Process Engineering Accelerating an Economic Industrialization Towards a Bio-Based World
Abstract
:1. Introduction
2. Actors and Involved Disciplines
- Application for improving material properties.
3. Technological Processing of Biogenic Raw Materials
- Distillation allows the recovery and reuse of the extraction solvent and a separation based on the boiling points of the individual components. The solvent free residues are sold as dried extracts or further purified [80].
4. Value-Added Products from Sustainable Raw Material
4.1. Requirements for the Design of Processing Plants to Recover Secondary Plant Ingredients
4.2. Economic Assessment of Biogas Generation
4.3. Production of Necessary Raw Materials
4.4. Economic Potential of Process Technologically Enhanced Products on the Example Processing of Curcuma longa
- Traditional two people farm, plant capacity 0.2 t/d, low overall efficiency (wood-based energy generation, no energy recovery);
- 100 worker production facility with 25 t/d capacity, average efficiency (oil-based energy supply, simple energy recovery);
- Large-scale processing such as sugar plant (integrated power plant, efficient energy recovery and utilization).
- Scenario 1 price of curcumin is 1475 €/kg;
- Scenario 2 price of curcumin is 310 €/kg;
- Scenario 3 price of curcumin is 187 €/kg, essential oil is 30 €/kg starch is 1 €/kg.
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Office of Energy Efficiency and Renewable Energy. Available online: https://www.energy.gov/eere/office-energy-efficiency-renewable-energy (accessed on 12 May 2019).
- Natural Resources Canada. Available online: https://www.nrcan.gc.ca/forests/industry/bioproducts/13315 (accessed on 3 December 2018).
- Bio-based Industries Joint Undertaking. Available online: https://www.bbi-europe.eu/media/bioeconomy-starts-here (accessed on 3 December 2018).
- DECHEMA. Fortschrittliche Alternative Flüssig Brenn–und Kraftstoffe: Für Klimaschutz im globalen Rohstoffwandel. Available online: https://dechema.de/dechema_media/Downloads/Positionspapiere/2017+Positionspapier+Alt+Kraftstoffe-p-20002790.pdf (accessed on 12 May 2019).
- Continental Reifen Deutschland GmbH. Kautschuk aus Löwenzahn - Continental entwickelt Nachhaltigkeit. Available online: https://www.continental-reifen.de/autoreifen/media-services/newsroom/taraxagum (accessed on 3 December 2018).
- Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS. Available online: https://www.imws.fraunhofer.de/de/institut/netzwerke/leitprojekte/spitzencluster-bioeconomy.html (accessed on 3 December 2018).
- Clariant. Cellulosic Ethanol from Agricultural Residues. Available online: https://www.clariant.com/de/Business-Units/New-Businesses/Biotech-and-Biobased-Chemicals/Sunliquid (accessed on 12 May 2019).
- Giovannini, P.; Howes, M.-J.R.; Edwards, S.E. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review. J. Ethnopharmacol. 2016, 184, 58–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pferschy-Wenzig, E.-M.; Bauer, R. The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav. 2015, 52, 344–362. [Google Scholar] [CrossRef] [PubMed]
- International Energy Agency. World Energy Outlook—German Summary 2017. Available online: https://www.iea.org/publications/freepublications/publication/WEO_2017_Executive_Summary_German_version.pdf (accessed on 12 May 2019).
- Developing an Asia-Pacific Strategy for Forest Invasive Species: The Coconut Beetle Problem-bridging Agriculture and Forestry. Available online: http://www.fao.org/3/a-ag117e.pdf (accessed on 12 May 2019).
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; de Barro, P.J.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogel, E.; Deumlich, D.; Kaupenjohann, M. Bioenergy maize and soil erosion — Risk assessment and erosion control concepts. Geoderma 2016, 261, 80–92. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (USDA). Giant Hogweed: National Invasive Species Information Center. Available online: https://www.invasivespeciesinfo.gov/profile/giant-hogweed (accessed on 19 December 2018).
- Janssen, R.M.; Berg, M.; Ovakim, D.H. Two cases of cardiac glycoside poisoning from accidental foxglove ingestion. CMAJ 2016, 188, 747–750. [Google Scholar] [CrossRef] [Green Version]
- Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie (IWKS). Positionspapier zu Bioplastik. 2018. Available online: https://www.iwks.fraunhofer.de/de/presse-und-medien/pressemeldungen-2018/positionspapier-zu-bioplastik.html (accessed on 3 December 2018).
- Grote, F.; Ditz, R.; Strube, J. Downstream of downstream processing—Integrated bioprocess development from upstream to downstream. Chemie Ingenieur Technik 2009, 81, 1276–1277. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, C.; Sonesson, U. Global food losses and food waste. Extent, causes and prevention; study conducted for the International Congress Save Food! Available online: http://www.fao.org/3/a-i2697e.pdf (accessed on 12 May 2019).
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [Green Version]
- Yara-Varón, E.; Selka, A.; Fabiano-Tixier, A.S.; Balcells, M.; Canela-Garayoa, R.; Bily, A.; Touaibia, M.; Chemat, F. Solvent from forestry biomass. Pinane a stable terpene derived from pine tree byproducts to substitute n-hexane for the extraction of bioactive compounds. Green Chem. 2016, 18, 6596–6608. [Google Scholar] [CrossRef]
- Chémat, F.; Strube, J. (Eds.) Green Extraction of Natural Products. Theory and Practice; Wiley VCH: Weinheim, Germany, 2015. [Google Scholar]
- Chémat, F.; Vorobiev, E.; Lebovka, N.I. Enhancing Extraction Processes in the Food Industry; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Chémat, F.; Abert Vian, M. Éco-extraction du Végétal. Procédés Innovants et Solvants Alternatifs; L’Usine nouvelle: Paris, France, 2011. [Google Scholar]
- Chemat, F.; Vian, M.A. (Eds.) Alternative Solvents for Natural Products Extraction; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zuorro, A.; Maffei, G.; Lavecchia, R. Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. J. Clean. Prod. 2016, 111, 279–284. [Google Scholar] [CrossRef]
- Angela Cardinali. Phytochemicals from Artichoke by-product and Their Applications as Natural Ingredients for Cosmetic Industry. Available online: https://www.uniba.it/ateneo/editoria-stampa-e-media/linea-editoriale/fuori-collana/genppdf (accessed on 12 May 2019).
- Fidalgo, A.; Ciriminna, R.; Carnaroglio, D.; Tamburino, A.; Cravotto, G.; Grillo, G.; Ilharco, L.M.; Pagliaro, M. Eco-Friendly Extraction of Pectin and Essential Oils from Orange and Lemon Peels. ACS Sustain. Chem. Eng. 2016, 4, 2243–2251. [Google Scholar] [CrossRef]
- Scully, D.S.; Jaiswal, A.K.; Abu-Ghannam, N. An Investigation into Spent Coffee Waste as a Renewable Source of Bioactive Compounds and Industrially Important Sugars. Bioengineering 2016, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Jahresbericht 2018. Johann Heinrich von Thünen-Institut. Available online: https://www.thuenen.de/media/publikationen/jahresbericht/Jahresbericht_2018.pdf (accessed on 12 May 2019).
- Di Donato, P.; Taurisano, V.; Tommonaro, G.; Pasquale, V.; Jiménez, J.M.S.; de Pascual-Teresa, S.; Poli, A.; Nicolaus, B. Biological Properties of Polyphenols Extracts from Agro Industry’s Wastes. Waste Biomass Valor 2018, 9, 1567–1578. [Google Scholar] [CrossRef]
- Watson, R.R. (Ed.) Polyphenols in Plants. Isolation, Purification and Extract Preparation, 2nd ed.; Academic Press: London, UK, 2019. [Google Scholar]
- Mourtzinos, I.; Goula, A. Polyphenols in Agricultural Byproducts and Food Waste. In Polyphenols in Plants: Isolation, Purification and Extract Preparation, 2nd ed.; Watson, R.R., Ed.; Academic Press: London, UK, 2019; pp. 23–44. [Google Scholar]
- Slivac, I.; Logarusic, M.; Bojanic, K.; Srcek, V.G.; Radosevic, K. Protein hydrolysates from hempseed oil-cake as cell culture media supplement. J. Biotechnol. 2018, 280, S30. [Google Scholar] [CrossRef]
- Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Barroso, M.F.; Soares, C.; Moreira, M.M.; Morais, S.; Mašković, P.; Gaurina Srček, V.; Slivac, I.; et al. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind. Crop. Prod. 2018, 111, 579–589. [Google Scholar] [CrossRef]
- Uhlenbrock, L.; Sixt, M.; Tegtmeier, M.; Schulz, H.; Hagels, H.; Ditz, R.; Strube, J. Natural Products Extraction of the Future—Sustainable Manufacturing Solutions for Societal Needs. Processes 2018, 6, 177. [Google Scholar] [CrossRef]
- Sixt, M.; Strube, J. Systematic and Model-Assisted Evaluation of Solvent Based- or Pressurized Hot Water Extraction for the Extraction of Artemisinin from Artemisia annua L. Processes 2017, 5, 86. [Google Scholar] [CrossRef]
- Sixt, M.; Strube, J. Pressurized hot water extraction of 10-deacetylbaccatin III from yew for industrial application. Resour.-Effic. Technol. 2017, 3, 177–186. [Google Scholar] [CrossRef]
- Sixt, M.; Schmidt, A.; Mestmäcker, F.; Huter, M.; Uhlenbrock, L.; Strube, J. Systematic and Model-Assisted Process Design for the Extraction and Purification of Artemisinin from Artemisia annua L.—Part I: Conceptual Process Design and Cost Estimation. Processes 2018, 6, 161. [Google Scholar] [CrossRef]
- Huter, M.; Schmidt, A.; Mestmäcker, F.; Sixt, M.; Strube, J. Systematic and Model-Assisted Process Design for the Extraction and Purification of Artemisinin from Artemisia annua L.—Part IV: Crystallization. Processes 2018, 6, 181. [Google Scholar] [CrossRef]
- Schmidt, A.; Sixt, M.; Huter, M.; Mestmäcker, F.; Strube, J. Systematic and Model-Assisted Process Design for the Extraction and Purification of Artemisinin from Artemisia annua L.—Part II: Model-Based Design of Agitated and Packed Columns for Multistage Extraction and Scrubbing. Processes 2018, 6, 179. [Google Scholar] [CrossRef]
- Happyana, N.; Kayser, O. Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR. Planta Med. 2016, 82, 1217–1223. [Google Scholar] [CrossRef]
- Ma, X.; Gang, D.R. Metabolic profiling of turmeric (Curcuma longa L.) plants derived from in vitro micropropagation and conventional greenhouse cultivation. J. Agric. Food Chem. 2006, 54, 9573–9583. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Tumeric Post Harves Compendium. Available online: http://www.fao.org/fileadmin/user_upload/inpho/docs/Post_Harvest_Compendium_-_Turmeric.pdf (accessed on 12 May 2019).
- Bhanu, Y.P. Studies on the Effect of Rhizome Size and Protrays Raised Rhizome Sprouts 2015. Available online: http://krishikosh.egranth.ac.in/handle/1/69959 (accessed on 12 May 2019).
- Röhricht, C.; Köhler, A.; Brix, B.; Groß-Ophoff, A. Anbautechnische Optimierung des Ertrages und Wirkstoffgehaltes von ausgewählten Heil- und Gewürzpflanzen. Schriftenreihe des Landesamtes für Umwelt, Landwirtschaft und Geologie 2008. [Google Scholar] [CrossRef]
- Krishnamoorthy, C.; Soorianathasundaram, K.; Mekala, S. Effect of Fertigation on Fue Quality and Economics. Available online: https://s3.amazonaws.com/academia.edu.documents/37169410/9._Agri_Sci_-_IJASR_-EFFECT_OF_FERTIGATION_ON_FUE_-_C.Krishnamoorthy.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1557656335&Signature=0DVIVj6Ss5HdZAd5zrnX%2FZ4ehIA%3D&response-content-disposition=inline%3B%20filename%3DEFFECT_OF_FERTIGATION_ON_FUE_QUALITY_AND.pdf (accessed on 12 May 2019).
- Strehle, K.R.; Rösch, P.; Berg, D.; Schulz, H.; Popp, J. Quality control of commercially available essential oils by means of Raman spectroscopy. J. Agric. Food Chem. 2006, 54, 7020–7026. [Google Scholar] [CrossRef]
- Gudi, G.; Krähmer, A.; Koudous, I.; Strube, J.; Schulz, H. Infrared and Raman spectroscopic methods for characterization of Taxus baccata L.–Improved taxane isolation by accelerated quality control and process surveillance. Talanta 2015, 143, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Gudi, G.; Krähmer, A.; Krüger, H.; Hennig, L.; Schulz, H. Discrimination of Fennel Chemotypes Applying IR and Raman Spectroscopy: Discovery of a New γ-Asarone Chemotype. J. Agric. Food Chem. 2014, 62, 3537–3547. [Google Scholar] [CrossRef] [PubMed]
- Kowal, M.A.; Colzato, L.S.; Hommel, B. Decreased spontaneous eye blink rates in chronic cannabis users: evidence for striatal cannabinoid-dopamine interactions. PLoS ONE 2011, 6, e26662. [Google Scholar] [CrossRef] [PubMed]
- Kowal, M.A.; Hazekamp, A.; Colzato, L.S.; van Steenbergen, H.; Hommel, B. Modulation of cognitive and emotional processing by cannabidiol: the role of the anterior cingulate cortex. Front. Hum. Neurosci. 2013, 7, 147. [Google Scholar] [CrossRef]
- Aparna, V.; Dineshkumar, K.; Mohanalakshmi, N.; Velmurugan, D.; Hopper, W. Identification of Natural Compound Inhibitors for Multidrug Efflux Pumps of Escherichia coli and Pseudomonas aeruginosa Using In Silico High-Throughput Virtual Screening and In Vitro Validation. PLoS ONE 2014, 9, e101840. [Google Scholar] [CrossRef]
- Jamshidi Aidji, M.; Morlock, G. Effect Directed Analysis of Salvia Officinalis 2014. Available online: https://www.lw-online.de/fileadmin/lwonline/redaktion/pdf-dateien/publikationen/fachpublikationen/2017/LWF_2017_-_Morlock.pdf (accessed on 13 May 2019).
- Cragg, G.M.; Newman, D.J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 2013, 1830, 3670–3695. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Wright, G.D. Something old, something new: revisiting natural products in antibiotic drug discovery. Can. J. Microbiol. 2014, 60, 147–154. [Google Scholar] [CrossRef]
- Newman, D. Screening and identification of novel biologically active natural compounds. F1000Res 2017, 6, 783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramallo, I.A.; Salazar, M.O.; Mendez, L.; Furlan, R.L.E. Chemically Engineered Extracts: Source of Bioactive Compounds. Acc. Chem. Res. 2011, 44, 241–250. [Google Scholar] [CrossRef]
- Saxena, M.; Saxena, J.; Nema, R.; Singh, D.; Gubpta, A. Phytochemistry of Medicinal Plants. Phytochem. Med. Plants 2015, 1. Available online: https://www.researchgate.net/publication/284425734_Phytochemistry_of_Medicinal_Plants/ (accessed on 12 May 2019).
- Nascimento, G.G.F.; Locatelli, J.; Freitas, P.C.; Silva, G.L. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Braz. J. Microbiol. 2000, 31. [Google Scholar] [CrossRef] [Green Version]
- Ohene-Agyei, T.; Mowla, R.; Rahman, T.; Venter, H. Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. MicrobiologyOpen 2014, 3, 885–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzilivakis, J.; Jaggard, K.; Lewis, K.A.; May, M.; Warner, D.J. Environmental impact and economic assessment for UK sugar beet production systems. Agric. Ecosyst. Environ. 2005, 107, 341–358. [Google Scholar] [CrossRef]
- Vercalsteren, A.; Dils, E. Life Cycle Assessment Study of Starch Products for the European Starch Industry Association (AAF): Phase 1 Pretesting. 2012. Available online: https://www.starch.eu/wp-content/uploads/2012/09/2012-08-Eco-profile-of-starch-products-summary-report.pdf (accessed on 12 May 2019).
- Diamant Zucker. Daten der Zuckerfabrik Könnern. Available online: https://www.diamant-zucker.de/unternehmen/standorte/ (accessed on 10 April 2018).
- Mahesh, V.; Manivannan, B. A study on production process and production efficiency of turmeric cultivation in India. Int. J. Adv. Res. Dev. 2018, 3, 608–611. [Google Scholar]
- Avanço, G.B.; Ferreira, F.D.; Bomfim, N.S.; Santos, P.A.d.S.R.d.; Peralta, R.M.; Brugnari, T.; Mallmann, C.A.; Abreu Filho, B.A.d.; Mikcha, J.M.G.; Machinski, M., Jr. Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control 2017, 73, 806–813. [Google Scholar] [CrossRef]
- Negi, P.S.; Jayaprakasha, G.K.; Jagan Mohan Rao, L.; Sakariah, K.K. Antibacterial Activity of Turmeric Oil: A Byproduct from Curcumin Manufacture. J. Agric. Food Chem. 1999, 47, 4297–4300. [Google Scholar] [CrossRef]
- Ammon, H.; Wahl, M. Pharmacology of Curcuma longa. Planta Med. 1991, 51, 1–7. [Google Scholar] [CrossRef]
- Panda, A.K.; Chakraborty, D.; Sarkar, I.; Khan, T.; Sa, G. New insights into therapeutic activity and anticancer properties of curcumin. J. Exp. Pharmacol. 2017, 9, 31–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DocMorris. Medikamentenpreis. Available online: https://www.docmorris.de/ (accessed on 12 May 2019).
- Committee for the Common Organisation of Agricultural Markets. Sugar Price Reporting 2018. Available online: https://ec.europa.eu/agriculture/sites/agriculture/files/market-observatory/sugar/doc/price-reporting_en.pdf (accessed on 12 May 2019).
- Sixt, M.; Koudous, I.; Strube, J. Process design for integration of extraction, purification and formulation with alternative solvent concepts. Comptes Rendus Chimie 2016, 19, 733–748. [Google Scholar] [CrossRef]
- Kassing, M.; Jenelten, U.; Schenk, J.; Strube, J. A New Approach for Process Development of Plant-Based Extraction Processes. Chem. Eng. Technol. 2010, 33, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Both, S.; Eggersglüß, J.; Lehnberger, A.; Schulz, T.; Schulze, T.; Strube, J. Optimizing Established Processes like Sugar Extraction from Sugar Beets–Design of Experiments versus Physicochemical Modeling. Chem. Eng. Technol. 2013, 36, 2125–2136. [Google Scholar] [CrossRef]
- Uhlenbrock, L.; Sixt, M.; Strube, J. Quality-by-Design (QbD) process evaluation for phytopharmaceuticals on the example of 10-deacetylbaccatin III from yew. Resour.-Effic. Technol. 2017, 3, 137–143. [Google Scholar] [CrossRef]
- Bart, H.-J.; Pilz, S. Industrial Scale Natural Products Extraction; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Fröhlich, H.; Gasser, K.; Gaul, S.; Grützner, T.; Strube, J. Development of Purification Concepts for Nutraceuticals from Algae - Part II: Design of Purification Strategies. Chem. Eng. Technol. 2015, 38, 2035–2044. [Google Scholar] [CrossRef]
- Cravotto, G.; Boffa, L.; Genzini, L.; Garella, D. Phytotherapeutics: an evaluation of the potential of 1000 plants. J. Clin. Pharm. Ther. 2010, 35, 11–48. [Google Scholar] [CrossRef] [Green Version]
- Both, S.; Chemat, F.; Strube, J. Extraction of polyphenols from black tea–Conventional and ultrasound assisted extraction. Ultrason. Sonochem. 2014, 21, 1030–1034. [Google Scholar] [CrossRef]
- Vogelpohl, A. Distillation. The Theory; De Gruyter: Berlin, Germany, 2015. [Google Scholar]
- Fröhlich, H.; Gasser, K.; Gaul, S.; Grützner, T.; Strube, J. Development of Purification Concepts for Nutraceuticals from Algae - Part I: Characterization of Emulsifying Components. Chem. Eng. Technol. 2015, 38, 2025–2034. [Google Scholar] [CrossRef]
- Mestmäcker, F.; Schmidt, A.; Huter, M.; Sixt, M.; Strube, J. Systematic and Model-Assisted Process Design for the Extraction and Purification of Artemisinin from Artemisia annua L.—Part III: Chromatographic Purification. Processes 2018, 6, 180. [Google Scholar] [CrossRef]
- Lucke, M.; Koudous, I.; Sixt, M.; Huter, M.J.; Strube, J. Integrating crystallization with experimental model parameter determination and modeling into conceptual process design for the purification of complex feed mixtures. Chem. Eng. Res. Des. 2018, 133, 264–280. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Al Shabrmi, F.M.; Allemailem, K.S.; Aly, S.M.; Khan, M.A. Implications of Green Tea and Its Constituents in the Prevention of Cancer via the Modulation of Cell Signalling Pathway. Biomed. Res. Int. 2015, 2015, 925640. [Google Scholar] [CrossRef] [PubMed]
- Fresco, P.; Borges, F.; Diniz, C.; Marques, M.P.M. New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 2006, 26, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Kiruthika, N. The Economics of Production of Turmeric In India: A Case Study of Erode District of Tamil Nadujj. J. Innov. Res. Solut. 2013. [Google Scholar]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [PubMed]
- Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer Efficacy of Polyphenols and Their Combinations. Nutrients 2016, 8, 552. [Google Scholar] [CrossRef]
- Chen, D.; Wan, S.B.; Yang, H.; Yuan, J.; Chan, T.H.; Dou, P.D. EGCG green tea polyphenols and prodrugs for human cancer treatment. Adv. Clin. Chem. 2011, 53, 155–177. [Google Scholar] [PubMed]
- Wirtschaftliche Vereinigung Zucker (WVZ). Rübenanbau und Zuckererzeugung. Available online: http://www.zuckerverbaende.de/zuckermarkt/zahlen-und-fakten/zuckermarkt-deutschland/ruebenanbau-zuckererzeugung.html (accessed on 10 April 2018).
- Ta, C.; Arnason, J. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors. Molecules 2016, 21, 29. [Google Scholar] [CrossRef]
- Bundesministerium für Ernährung und Landwirtschaft (BMEL). Roadmap Bioraffinerie. 2012. Available online: https://www.bmel.de/SharedDocs/Downloads/Broschueren/RoadmapBioraffinerien.pdf?__blob=publicationFile (accessed on 10 April 2018).
- Technische Universität Hamburg-Harburg. Energie aus Biomasse–Neue Wege zur integrierten Bioraffinerie: „BIORAFFINERIE2021“ 2012. Available online: https://bioraffinerie2021.de/wp-content/uploads/2013/09/BR2021_Abschlussbericht.pdf (accessed on 12 May 2019).
- Technische Universität Hamburg-Harburg. Energie aus Biomasse–Neue Wege zur integrierten Bioraffinerie (Nachfolgeprojekt): „BIORAFFINERIE2021“ 2015. Available online: http://bioraffinerie2021.de/wp-content/uploads/2017/07/BR2021_Abschlussbericht-2.pdf (accessed on 12 May 2019).
- Fraunhofer CBP. Erweiterung der Organosolv-Pilotanlage. Available online: https://www.cbp.fraunhofer.de/de/forschung/projekte/projekte_rohstoffaufbereitung/erweiterung-organosolv-anlage.html (accessed on 26 September 2018).
- Landwirtschaftskammer Niedersachsen. Landsortenversuch Stärkekartoffeln. 2015. Available online: https://m.lwk-niedersachsen.de/?file=25146 (accessed on 13 May 2019).
- Kaltschmitt, M.; Hartmann, H.; Hofbauer, H. Energie aus Biomasse, 3., aktualisierte Aufl. 2016; Springer Vieweg: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Graham-Rowe, D. Tank gegen Teller. Spektrum der Wissenschaft. 2012. Available online: https://www.spektrum.de/news/tank-gegen-teller/1142590 (accessed on 13 May 2019).
- Leonel, M.; Sarmento, S.B.S.; Cereda, M.P. New starches for the food industry: Curcuma longa and Curcuma zedoaria. Carbohydr. Polym. 2003, 54, 385–388. [Google Scholar] [CrossRef]
- On the Community Code Relating to Medicinal Products for Human Use. Directive 2001/83/EC. Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/directive-2001/83/ec-european-parliament-council-6-november-2001-community-code-relating-medicinal-products-human-use_en.pdf (accessed on 12 May 2019).
- Bundesinstitut für Arzneimittel und Medizinprodukte. Liste der Monographien der E-Kommission (Phyto-Therapie), die im Bundesanzeiger veröffentlicht sind 1994. Available online: https://www.bfarm.de/SharedDocs/Downloads/DE/Arzneimittel/Zulassung/zulassungsarten/besTherap/amPflanz/mono.html (accessed on 12 May 2019).
- Directive 2004/24/EC Amending, as Regards Traditional Herbal Medicinal Products, Directive 2001/83/EC on the Community Code Relating to Medicinal Products for Human Use. Directive 2004/24/EC. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:136:0085:0090:en:PDF (accessed on 12 May 2019).
- Sixt, M. Entwicklung von Methoden zur systematischen Gesamtprozessentwicklung und Prozessintensivierung von Extraktions- und Trennprozessen zur Gewinnung pflanzlicher Wertkomponenten. Shaker 2018. [Google Scholar] [CrossRef]
- Kassing, M.; Jenelten, U.; Schenk, J.; Hänsch, R.; Strube, J. Combination of Rigorous and Statistical Modeling for Process Development of Plant-Based Extractions Based on Mass Balances and Biological Aspects. Chem. Eng. Technol. 2012, 35, 109–132. [Google Scholar] [CrossRef]
- Wirtschaftliche Vereinigung Zucker (WVZ). Standorte des Zuckerrübenanbaus und der Zuckerfabriken. Available online: http://www.zuckerverbaende.de/zuckermarkt/zahlen-und-fakten/zuckermarkt-deutschland/standorte.html (accessed on 10 April 2018).
- Laura Lohmann, L.N.-W. Biogas in NRW–Auswertung der Biogasanlagen-Betreiberdatenbank der Landwirtschaftskammer NRW. Available online: https://www.landwirtschaftskammer.de/landwirtschaft/technik/biogas/veroeffentlichungen/biogas-in-nrw.htm (accessed on 13 May 2019).
- Suiker Unie. Besucherinformation und Webseite: Daten zur Zuckerfabrik Anklam. Available online: https://www.suikerunie.de/Produktionsprozess (accessed on 7 August 2018).
- Fachagentur Nachwachsende Rohstoffe, e.V. Leitfaden Biogas. Von der Gewinnung zur Nutzung, 6., überarb. Aufl.; FNR: Gülzow, Germany, 2013. [Google Scholar]
- Bundesnetzagentur. Ergebnisse der Ausschreibung für Biomasse vom 1. September 2017. 2017. Available online: https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/Ausschreibungen/Biomasse/BeendeteAusschreibungen/Gebotstermin_01_09_2017/gebotstermin_2017_node.html (accessed on 13 May 2019).
- Deutscher Bundestag. Gesetz zur Einführung von Ausschreibungen für Strom aus erneuerbaren Energien und zu weiteren Änderungen des Rechts der erneuerbaren Energien. EEG 2017. 2018. Available online: https://www.gesetze-im-internet.de/eeg_2014/EEG_2017.pdf (accessed on 13 May 2019).
- Deutsches Biomasseforschungszentrum (DBFZ). Hintergrundpapier zur Situation der Bestandsanlagen in den verschiedenen Bundesländern, 2016. Available online: https://www.dbfz.de/fileadmin/user_upload/Referenzen/Statements/Hintergundpapier_Biomasse_EEG2016.pdf (accessed on 12 May 2019).
- Bundesministerium für Wirtschaft und Energie (BMWi). Summe aus Börsenstrompreis und EEG-Umlage in Cent/kW von 2011 bis 2018. Available online: https://www.bmwi.de/Redaktion/DE/Infografiken/Energie/summe-aus-boersenstrompreis-und-eeg-umlage.html (accessed on 12 May 2019).
- Eurostat. Agriculture, Forestry and Fishery Statistics. 2017. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Agriculture,_forestry_and_fishery_statistics (accessed on 13 May 2019).
- Fachagentur Nachwachsende Rohstoffe e.V. (FNR). Bundesministerium für Ernährung und Landwirtschaft (BMEL). In Anbau nachwachsender Rohstoffe in Deutschland 2015–2017; Fachagentur Nachwachsende Rohstoffe e. V. (FNR): Gülzow-Prüzen, Germany, 2018. [Google Scholar]
- Bundesnetzagentur (BNetzA). Monitoringbericht 2015. 2015. Available online: https://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/Allgemeines/Bundesnetzagentur/Publikationen/Berichte/2015/Monitoringbericht_2015_BA.pdf?__blob=publicationFile&v=4 (accessed on 13 May 2019).
- Memmler, M.; Lauf, T.; Wolf, K.; Schneider, S. Emissionsbilanz erneuerbarer Energieträger- Bestimmung der vermiedenen Emissionen im Jahr 2016. 2017. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2017-10-26_climate-change_23-2017_emissionsbilanz-ee-2016.pdf (accessed on 13 May 2019).
- Bundesanstalt für Agrarwirtschaft. Deckungsbeitrag Kartoffelerzeugung. 2018. Available online: https://idb.awi.bmlfuw.gv.at/speisekartoffeln.html (accessed on 13 May 2019).
- Schindler. Erfolgsfaktoren im Kartoffelbau. Nossen. 2011. Available online: http://www.agfdt.de/loads/kt08/schinabb.pdf (accessed on 13 May 2019).
- Vetter, A.; Conrad, M.; Biertüpfel, A. Optimierung des Anbauverfahrens für Durchwachsene Silphie (Silphium perfoliatum) als Kofermentpflanze in Biogasanlagen sowie Überführung in die landwirtschaftliche Praxis. Available online: https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00029997/TLL_Optimierung%20des%20Anbauverfahrens%20fuer%20Durchwachsende%20Silphie%20(Silphium%20perfoliatum)%20als%20Kofermentpflanze%20in%20Biogasanlagen%20sowie%20Ueberfuehrung%20in%20die%20landwirtschaftliche%20Praxis%20Abschlussbericht_2010.pdf (accessed on 13 May 2019).
- Bundesanstalt für Agrarwirtschaft. Deckungsbeitrag Zuckerrüben 2018. Available online: http://agraroekonomik.at/idb.html (accessed on 13 May 2019).
- Bayrische Landesanstalt für Landwirtschaft. Deckungsbeitrag Zuckerrüben 2018. Available online: https://www.lfl.bayern.de/iba/unternehmensfuehrung/088966/index.php (accessed on 13 May 2019).
- Statistisches Bundesamt. Land-und Forstwirtschaft, Fischerei. Wachstum und Ernte -Feldfrüchte -. Fachserie 3 Reihe 3.2.1, 2018. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Feldfruechte-Gruenland/_inhalt.html (accessed on 13 May 2019).
- Wichtl. Teedrogen und Phytopharmaka. Ein Handbuch für die Praxis auf wissenschaftlicher Grundlage, 5., vollst. überarb. und erw. Aufl.; Wiss. Verl.-Ges: Stuttgart, Germany, 2009. [Google Scholar]
- Asensi, M.; Ortega, A.; Mena, S.; Feddi, F.; Estrela, J.M. Natural polyphenols in cancer therapy. Crit. Rev. Clin. Lab. Sci. 2011, 48, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pacif. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Priyadarsini, K.I. The chemistry of curcumin: from extraction to therapeutic agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef]
- Sheik, S.; Chourad, R.; Amarapurkar, S.; Kondarugi, R. Economics of turmeric production under conventional and modern methods in india. Int. J. Commer. Bus. Manag. 2014, 7, 100–104. [Google Scholar]
- Christensen, P.; Dysert, L.R. Cost Estimate Classification System: As Applied in Engineering, Procurement, and Construction for the Process Industries, 2016. Available online: https://web.aacei.org/docs/default-source/toc/toc_18r-97.pdf?sfvrsn=4 (accessed on 13 May 2019).
- Peters, M.S.; Timmerhaus, K.D. Plant Design and Economics for Chemical Engineers, 3rd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Goedecke, R. Fluidverfahrenstechnik; Wiley-VCH: Hoboken, NJ, USA, 2008. [Google Scholar]
- Strube, J. Technische Chromatographie: Auslegung, Optimierung, Betrieb und Wirtschaftlichkeit; Zugl.: Dortmund, Univ., Habil.-Schr., 1999, Als Ms. gedr; Shaker: Aachen, Germany, 2000. [Google Scholar]
- Zobel, S.; Helling, C.; Ditz, R.; Strube, J. Design and Operation of Continuous Countercurrent Chromatography in Biotechnological Production. Ind. Eng. Chem. Res. 2014, 53, 9169–9185. [Google Scholar] [CrossRef]
- Hashimoto, K.; Adachi, S.; Noujima, H.; Ueda, Y. A new process combining adsorption and enzyme reaction for producing higher-fructose syrup. Biotechnol. Bioeng. 1983, 25, 2371–2393. [Google Scholar] [CrossRef] [PubMed]
- Meurer, M.; Altenhöner, U.; Strube, J.; Untiedt, A.; Schmidt-Traub, H. Dynamic Simulation of a Simulated-Moving-Bed Chromatographic Reactor for the Inversion of Sucrose. Starch/Stärke 1996, 48, 452–457. [Google Scholar] [CrossRef]
- Leistner, J.; Górak, A.; Bäcker, W.; Strube, J. Extraktion als Mittel zur Abwasseraufarbeitung. Chemie Ingenieur Technik 2002, 74, 606. [Google Scholar] [CrossRef]
- Helling, C.; Strube, J. Future Processing and Recycling Strategies for Rare Earths. Chemie Ingenieur Technik 2013, 85, 1272–1281. [Google Scholar] [CrossRef]
- Schmidt, A.; Strube, J. Application and Fundamentals of Liquid-Liquid Extraction Processes: Purification of Biologicals, Botanicals, and Strategic Metals. Chemical Technol. 2018, 16, 1–52. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds not are available from the authors. |
Plant Material | Content | Quantity | Source |
---|---|---|---|
Sugar beet | Saccharose | 18% of fresh mass | [70] |
Potato | Amylose, Amylopektin | 15–20% of fresh mass | [96] |
Wood material | Lignin | 20–30% of fresh mass | [97] |
Plant Material | Active | Concentration | Product | Source |
---|---|---|---|---|
Artemisia annua L. | Artemisinin | 0.4% TM | pharmaceutical | [103] |
Piper nigrum L. | Piperin | 6.5% TM | nutrition | [104] |
Taxus baccata L. | 10- DAB III | 0.3–0.7% TM | pharmaceutical | [78] |
Curcuma longa L. | Curcumin | 3–5% TM | nutrition | [43] |
Plant Material | Fresh Mass Yield | Utilized Yield | Source |
---|---|---|---|
Sugar beet | 76 t/ha | n.a. | [122] |
potato w/o greens | 45 t/ha | n.a. | [122] |
St. John’s wort | 20 t/ha | 7.5 t/ha | [45] |
Wheat plant with grain | 26 t/ha n.a | n.a. 7.6 t/ha. | [122] [122] |
Stinging nettle | 26.4 t/ha | 2.7 t/ha | [45] |
Curcuma without greens | 17–60 t/ha | n.a. | [43] |
Key Parameters | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|
Processing capacity/a | 25 t/a | 3200 t/a | 1,782,000 t/a |
Catchment area | 0.5 ha | 64 ha | 35,640 ha |
Energy efficiency | 10% | 30% | 80% |
Fuel | wood | diesel | coal |
Product/manufacturer | 0.01 t/a | 22 t/a | 13,000 t/a |
Employees | 2 | 80 | 130 |
Products | curcuminoids | curcuminoids | curcuminoids starch essential oil |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uhlenbrock, L.; Ditz, R.; Strube, J. Process Engineering Accelerating an Economic Industrialization Towards a Bio-Based World. Molecules 2019, 24, 1853. https://doi.org/10.3390/molecules24101853
Uhlenbrock L, Ditz R, Strube J. Process Engineering Accelerating an Economic Industrialization Towards a Bio-Based World. Molecules. 2019; 24(10):1853. https://doi.org/10.3390/molecules24101853
Chicago/Turabian StyleUhlenbrock, Lukas, Reinhard Ditz, and Jochen Strube. 2019. "Process Engineering Accelerating an Economic Industrialization Towards a Bio-Based World" Molecules 24, no. 10: 1853. https://doi.org/10.3390/molecules24101853
APA StyleUhlenbrock, L., Ditz, R., & Strube, J. (2019). Process Engineering Accelerating an Economic Industrialization Towards a Bio-Based World. Molecules, 24(10), 1853. https://doi.org/10.3390/molecules24101853