Wetting Behavior and Maximum Retention of Aqueous Surfactant Solutions on Tea Leaves
Abstract
:1. Introduction
2. Experiments and Materials
2.1. Materials
2.2. Microscopy
2.3. Evaluation of the Surface Free Energy
2.4. Surface Tension Measurements
2.5. Contact Angle Measurements
2.6. Adhesion Force Measurements
2.7. Maximum Retention Measurements
3. Results and Discussions
3.1. Tea Leaf Surfaces
3.2. Characteristics of Tea Leaf Surfaces and Aqueous Surfactant Solutions
3.3. Wettability of Tea Leaf Surfaces
3.4. Adsorption at Solid–Liquid and Liquid–Air Interfaces
3.5. Structural Dependence of Surfactant Solutions on the Wettability of Tea Leaf Surfaces
3.6. Analysis of Adhesion Work
3.7. Relationship Between Adhesion Force and Contact Angle (CA)
3.8. Maximum Retention Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Song, M.; Ju, J.; Luo, S.; Han, Y.; Dong, Z.; Wang, Y.; Gu, Z.; Zhang, L.; Hao, R.; Jiang, L. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant. Sci. Adv. 2017, 3, e1602188. [Google Scholar] [CrossRef]
- Fountain, M.T.; Harris, A.L.; Cross, J.V. The use of surfactants to enhance acaricide control of Phytonemuspallidus (Acari: Tarsonemidae) in strawberry. Crop Prot. 2010, 29, 1286–1292. [Google Scholar] [CrossRef]
- Alexandrova, L.; Nedyalkov, M.; Platikanov, D.; Razzetti, R.; Bianco, F. Wetting behavior of pulmonary surfactant aqueous solutions. Colloid Polym. Sci. 2013, 291, 2725–2731. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Fu, J.; Gu, G. Wetting behavior and mechanism of wetting agents on low-energy surface. Colloids Surf. A 2013, 424, 10–17. [Google Scholar] [CrossRef]
- Tang, X.; Dong, J.; Li, X. A comparison of spreading behaviors of Silwet L-77 on dry and wet lotus leaves. J. Colloid Interface Sci. 2008, 325, 223–227. [Google Scholar] [CrossRef]
- Fernandez, V.; Khayet, M. Evaluation of the surface free energy of plant surfaces: Toward standardizing the procedure. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhu, H.; Yang, X. Characterization of droplet impact and deposit formation on leaf surfaces. Pest. Manag. Sci. 2015, 71, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, D.; Bhowmik, P.C.; Reddy, K.N. Influence of leaf surface micromorphology, wax content, and surfactant on primisulfuron droplet spread on barnyardgrass (Echinochloacrus galli) and green foxtail (Setariaviridis). Weed Sci. 2017, 54, 627–633. [Google Scholar] [CrossRef]
- Paria, S.; Biswal, N.R.; Chaudhuri, R.G. Surface tension, adsorption, and wetting behaviors of natural surfactants on a PTFE surface. AIChE J. 2015, 61, 655–663. [Google Scholar] [CrossRef]
- Liu, D.D.; Xu, Z.C.; Zhang, L.; Luo, L.; Zhang, L.; Wei, T.X.; Zhao, S. Adsorption behaviors of cationic surfactants and wettability in polytetrafluoroethylene-solution-air systems. Langmuir 2012, 28, 16845–16854. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jin, M.; Yu, C.; Liao, M. Wetting behavior of superhydrophobic surface in the liquid influenced by the existing of air layer. Colloids Surf. A 2013, 430, 46–50. [Google Scholar] [CrossRef]
- Lei, T.; Qu, W.; Wang, G. Wetting Behavior of Tetrasiloxane Surfactants Containing Glucosamide on Low-Energy Surface. J. Dispers. Sci. Technol. 2014, 36, 1216–1220. [Google Scholar] [CrossRef]
- Bertola, V.; Wang, M. Dynamic contact angle of dilute polymer solution drops impacting on a hydrophobic surface. Colloids Surf. A 2015, 481, 600–608. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, X.; Lei, J.; Ma, Y.; Du, F. The wetting behavior of aqueous surfactant solutions on wheat (Triticumaestivum) leaf surfaces. Soft Matter. 2017, 13, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Guo, R.; Xu, W. Investigating and biomimicking the surface wetting behaviors of ginkgo leaf. Soft Matter 2014, 10, 8800–8803. [Google Scholar] [CrossRef]
- Van Oss, C.; Chaudhury, M.K.; Good, R.J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 1988, 88, 927–941. [Google Scholar] [CrossRef]
- Koch, K.; Bhushan, B.; Barthlott, W. Multifunctional surface structures of plants: An inspiration for biomimetics. Prog. Mater. Sci. 2009, 54, 137–178. [Google Scholar] [CrossRef]
- Chen, J.R.; Wakida, T. Studies on surface free energy and surface structure of PTFE firm treated with low temperature plasma. J. Appl. Polym. Sci. 1997, 63, 1733–1739. [Google Scholar] [CrossRef]
- Janczuk, B.; Bialopiotrowicz, T.; Wojcik, W. The Components of Surface Tension of Liquids and Their Usefulness in Determinations of Surface Free Energy of Solids. J. Colloid Interf. Sci. 1989, 127, 59–66. [Google Scholar] [CrossRef]
- Fowkes, F.M.; Maruchi, S. Acid-Base Interactions in Polymer Adsorption. ACS Coat. Plast. 1977, 37, 605–610. [Google Scholar] [CrossRef]
- Taylor, P. The wetting of leaf surfaces. Curr. Opin. Colloid Interface Sci. 2011, 16, 326–334. [Google Scholar] [CrossRef]
- Wang, G.; Guo, Z.; Liu, W. Interfacial Effects of Superhydrophobic Plant Surfaces: A Review. J. Bionic Eng. 2014, 11, 325–345. [Google Scholar] [CrossRef]
- Nosonovsky, M.; Bhushan, B. Biologically Inspired Surfaces: Broadening the Scope of Roughness. Adv. Funct. Mater. 2008, 18, 843–855. [Google Scholar] [CrossRef]
- Quéré, D. Wetting and Roughness. Ann. Rev. Mater. Res. 2008, 71–99. [Google Scholar] [CrossRef]
- Nascimento, A.E.G.; Barros Neto, E.L.; Moura, M.C.P.A.; Castro Dantas, T.N.; DantasNeto, A.A. Wettability of paraffin surfaces by nonionic surfactants: Evaluation of surface roughness and nonylphenolethoxylation degree. Colloids Surf. A 2015, 480, 376–383. [Google Scholar] [CrossRef]
- Lucassen-Reynders, E.H. Contact angles and adsorption on solids. J. Phys. Chem. 1963, 67, 969–972. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Zhang, Q.; Wang, H.Z.; Xu, Z.C.; Zhang, L.; Liu, D.D.; Zhang, L. Wettability of a PTFE surface by aqueous solutions of zwitterionic surfactants: Effect of molecular structure. Colloids Surf. A 2016, 489, 370–377. [Google Scholar] [CrossRef]
- Wang, H.; Shi, H.; Li, Y.; Wang, Y. The effects of leaf roughness, surface free energy and work of adhesion on leaf water drop adhesion. PLoS ONE 2014, 9, e107062. [Google Scholar] [CrossRef]
- Sun, M.; Watson, G.S.; Watson, J.A.; Zheng, Y.; Jiang, L.; Han, D.; Liang, A. Wettability and Adhesional Differences on a Natural Template: The Cicada Wing. Sci. Adv. Mater. 2014, 6, 1493–1500. [Google Scholar] [CrossRef]
- Bhushan, B.; Nosonovsky, M. The rose petal effect and the modes of superhydrophobicity. Philos. Trans. A Math Phys. Eng. Sci. 2010, 368, 4713–4728. [Google Scholar] [CrossRef]
- Bhushan, B.; Her, E.K. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir 2010, 26, 8207–8217. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Kesong, L.; Jiang, L. Peanut leaves with high adhesive superhydrophobicity and their biomimetic materials. Sci. Sin. Chim. 2011, 41, 403–408. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds N-200, N-300, Tween-80, SDS, DTAB and Morwet EFW are available from the authors. |
Chemicals | Description | Producer | Activity (%) |
---|---|---|---|
N-200 | Acrylate homologues | Dauni Research Center of Advanced Science and Technology Co., Ltd. | 37.0 |
N-300 | Aliphatic alcohol polyoxyethylene ethers | Dauni Research Center of Advanced Science and Technology Co., Ltd. | 95.0 |
Morwet EFW | Blend of alkyl naphthalene sulfonate and anionic wetting agent | Azkonobel | 95.0 |
Tween-80 | Polyethylene glycol sorbitan monooleate | Solarbio Life Science | 70.0 |
DTAB | Dodecyl trimethyl ammonium bromide | Sigma-Aldrich Co., Ltd. | 98.0 |
SDS | Sodium dodecyl sulfate | Sigma-Aldrich Co., Ltd. | 99.0 |
Probe Liquids | Surface Free Energy (MJ/m2) | Dispersion Component (MJ/m2) | Polar Component (MJ/m2) |
---|---|---|---|
Deionized water (Chen et al. [18]) | 72.8 | 29.1 | 43.7 |
Formamide (Chen et al. [18]) | 58.2 | 35.1 | 23.1 |
Ethyleneglycol (Janczuk et al. [19]) | 48.2 | 29.29 | 18.91 |
N,N-Dimethylformamide [20] (Fowkes) | 37.3 | 32.42 | 4.88 |
Surface Free Energy (MJ/m2) | Dispersion Component (MJ/m2) | Polar Component (MJ/m2) | Proportion of Dispersion Component (%) | Proportion of Polar Component (%) | |
---|---|---|---|---|---|
Tea leaves | 30.4 | 28.67 | 1.73 | 94.3 | 5.7 |
Surfactant | Stage 1 | Stage 2 | ||
---|---|---|---|---|
Slope | Coefficient | Slope | Coefficient | |
N-200 | / | / | −0.042 | 0.8624 |
N-300 | / | / | −0.15 | 0.9972 |
Tween-80 | −0.24 | 0.9973 | −0.25 | 0.9929 |
Morwet EFW | / | / | −0.23 | 0.9888 |
DTAB | / | / | −0.54 | 0.9975 |
SDS | / | / | −0.17 | 0.9667 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Cao, C.; Cao, L.; Li, F.; Du, F.; Huang, Q. Wetting Behavior and Maximum Retention of Aqueous Surfactant Solutions on Tea Leaves. Molecules 2019, 24, 2094. https://doi.org/10.3390/molecules24112094
Zhu F, Cao C, Cao L, Li F, Du F, Huang Q. Wetting Behavior and Maximum Retention of Aqueous Surfactant Solutions on Tea Leaves. Molecules. 2019; 24(11):2094. https://doi.org/10.3390/molecules24112094
Chicago/Turabian StyleZhu, Feng, Chong Cao, Lidong Cao, Fengmin Li, Fengpei Du, and Qiliang Huang. 2019. "Wetting Behavior and Maximum Retention of Aqueous Surfactant Solutions on Tea Leaves" Molecules 24, no. 11: 2094. https://doi.org/10.3390/molecules24112094
APA StyleZhu, F., Cao, C., Cao, L., Li, F., Du, F., & Huang, Q. (2019). Wetting Behavior and Maximum Retention of Aqueous Surfactant Solutions on Tea Leaves. Molecules, 24(11), 2094. https://doi.org/10.3390/molecules24112094