Functional Glyco-Nanogels for Multivalent Interaction with Lectins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Glycomonomers
2.2. Synthesis of Glycogels
2.2.1. Free-Radical Precipitation Polymerization
2.2.2. Comonomer and Crosslinker
2.2.3. PNiPAm Glycogels
2.2.4. Initiation of the Polymerization
2.2.5. Glycogels with Various Crosslinking Densities
2.2.6. Amount of Incorporated Carbohydrates in Glycogels
2.3. Inhibition Studies with Plant Lectins
2.4. Influence on Pseudomonas aeruginosa
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Dynamic Light Scattering (DLS)
3.2.2. Scanning Electron Microscopy (SEM)
3.2.3. Atomic Force Microscopy (AFM)
3.2.4. Thermogravimetric Analysis (TGA)
3.3. Glycomonomers
3.3.1. Synthesis of Glycosylamines
3.3.2. Synthesis of Glycosyl Methacrylamides
3.4. Synthesis of Nanogels via Precipitation Polymerization
3.4.1. Synthesis of PNiPAm Nanogel G-1
3.4.2. Synthesis of PNiPAm Nanogel G-2 and PNiPMAm Nanogel G-3
3.4.3. Synthesis of Melibiose Glycogels MG-1–MG-8
3.4.4. Synthesis of Melibiose Glycogel MG-0
3.4.5. Synthesis of Lactose Glycogel LG
3.4.6. Synthesis of Fucose Glycogels FG-1 and FG-2
3.5. Phenol-Sulfuric Acid Assay for Determination of Total Sugar Content
3.6. Lectin Studies
3.7. Cultivation of PA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poole, J.; Day, C.J.; von Itzstein, M.; Paton, J.C.; Jennings, M.P. Glycointeractions in bacterial pathogenesis. Nat. Rev. Microbiol. 2018, 16, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Moonens, K.; Remaut, H. Evolution and structural dynamics of bacterial glycan binding adhesins. Curr. Opin. Struct. Biol. 2017, 44, 48–58. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Fuller, C.; Korman, H.; Weiss, A.A.; Iyer, S.S. Glycan encapsulated gold nanoparticles selectively inhibit shiga toxins 1 and 2. Bioconjug. Chem. 2010, 21, 1486–1493. [Google Scholar] [CrossRef]
- Hartley-Tassell, L.E.; Awad, M.M.; Seib, K.L.; Scarselli, M.; Savino, S.; Tiralongo, J.; Lyras, D.; Day, C.J.; Jennings, M.P. Lectin Activity of the TcdA and TcdB Toxins of Clostridium difficile. Infect. Immun. 2019, 87. [Google Scholar] [CrossRef]
- Dingle, T.; Wee, S.; Mulvey, G.L.; Greco, A.; Kitova, E.N.; Sun, J.; Lin, S.; Klassen, J.S.; Palcic, M.M.; Ng, K.K.S.; et al. Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology 2008, 18, 698–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnbull, W.B.; Precious, B.L.; Homans, S.W. Dissecting the cholera toxin-ganglioside GM1 interaction by isothermal titration calorimetry. J. Am. Chem. Soc. 2004, 126, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Ernst, B.; Magnani, J.L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Dis. 2009, 8, 661. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, L.; Collins, J.; Chen, G.; Wallis, R.; Mitchell, D.A.; Haddleton, D.M.; Becer, C.R. Dendritic cell lectin-targeting sentinel-like unimolecular glycoconjugates to release an anti-HIV drug. J. Am. Chem. Soc. 2014, 136, 4325–4332. [Google Scholar] [CrossRef] [PubMed]
- Spain, S.G.; Cameron, N.R. A spoonful of sugar: The application of glycopolymers in therapeutics. Polym. Chem. 2011, 2, 60–68. [Google Scholar] [CrossRef]
- Lee, R.T.; Lee, Y.C. Cluster glycosides. In Complex Carbohydrates; Ginsburg, V., Ed.; Academic Press: Orlando, FL, USA, 1987; pp. 424–429. ISBN 9780121820381. [Google Scholar]
- Lee, R.T.; Lee, Y.C. Affinity enhancement by multivalent lectin–carbohydrate interaction. Glycoconj. J. 2000, 17, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Lee, R.T. Carbohydrate-Protein Interactions: Basis of Glycobiology. Acc. Chem. Res. 1995, 28, 321–327. [Google Scholar] [CrossRef]
- Lundquist, J.J.; Toone, E.J. The Cluster Glycoside Effect. Chem. Rev. 2002, 102, 555–578. [Google Scholar] [CrossRef]
- Becer, C.R. The glycopolymer code: Synthesis of glycopolymers and multivalent carbohydrate-lectin interactions. Macromol. Rapid Commun. 2012, 33, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Eissa, A.M.; Cameron, N.R. Glycopolymer Conjugates. In Bio-synthetic Polymer Conjugates; Schlaad, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 71–114. ISBN 978-3-642-34350-6. [Google Scholar]
- von der Ehe, C.; Weber, C.; Gottschaldt, M.; Schubert, U.S. Immobilized glycopolymers: Synthesis, methods and applications. Prog. Polym. Sci. 2016, 57, 64–102. [Google Scholar] [CrossRef]
- Rosencrantz, R.R.; Nguyen, V.H.; Park, H.; Schulte, C.; Böker, A.; Schnakenberg, U.; Elling, L. Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance. Anal. Bioanal. Chem. 2016, 408, 5633–5640. [Google Scholar] [CrossRef] [PubMed]
- Lazar, J.; Rosencrantz, R.R.; Elling, L.; Schnakenberg, U. Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance in a Microfluidic Chip: New Insights into the Spatial Origin of the Signal. Anal. Chem. 2016, 88, 9590–9596. [Google Scholar] [CrossRef]
- Lazar, J.; Park, H.; Rosencrantz, R.R.; Böker, A.; Elling, L.; Schnakenberg, U. Evaluating the Thickness of Multivalent Glycopolymer Brushes for Lectin Binding. Macromol. Rapid Commun. 2015, 36, 1472–1478. [Google Scholar] [CrossRef]
- Yan, X.; Sivignon, A.; Yamakawa, N.; Crepet, A.; Travelet, C.; Borsali, R.; Dumych, T.; Li, Z.; Bilyy, R.; Deniaud, D.; et al. Glycopolymers as Antiadhesives of E. coli Strains Inducing Inflammatory Bowel Diseases. Biomacromolecules 2015, 16, 1827–1836. [Google Scholar] [CrossRef]
- Arias, E.; Méndez, M.T.; Arias, E.; Moggio, I.; Ledezma, A.; Romero, J.; Margheri, G.; Giorgetti, E. Supramolecular Recognition of Escherichia coli Bacteria by Fluorescent Oligo(Phenyleneethynylene)s with Mannopyranoside Termini Groups. Sensors 2017, 17, 1025. [Google Scholar] [CrossRef]
- Jacobi, F.; La Camaleño de Calle, A.; Boden, S.; Grafmüller, A.; Hartmann, L.; Schmidt, S. Multivalent Binding of Precision Glycooligomers on Soft Glycocalyx Mimicking Hydrogels. Biomacromolecules 2018, 19, 3479–3488. [Google Scholar] [CrossRef] [PubMed]
- Jans, A.; Rosencrantz, R.R.; Mandić, A.D.; Anwar, N.; Boesveld, S.; Trautwein, C.; Moeller, M.; Sellge, G.; Elling, L.; Kuehne, A.J.C. Glycan-Functionalized Microgels for Scavenging and Specific Binding of Lectins. Biomacromolecules 2017, 18, 1460–1465. [Google Scholar] [CrossRef]
- Saunders, B.R.; Laajam, N.; Daly, E.; Teow, S.; Hu, X.; Stepto, R. Microgels: From responsive polymer colloids to biomaterials. Adv. Colloid Interface Sci. 2009, 147–148, 251–262. [Google Scholar] [CrossRef]
- Plamper, F.A.; Richtering, W. Functional Microgels and Microgel Systems. Acc. Chem. Res. 2017, 50, 131–140. [Google Scholar] [CrossRef]
- Guan, Y.; Zhang, Y. PNIPAM microgels for biomedical applications: From dispersed particles to 3D assemblies. Soft Matter 2011, 7, 6375. [Google Scholar] [CrossRef]
- Pelton, R. Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. J. Colloid Interface Sci. 2010, 348, 673–674. [Google Scholar] [CrossRef]
- Lima, L.H.; Morales, Y.; Cabral, T. Ocular Biocompatibility of Poly-N-Isopropylacrylamide (pNIPAM). J. Ophthalmol. 2016, 2016. [Google Scholar] [CrossRef]
- Cooperstein, M.A.; Canavan, H.E. Assessment of cytotoxicity of (N-isopropyl acrylamide) and poly(N-isopropyl acrylamide)-coated surfaces. Biointerphases 2013, 8, 19. [Google Scholar] [CrossRef]
- Cooperstein, M.A.; Nguyen, P.A.H.; Canavan, H.E. Poly(N-isopropyl acrylamide)-coated surfaces: Investigation of the mechanism of cell detachment. Biointerphases 2017, 12. [Google Scholar] [CrossRef]
- Aloush, V.; Navon-Venezia, S.; Seigman-Igra, Y.; Cabili, S.; Carmeli, Y. Multidrug-resistant Pseudomonas aeruginosa: Risk factors and clinical impact. Antimicrob. Agents Chemother. 2006, 50, 43–48. [Google Scholar] [CrossRef]
- Imberty, A.; Wimmerová, M.; Mitchell, E.P.; Gilboa-Garber, N. Structures of the lectins from Pseudomonas aeruginosa: Insights into the molecular basis for host glycan recognition. Micro. Infect. 2004, 6, 221–228. [Google Scholar] [CrossRef]
- Chemani, C.; Imberty, A.; de Bentzmann, S.; Pierre, M.; Wimmerová, M.; Guery, B.P.; Faure, K. Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect. Immun. 2009, 77, 2065–2075. [Google Scholar] [CrossRef]
- Weichert, S.; Jennewein, S.; Hüfner, E.; Weiss, C.; Borkowski, J.; Putze, J.; Schroten, H. Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr. Res. 2013, 33, 831–838. [Google Scholar] [CrossRef]
- Grishin, A.V.; Krivozubov, M.S.; Karyagina, A.S.; Gintsburg, A.L. Pseudomonas Aeruginosa Lectins As Targets for Novel Antibacterials. Acta Nat. 2015, 7, 29–41. [Google Scholar]
- Sommer, R.; Wagner, S.; Rox, K.; Varrot, A.; Hauck, D.; Wamhoff, E.-C.; Schreiber, J.; Ryckmans, T.; Brunner, T.; Rademacher, C.; et al. Glycomimetic, Orally Bioavailable LecB Inhibitors Block Biofilm Formation of Pseudomonas aeruginosa. J. Am. Chem. Soc. 2018, 140, 2537–2545. [Google Scholar] [CrossRef]
- Angeli, A.; Li, M.; Dupin, L.; Vergoten, G.; Noël, M.; Madaoui, M.; Wang, S.; Meyer, A.; Géhin, T.; Vidal, S.; et al. Design and Synthesis of Galactosylated Bifurcated Ligands with Nanomolar Affinity for Lectin LecA from Pseudomonas aeruginosa. ChemBioChem 2017, 18, 1036–1047. [Google Scholar] [CrossRef]
- Berthet, N.; Thomas, B.; Bossu, I.; Dufour, E.; Gillon, E.; Garcia, J.; Spinelli, N.; Imberty, A.; Dumy, P.; Renaudet, O. High affinity glycodendrimers for the lectin LecB from Pseudomonas aeruginosa. Bioconjug. Chem. 2013, 24, 1598–1611. [Google Scholar] [CrossRef]
- Bücher, K.S.; Babic, N.; Freichel, T.; Kovacic, F.; Hartmann, L. Monodisperse Sequence-Controlled α-l-Fucosylated Glycooligomers and Their Multivalent Inhibitory Effects on LecB. Macromol. Biosci. 2018, 18, e1800337. [Google Scholar] [CrossRef]
- Johansson, E.M.V.; Crusz, S.A.; Kolomiets, E.; Buts, L.; Kadam, R.U.; Cacciarini, M.; Bartels, K.-M.; Diggle, S.P.; Cámara, M.; Williams, P.; et al. Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem. Biol. 2008, 15, 1249–1257. [Google Scholar] [CrossRef]
- Michaud, G.; Visini, R.; Bergmann, M.; Salerno, G.; Bosco, R.; Gillon, E.; Richichi, B.; Nativi, C.; Imberty, A.; Stocker, A.; et al. Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. Chem. Sci. 2016, 7, 166–182. [Google Scholar] [CrossRef]
- Blanchard, B.; Imberty, A.; Varrot, A. Secondary sugar binding site identified for LecA lectin from Pseudomonas aeruginosa. Proteins 2014, 82, 1060–1065. [Google Scholar] [CrossRef]
- Gilboa-Garber, N.; Katcoff, D.J.; Garber, N.C. Identification and characterization of pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL. FEMS Immunol. Med. Microbiol. 2000, 29, 53–57. [Google Scholar] [CrossRef]
- Brun, M.A.; Disney, M.D.; Seeberger, P.H. Miniaturization of Microwave-Assisted Carbohydrate Functionalization to Create Oligosaccharide Microarrays. ChemBioChem 2006, 7, 421–424. [Google Scholar] [CrossRef]
- Ghadban, A.; Albertin, L.; Moussavou Mounguengui, R.W.; Peruchon, A.; Heyraud, A. Synthesis of β-d-glucopyranuronosylamine in aqueous solution: Kinetic study and synthetic potential. Carbohydr. Res. 2011, 346, 2384–2393. [Google Scholar] [CrossRef]
- Vetter, D.; Gallop, M.A. Strategies for the Synthesis and Screening of Glycoconjugates. 1. A Library of Glycosylamines. Bioconjugate Chem. 1995, 6, 316–318. [Google Scholar] [CrossRef]
- Bejugam, M.; Flitsch, S.L. An Efficient Synthetic Route to Glycoamino Acid Building Blocks for Glycopeptide Synthesis. Org. Lett. 2004, 6, 4001–4004. [Google Scholar] [CrossRef]
- Garber, N.; Guempel, U.; Gilboa-Garber, N.; Royle, R.J. Specificity of the fucose-binding lectin of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 1987, 48, 331–334. [Google Scholar] [CrossRef]
- von Nessen, K.; Karg, M.; Hellweg, T. Thermoresponsive poly-(N-isopropylmethacrylamide) microgels: Tailoring particle size by interfacial tension control. Polymer 2013, 54, 5499–5510. [Google Scholar] [CrossRef]
- Rey, M.; Hou, X.; Tang, J.S.J.; Vogel, N. Interfacial arrangement and phase transitions of PNiPAm microgels with different crosslinking densities. Soft Matter 2017, 13, 8717–8727. [Google Scholar] [CrossRef]
- Bourne, Y.; Astoul, C.H.; Zamboni, V.; Peumans, W.J.; Menu-Bouaouiche, L.; van Damme, E.J.M.; Barre, A.; Rougé, P. Structural basis for the unusual carbohydrate-binding specificity of jacalin towards galactose and mannose. Biochem. J. 2002, 364, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.M.; Wu, J.H.; Tsai, M.-S.; Yang, Z.; Sharon, N.; Herp, A. Differential affinities of Erythrina cristagalli lectin (ECL) toward monosaccharides and polyvalent mammalian structural units. Glycoconj. J. 2007, 24, 591–604. [Google Scholar] [CrossRef]
- Allen, H.J.; Johnson, E.A.Z.; Matta, K.L. A Comparison of the Binding Specificities of Lectins from Ulex Europaeus and Lotus Tetragonolobus. Immunol. Commun. 1977, 6, 585–602. [Google Scholar] [CrossRef]
- Miceli, E.; Kuropka, B.; Rosenauer, C.; Osorio Blanco, E.R.; Theune, L.E.; Kar, M.; Weise, C.; Morsbach, S.; Freund, C.; Calderón, M. Understanding the elusive protein corona of thermoresponsive nanogels. Nanomedicine 2018, 13, 2657–2668. [Google Scholar] [CrossRef]
- Kratz, K.; Lapp, A.; Eimer, W.; Hellweg, T. Volume transition and structure of triethyleneglycol dimethacrylate, ethylenglykol dimethacrylate, and N,N′-methylene bis-acrylamide cross-linked poly(N-isopropyl acrylamide) microgels: A small angle neutron and dynamic light scattering study. Colloids Surf. A Physicochem. Eng. Asp. 2002, 197, 55–67. [Google Scholar] [CrossRef]
- Ruffet, E.; Paquet, N.; Frutiger, S.; Hughes, G.J.; Jaton, J.C. Structural and electron-microscopic studies of jacalin from jackfruit (Artocarpus integrifolia) show that this lectin is a 65 kDa tetramer. Biochem. J. 1992, 286, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Sankaranarayanan, R.; Sekar, K.; Banerjee, R.; Sharma, V.; Surolia, A.; Vijayan, M. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold. Nat. Struct. Biol. 1996, 3, 596. [Google Scholar] [CrossRef]
- Ma, B.; Simala-Grant, J.L.; Taylor, D.E. Fucosylation in prokaryotes and eukaryotes. Glycobiology 2006, 16, 158R–184R. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.M.; Neely, A.; Stintzi, A.; Georges, C.; Holder, I.A. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 1996, 64, 518–523. [Google Scholar]
- Kang, D.; Kirienko, D.R.; Webster, P.; Fisher, A.L.; Kirienko, N.V. Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence 2018, 9, 804–817. [Google Scholar] [CrossRef] [Green Version]
- Lamont, I.L.; Beare, P.A.; Ochsner, U.; Vasil, A.I.; Vasil, M.L. Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa. Proc. Natl. Acad. Sci. USA 2002, 99, 7072–7077. [Google Scholar] [CrossRef]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.-I.; Lee, Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef]
- Böcker, S.; Elling, L. Biotinylated N-Acetyllactosamine- and N,N-Diacetyllactosamine-Based Oligosaccharides as Novel Ligands for Human Galectin-3. Bioengineering 2017, 4, 31. [Google Scholar] [CrossRef]
- Böcker, S.; Laaf, D.; Elling, L. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3. Biomolecules 2015, 5, 1671–1696. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are available from the authors. |
Gel | c(SDS) | Yield | Dh(50 °C) | PDI |
---|---|---|---|---|
[mM] | [%] | [nm] | [%] | |
G-1 | 0.2 | - | 218 | 2.54 |
MG-1 | 0.4 | 67 | 507 | 21.2 |
MG-2 | 2.0 | 67 | 554 | 26.4 |
MG-3 | 4.0 | 43 | 1084 | 56.6 |
Gel | Dh(20 °C) | PDI | Dh(50 °C) | PDI |
---|---|---|---|---|
[nm] | [%] | [nm] | [%] | |
G-1 | 406 | 4.30 | 218 | 2.54 |
G-2 | 101 | 9.10 | 54.2 | 12.9 |
MG-0 | 143 | 30.3 | 103 | 23.0 |
MG-1 | 669 | 29.7 | 507 | 21.2 |
MG-2 | 678 | 40.7 | 554 | 26.4 |
MG-3 | 1084 | 56.6 | 1084 | 56.6 |
MG-4 | 474 | 31.5 | 488 | 20.4 |
MG-5 | 651 | 22.4 | 569 | 18.7 |
MG-6 | 436 | 66.6 | 328 | 27.9 |
Glycogel | Χ1(ABCVA) | Χ2(ABCVA) | Yield | Dh(50 °C) | PDI |
---|---|---|---|---|---|
[mol%] | [mol%] | [%] | [nm] | [%] | |
MG-1 | 1.0 | 2.0 | 67 | 507 | 21.2 |
MG-4 | 3.0 | - | 61 | 488 | 20.4 |
MG-5 | 3.0 | - | 66 | 569 | 18.7 |
Glycogel | Χ(MBA) | Yield | Dh(50 °C) | PDI |
---|---|---|---|---|
[mol%] | [%] | [nm] | [%] | |
LG-1 | 5.0 | 67 | 507 | 21.2 |
MG-6 | 5.0 | 46 | 488 | 20.4 |
MG-2 | 10 | 66 | 569 | 18.7 |
FG-1 | 5.0 | 56 | 643 | 51.7 |
FG-2 | 10 | 33 | 548 | 65.0 |
Glycogel | Sugar Content | Averaged Sugar Content for Each Glycomonomer Type | Theoretical Sugar Content a | Yield of Incorporated Glycomonomer b |
---|---|---|---|---|
[µmol/mg] | [µmol/mg] | [µmol/mg] | [%] | |
LG-1 | 0.43 ± 0.03 | 0.41 ± 0.03 | 1.12 | 38.3 ± 2.7 |
LG-2 | 0.39 ± 0.01 | 1.16 | 33.7 ± 0.9 | |
MG-0 | 0.24 ± 0.02 | 0.26 ± 0.05 | 1.16 | 20.8 ± 1.7 |
MG-1 | 0.29 ± 0.06 | 1.14 | 25.4 ± 5.3 | |
MG-2 | 0.28 ± 0.02 | 1.14 | 24.5 ± 1.8 | |
MG-3 | 0.23 ± 0.04 | 1.14 | 22.8 ± 3.5 | |
MG-4 | 0.20 ± 0.05 | 1.14 | 18.1 ± 4.5 | |
MG-5 | 0.26 ± 0.05 | 1.11 | 23.5 ± 4.5 | |
MG-6 | 0.26 ± 0.02 | 1.12 | 23.1 ± 1.8 | |
MG-7 | 0.27 ± 0.02 | 1.06 | 25.5 ± 1.9 | |
MG-8 | 0.28 ± 0.04 | 1.14 | 24.5 ± 3.5 | |
FG-1 | 0.94 ± 0.19 | 0.98 ± 0.16 | 1.43 | 65.6 ± 13 |
FG-2 | 1.01 ± 0.13 | 1.43 | 70.5 ± 9.1 |
Reactant | n | m | V |
---|---|---|---|
[mmol] | [g] | [mL] | |
Lactose monohydrate | 8.33 | 3.3 | - |
DMSO | - | - | 12.0 |
(NH4)2CO3 | 52.0 | 5.0 | - |
Melibiose monohydrate | 13.9 | 5.0 | - |
H2O | - | - | 100 |
(NH4)2CO3 | 520 | 50 | - |
Fucose | 9.14 | 1.5 | - |
MeOH | - | - | 13.0 |
(NH4)2CO3 | 78.1 | 7.5 | - |
Reactant | n | m | V |
---|---|---|---|
[mmol] | [g] | [mL] | |
LacNH2 | 3.17 | 1.0815 | - |
Sodium carbonate | 12.67 | 1.3434 | - |
MeOH/H2O (1:1) | - | - | 16.4 |
Methacryloyl chloride | 9.5 | 0.9141 | |
THF | - | - | 6.3373 |
MelNH2 | 13.9 | 5 | - |
Sodium carbonate | 77.8 | 8.25 | - |
MeOH/H2O (1:1) | - | - | 150 |
Methacryloyl chloride | 42.6 | 4.77 | |
THF | - | - | 35 |
FucNH2 | 12.2 | 2 | - |
Sodium carbonate | 68.1 | 7.22 | - |
MeOH/H2O (1:1) | - | - | 132 |
Methacryloyl chloride | 42.5 | 4.1 | |
THF | - | - | 35 |
Nanogel | V(H2O) | c(Monomer) | n(Monomer) | Χ(CL) | c(SDS) | Χ(ABCVA) | t1 | Yield |
---|---|---|---|---|---|---|---|---|
[mL] | [mmol/L] | [mmol] | [mol%] | [mmol/L] | [mol%] | [h] | [%] | |
G-1 | 50 | 100 | 5 | 5 | 0.2 | 0.25 | 4.0 | - |
G-2 | 50 | 100 | 5 | 10 | 4.0 | 2.00 | 22 | 86 |
G-3 b | 25 | 100 | 2.5 | 5 | 1.0 | 2.00 | 4.5 | 78 |
Glycogel | n(Comonomer) | Χ(CL) | c(SDS) | Χ1(ABCVA) | t1 | Χ2(ABCVA) | t2 | Yield d |
---|---|---|---|---|---|---|---|---|
[mmol] | [mol%] | [mmol/L] | [mol%] | [h] | [mol%] | [h] | [%] | |
MG-1 | 0.4 | 10 | 0.4 | 1 | 2.0 | 2 | 17 | 67 |
MG-2 | 0.4 | 10 | 2.0 | 1 | 1.7 | 2 | 16 | 67 |
MG-3 | 0.4 | 10 | 4.0 | 1 | 2.0 | 2 | 20 | 43 |
MG-4 | 0.4 | 10 | 0.4 | 3 | 22 | - | - | 61 |
MG-5 | 0.4 | 10 | 0.4 | 3 | 22 | - | - | 66 |
MG-6 | 0.4 | 5 | 1.0 | 2 | 24 | - | - | 46 |
MG-7 b,c | 0.4 | 5 | 0.2 | 2 | 23 | - | - | 37 |
MG-8 c | 0.4 | 10 | 0.4 | 1 | 2 | 2 | 17 | 64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.S.J.; Rosencrantz, S.; Tepper, L.; Chea, S.; Klöpzig, S.; Krüger-Genge, A.; Storsberg, J.; Rosencrantz, R.R. Functional Glyco-Nanogels for Multivalent Interaction with Lectins. Molecules 2019, 24, 1865. https://doi.org/10.3390/molecules24101865
Tang JSJ, Rosencrantz S, Tepper L, Chea S, Klöpzig S, Krüger-Genge A, Storsberg J, Rosencrantz RR. Functional Glyco-Nanogels for Multivalent Interaction with Lectins. Molecules. 2019; 24(10):1865. https://doi.org/10.3390/molecules24101865
Chicago/Turabian StyleTang, Jo Sing Julia, Sophia Rosencrantz, Lucas Tepper, Sany Chea, Stefanie Klöpzig, Anne Krüger-Genge, Joachim Storsberg, and Ruben R. Rosencrantz. 2019. "Functional Glyco-Nanogels for Multivalent Interaction with Lectins" Molecules 24, no. 10: 1865. https://doi.org/10.3390/molecules24101865
APA StyleTang, J. S. J., Rosencrantz, S., Tepper, L., Chea, S., Klöpzig, S., Krüger-Genge, A., Storsberg, J., & Rosencrantz, R. R. (2019). Functional Glyco-Nanogels for Multivalent Interaction with Lectins. Molecules, 24(10), 1865. https://doi.org/10.3390/molecules24101865