Inhibitory Mechanisms of DHA/CQ on pH and Iron Homeostasis of Erythrocytic Stage Growth of Plasmodium falciparum
Abstract
:1. Introduction
2. Results
2.1. Single Drug Treatment and Combination Drug Treatment Testing
2.1.1. Single Drug Treatment to Assay IC50
2.1.2. Combination Drug Treatment to Assay Combination Effects
2.2. Cellular pH Test by Flow Cytometry (FCM) Using pH Probe BCECF, AM
2.2.1. Single Drug Treatment
2.2.2. Combination Drug Treatment Testing
2.3. Labile Iron Pool Test by Flow Cytometry Using Probe Calcein, AM
2.3.1. Single Drug Treatment
2.3.2. Combination Drug Treatment Testing
2.4. Gene Expression of V-ATPases in the Membrane of Parasite DV
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Drug Solutions
4.2.2. Plasmodium falciparum Culture In Vitro
4.2.3. Single Drug Treatment to Test IC50
4.2.4. Antimalarial Drug Combination Treatment with Baf-A1
4.2.5. Cellular pH and Labile Iron Pool Measurement by Flow Cytometry Using Probes BCECF, AM/Calcein, AM
4.2.6. Measurement of Gene Expression of V-ATPases
4.2.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2018; WHO: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf (accessed on 19 November 2018).
- Ke, H.; Sigala, P.A.; Miura, K.; Morrisey, J.M.; Mather, M.W.; Crowley, J.R. The heme biosynthesis pathway is essential for plasmodium falciparum, development in mosquito stage but not in blood stages. J. Biol. Chem. 2014, 289, 34827–34837. [Google Scholar] [CrossRef]
- Wongsrichanalai, C.; Pickard, A.L.; Wernsdorfer, W.H.; Meshnick, S.R. Epidemiology of Drug-Resistant Malaria. Lancet Infect. Dis. 2002, 2, 209–218. [Google Scholar] [CrossRef]
- Fitch, C.D. Involvement of heme in the antimalarial action of chloroquine. Trans. Am. Clin. Climatol. Assoc. 1998, 109, 97–105. [Google Scholar]
- Ginsburg, H.; Ward, S.A.; Bray, P.G. An integrated model of chloroquine action. Parasitol. Today 1999, 15, 357–360. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Gluzman, I.Y.; Russell, D.G.; Goldberg, D.E. On the Molecular Mechanism of Chloroquine’s Antimalarial Action. Proc. Natl. Acad. Sci. USA 1996, 93, 11865–11870. [Google Scholar] [CrossRef] [PubMed]
- Bennett, T.N.; Kosar, A.D.; Ursos, L.M.; Dzekunov, S.; Sidhu, A.B.S.; Fidock, D.A.; Roepe, P.D. Drug resistance-associated PfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH. Mol. Biochem. Parasitol 2004, 133, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Steinman, R.M. Endocytosis and the recycling of plasma membrane. J. Cell. Biol. 1983, 96, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Rutz, M.; Metzger, J.; Gellert, T.; Luppa, P.; Lipford, G.; Wagner, H. Toll-like receptor 9 binds single-stranded cpg-dna in a sequence- and pH-dependent manner. Eur. J. Immunol. 2004, 34, 2541–2550. [Google Scholar] [CrossRef] [PubMed]
- Hart, O.M.; Athie-Morales, V.; O’Connor, G.M.; Gardiner, C.M. Tlr7/8-mediated activation of human nk cells results in accessory cell-dependent IFN-{gamma} production. J. Immunol. 2005, 175, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Shintani, T. Autophagy in Health and Disease: A Double-Edged Sword. Science 2004, 306, 990–995. [Google Scholar] [CrossRef]
- Meshnick, S.R.; Thomas, A.; Ranz, A.; Xu, C.M.; Pan, H.Z. Artemisinin (Qinghaosu)—The Role of Intracellular Hemin in its Mechanism of Antimalarial Action. Mol. Biochem. Parasitol. 1991, 49, 181–190. [Google Scholar] [CrossRef]
- Klonis, N.; Crespo-Ortiz, M.P.; Bottova, I. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc. Natl. Acad. Sci. USA 2011, 108, 11405. [Google Scholar] [CrossRef]
- Sigala, P.A.; Goldberg, D.E. The peculiarities and paradoxes of plasmodium heme metabolism. Annu. Rev. Microbiol. 2014, 68, 259. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Liu, J.; Beatty, W.; Pelosof, L.; Klemba, M.; Goldberg, D.E.; Banerjee, R.; Liu, J.; Beatty, W.; Pelosof, L.; et al. Four plasmepsins are active in the plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proc. Natl. Acad. Sci. USA 2002, 99, 990–995. [Google Scholar] [CrossRef]
- Mindell, J.A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 2012, 74, 69–86. [Google Scholar] [CrossRef]
- Ishida, Y.; Nayak, S.; Mindell, J.A.; Grabe, M. A model of lysosomal pH regulation. J. Physiol. 2013, 141, 705–720. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.; Perzov, N.; Cohen, A.; Hagai, K.; Nelson, H. The cellular biology of proton-motive force generation by v-atpases. J. Exp. Biol. 2000, 203, 89–95. [Google Scholar]
- Akitsugu, Y.; Yoshihiro, T.; Tamotsu, Y.; Yoshinori, M.; Ryuichi, M.; Yutaka, T. Bafilomycin a1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, h-4-ii-e cells. Cell. Struct. Funct. 1998, 23, 33–42. [Google Scholar]
- Chou, T.C.; Talalay, P. Generalized equations for the analysis of inhibitors of Michaelis-Menten and higher order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. Europ. J. Biochem. 1981, 115, 207–216. [Google Scholar] [CrossRef]
- Chou, T.C.; Talalay, P. Analysis of combined drug effects: A new look at a very old problem. Trends. Pharmacol. Sci. 1983, 4, 450–454. [Google Scholar] [CrossRef]
- Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv. Enz. Regul. 1984, 22, 27–55. [Google Scholar] [CrossRef]
- Chou, T.C.; Talalay, P. Applications of the Median-Effect Principle for the Assessment of Low-Dose Risk of Carcinogens and for the Quantitation of Synergism and Antagonism of Chemotherapeutic Agents. In New Avenues in Developmental Cancer Chemotherapy; Bristol-Myers Symposium Series; Harrap, K.R., Connors, T.A., Eds.; Academic Press: San Diego, CA, USA, 1987; pp. 37–64. [Google Scholar]
- Chou, J. Quantitation of Synergism and Antagonism of Two or More Drugs by Computerized Analysis. In Synergism and Antagonism in Chemotherapy; Chou, T.C., Rideout, D.C., Eds.; Academic Press: San Diego, CA, USA, 1991; pp. 223–244. [Google Scholar]
- Kirk, K.; Saliba, K.J. Chloroquine resistance and the pH of the malaria parasite’s digestive vacuole. Drug Resist. Updat. 2001, 4, 335–338. [Google Scholar] [CrossRef]
- Hayashi, M.; Yamada, H.; Mitamura, T.; Horii, T.; Yamamoto, A.; Moriyama, Y. Vacuolar H+-ATPase localized in plasma membranes of malaria parasite cells, plasmodium falciparum, is involved in regional acidification of parasitized erythrocytes. J. Biol. Chem. 2000, 275, 34353–34358. [Google Scholar] [CrossRef]
- Saliba, K.J.; Allen, R.J.; Zissis, S.; Bray, P.G.; Ward, S.A.; Kirk, K. Acidification of the malaria parasite’s digestive vacuole by a H+ -ATPase and a H+ -pyrophosphatase. J. Biol. Chem. 2003, 278, 5605–5612. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, P.; Mutharasan, R. A rapid method for measuring intracellular pH using BCECF, AM. Biochim. Biophys. Acta Gen. Subj. 2002, 1572, 143–148. [Google Scholar] [CrossRef]
- Golda-Vaneeckhoutte, R.L.; Roof, L.T.; Needoba, J.A.; Peterson, T.D. Determination of intracellular pH in phytoplankton using the fluorescent probe, snarf, with detection by fluorescence spectroscopy. J. Microbiol. Methods 2018, 152, 109–118. [Google Scholar] [CrossRef]
- Francis, S.E.; Sullivan, D.J.; Goldberg, D.E. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol. 1997, 51, 97–123. [Google Scholar] [CrossRef]
- Krugliak, M.; Zhang, J.; Ginsburg, H. Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol. Biochem. Parasitol. 2002, 119, 249–256. [Google Scholar] [CrossRef]
- Glavinas, H.; Krajcsi, P.; Cserepes, J.; Sarkadi, B. The role of ABC transporters in drug resistance, metabolism and toxicity. Curr. Drug Deliv. 2004, 1, 27–42. [Google Scholar] [CrossRef]
- Karászi, E.; Jakab, K.; Homolya, L. Calcein assay for multidrug resistance reliably predicts therapy response and survival rate in acute myeloid leukaemia. Br. J. Haematol. 2001, 112, 308–314. [Google Scholar] [CrossRef]
- Thipubon, P.; Uthaipibull, C.; Kamchonwongpaisan, S.; Tipsuwan, W.; Srichairatanakool, S. Inhibitory effect of novel iron chelator, 1-(n-acetyl-6-aminohexyl)-3-hydroxy-2-methylpyridin-4-one (CM1) and green tea extract on growth of plasmodium falciparum. Mala. J. 2014, 13, 84. [Google Scholar] [CrossRef]
- Breuer, W.; Epsztejn, S.; Cabantchik, Z.I. Dynamics of the cytosolic chelatable iron pool of K562 cells. FEBS Lett. 1996, 382, 304–308. [Google Scholar] [CrossRef]
- Prus, E.; Fibach, E. Flow cytometry measurement of the labile iron pool in human hematopoietic cells. Cytometry A 2008, 73, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Fisher, N.C.; Kasthuri, R.; Cerami, H.C. Parasite maturation and host serum iron influence the labile iron pool of erythrocyte stage plasmodium falciparum. Br. J. Haematol. 2013, 161, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Sherman, I.W. Mechanisms of molecular trafficking in malaria. Parasitology 1988, 96, 57–81. [Google Scholar] [CrossRef]
- Scholl, P.F.; Tripathi, A.K.; Sullivan, D.J. Bioavailable iron and heme metabolism in Plasmodium falciparum. Curr. Top. Microbiol. Immunol. 2005, 295, 293–324. [Google Scholar]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestkeeper-excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science 1976, 193, 673–675. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Drugs | Targets |
---|---|
CQ | Accumulation inside the DV; interference with heme; interference with Hz; effect on the membrane integrity; inhibition of lysosomal proteins; interference pH |
DHA | Activation with ferrous irons; accumulation of ROS; interference the Hb digestion |
Baf-A1 | Inhibition of V-ATPases; influence on proton pump; inhibition of autophagy; inhibitory activity against bacteria and tumour cell lines etc. |
Drug | Mean IC50 ± SEM (nM) |
---|---|
DHA | 4.12 ± 0.53 |
CQ | 18.74 ± 0.56 |
Baf-A1 | 25.15 ± 3.39 |
Drug Combination | CI for Experimental Values | ||||
---|---|---|---|---|---|
20% IC50 | 40% IC50 | 60% IC50 | 80% IC50 | IC50 | |
DHA + Baf-A1 | 4.954 | 2.229 | 1.584 | 1.02 | 0.524 |
Combination effect | −−−− | −−− | −−− | ± | +++ |
CQ + Baf-A1 | 2.160 | 2.678 | 2.042 | 1.549 | 1.012 |
Combination effect | −−− | −−− | −−− | −−− | ± |
Gene Name | Gene ID of PlasmoDB | Primer Sequences (5′-3′) | |
---|---|---|---|
GAPDH | PF3D7_1462800 | F | CATGTGAGGTAACCCACGCT |
R | CTTTGGTGGGGCGGACATAA | ||
vapE | PF3D7_0934500 | F | TACCTCCACCACCTACACCTG |
R | GATGGCTAGTTTGAGACGCAC | ||
vapA | PF3D7_1311900 | F | GGCCTGTTCGTGATCCTAGAC |
R | TCCACAACCAAATGCACCAG | ||
vapG | PF3D7_1323200 | F | AGGATGTGAGGGCAAAGATGT |
R | ACAGCTTCGTCTTCTGCTG |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, T.; Xu, W.; Ma, J.; Wang, H.; Cui, Z.; Jiang, T.; Li, C. Inhibitory Mechanisms of DHA/CQ on pH and Iron Homeostasis of Erythrocytic Stage Growth of Plasmodium falciparum. Molecules 2019, 24, 1941. https://doi.org/10.3390/molecules24101941
Tang T, Xu W, Ma J, Wang H, Cui Z, Jiang T, Li C. Inhibitory Mechanisms of DHA/CQ on pH and Iron Homeostasis of Erythrocytic Stage Growth of Plasmodium falciparum. Molecules. 2019; 24(10):1941. https://doi.org/10.3390/molecules24101941
Chicago/Turabian StyleTang, Tian, Wenhui Xu, Ji Ma, Huajing Wang, Zhao Cui, Tingliang Jiang, and Canghai Li. 2019. "Inhibitory Mechanisms of DHA/CQ on pH and Iron Homeostasis of Erythrocytic Stage Growth of Plasmodium falciparum" Molecules 24, no. 10: 1941. https://doi.org/10.3390/molecules24101941
APA StyleTang, T., Xu, W., Ma, J., Wang, H., Cui, Z., Jiang, T., & Li, C. (2019). Inhibitory Mechanisms of DHA/CQ on pH and Iron Homeostasis of Erythrocytic Stage Growth of Plasmodium falciparum. Molecules, 24(10), 1941. https://doi.org/10.3390/molecules24101941