↓* | ↑## | + | 2 |
26 | 802.5635 | 26.79 | 1.69 | HMDB0008005 | PC (16:1(9Z)/18:1(9Z)) | C42H80NO8P | ↓* | ↑## | − | 2 |
No. | Pathway Name | Hits | Total | Raw p | −log(p) | Impact |
---|---|---|---|---|---|---|
1 | Linoleic acid metabolism | 4 | 5 | 1.11 × 10−4 | 9.1056 | 1 |
2 | Ether lipid metabolism | 3 | 13 | 0.058157 | 2.8446 | 0.46429 |
3 | Sphingolipid metabolism | 5 | 21 | 0.013011 | 4.342 | 0.45865 |
4 | Glycerophospholipid metabolism | 6 | 30 | 0.015752 | 4.1508 | 0.36728 |
5 | Glutathione metabolism | 1 | 26 | 0.85366 | 0.15822 | 0.36069 |
6 | Arachidonic acid metabolism | 3 | 36 | 0.47359 | 0.74741 | 0.32601 |
7 | Glyoxylate and dicarboxylate metabolism | 1 | 16 | 0.69218 | 0.36791 | 0.2963 |
8 | Pentose and glucuronate interconversions | 1 | 14 | 0.64306 | 0.44152 | 0.27273 |
9 | Tryptophan metabolism | 3 | 41 | 0.56347 | 0.57364 | 0.17157 |
10 | Glycerolipid metabolism | 1 | 18 | 0.7346 | 0.30843 | 0.10704 |
11 | Steroid hormone biosynthesis | 3 | 70 | 0.88595 | 0.1211 | 0.09862 |
12 | Lysine degradation | 1 | 20 | 0.77122 | 0.25978 | 0.09783 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, M.; Ji, D.; Li, L.; Su, L.; Gu, W.; Gu, L.; Wang, Q.; Lu, T.; Mao, C. Mechanism of Curcuma wenyujin Rhizoma on Acute Blood Stasis in Rats Based on a UPLC-Q/TOF-MS Metabolomics and Network Approach. Molecules 2019, 24, 82. https://doi.org/10.3390/molecules24010082
Hao M, Ji D, Li L, Su L, Gu W, Gu L, Wang Q, Lu T, Mao C. Mechanism of Curcuma wenyujin Rhizoma on Acute Blood Stasis in Rats Based on a UPLC-Q/TOF-MS Metabolomics and Network Approach. Molecules. 2019; 24(1):82. https://doi.org/10.3390/molecules24010082
Chicago/Turabian StyleHao, Min, De Ji, Lin Li, Lianlin Su, Wei Gu, Liya Gu, Qiaohan Wang, Tulin Lu, and Chunqin Mao. 2019. "Mechanism of Curcuma wenyujin Rhizoma on Acute Blood Stasis in Rats Based on a UPLC-Q/TOF-MS Metabolomics and Network Approach" Molecules 24, no. 1: 82. https://doi.org/10.3390/molecules24010082
APA StyleHao, M., Ji, D., Li, L., Su, L., Gu, W., Gu, L., Wang, Q., Lu, T., & Mao, C. (2019). Mechanism of Curcuma wenyujin Rhizoma on Acute Blood Stasis in Rats Based on a UPLC-Q/TOF-MS Metabolomics and Network Approach. Molecules, 24(1), 82. https://doi.org/10.3390/molecules24010082