A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree
Abstract
:1. Introduction
2. Chemical Classes of Metabolites Detected in the Walnut
3. Different Parts of the Walnut Tree
3.1. Walnut Fruit—Different Parts
3.1.1. Kernel
3.1.2. Skin
3.1.3. Shell
3.1.4. Husk
3.2. Other Parts of the Walnut Tree
3.2.1. Leaf
3.2.2. Shoot
3.2.3. Bark
3.2.4. Root
3.2.5. Branch
4. The Solvents Used for the Preparation of Walnut Extracts
4.1. Fruit
4.1.1. Kernel
4.1.2. Shell
4.1.3. Husk
4.2. Other Parts of the Tree
4.2.1. Leaf
4.2.2. Shoot
4.2.3. Bark
4.2.4. Root
4.2.5. Branch
5. Total Antioxidant Content
5.1. Fruit
5.1.1. Kernel
5.1.2. Skin
5.1.3. Shell
5.1.4. Husk
5.2. Other Parts of the Tree
5.2.1. Leaf
5.2.2. Shoot
5.2.3. Bark
5.2.4. Stem
5.2.5. Root
6. Total Antioxidant Activity
6.1. Fruit
6.2. Other Parts of the Tree
7. Radical Scavenging Activity
7.1. Fruit
7.1.1. Reactive Oxygen Species (ROS)
7.1.2. Reactive Nitrogen Species (RNS)
7.1.3. DPPH Radical
7.1.4. ABTS Radical Cation
7.2. Other Parts of the Tree
7.2.1. ROS
7.2.2. RNS
7.2.3. DPPH Radical
7.2.4. ABTS Radical Cation
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- Treutter, D. Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul. 2001, 34, 71–89. [Google Scholar] [CrossRef]
- Rühmann, S.; Leser, C.; Bannert, M.; Treutter, D. Relationship between growth, secondary metabolism, and resistance of apple. Plant Biol. 2002, 4, 137–143. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Aherne, S.A.; O’Brien, N.M. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition 2002, 18, 75–81. [Google Scholar] [CrossRef]
- Macheix, J.J.; Fleuriet, A.; Billot, J. Fruit Phenolics; CRC press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Treutter, D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 2005, 7, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006, 4, 147–157. [Google Scholar] [CrossRef]
- Mayr, U.; Batzdorfer, R.; Treutter, D.; Feucht, W. Surfactant-Induced Changes in Phenol Content of Apple Leaves and Fruit Skins. In Proceedings of the International Symposium on Natural Phenols in Plant Resistance, Weihenstephan, Germany, 1 December 1994; Geibel, M., Treutter, D., Feucht, W., Eds.; ISHS: Wageningen, The Netherlands; pp. 479–487.
- Bennett, R.N.; Wallsgrove, R.M. Secondary metabolites in plant defence mechanisms. New Phytol. 1994, 127, 617–633. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.L. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Silva, B.M.; Andrade, P.B.; Valentão, P.; Ferreres, F.; Seabra, R.M.; Ferreira, M.A. Quince (Cydonia oblonga Miller) fruit (pulp, peel, and seed) and jam: Antioxidant activity. J. Agric. Food Chem. 2004, 52, 4705–4712. [Google Scholar] [CrossRef]
- Tseng, T.-H.; Kao, E.-S.; Chu, C.-Y.; Chou, F.-P.; Lin Wu, H.-W.; Wang, C.-J. Protective effects of dried flower extracts of Hibiscus sabdariffa L. against oxidative stress in rat primary hepatocytes. Food Chem. Toxicol. 1997, 35, 1159–1164. [Google Scholar] [CrossRef]
- Miller, N.J.; Ruiz-Larrea, M.B. Flavonoids and other plant phenols in the diet: Their significance as antioxidants. J. Nutr. Environ. Med. 2002, 12, 39–51. [Google Scholar] [CrossRef]
- Rice-Evans, C. Plant Polyphenols: Free Radical Scavengers or Chain-Breaking Antioxidants? Portland Press-London: London, UK, 1995; pp. 103–116. [Google Scholar]
- Kornsteiner, M.; Wagner, K.-H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- McGranahan, G.; Leslie, C. Walnuts (Juglans). In Genetic Resources of Temperate Fruit and Nut Crops; Moore, J.N., Ballington, J.R., Jr., Eds.; International Society for Horticultural Science: Wageningen, The Netherlands, 1991; Volume 2, pp. 907–974. [Google Scholar]
- Zhang, Q. Effects of extraction solvents on phytochemicals and antioxidant activities of walnut (Juglans regia L.) green husk extracts. Eur. J. Food Sci. Technol. 2015, 3, 15–21. [Google Scholar]
- Britton, M.; Leslie, C.A.; Dandekar, A.M.; McGranahan, G.H.; Caboni, E. Persian Walnut. In Compendium of Transgenic Crop Plants; Kole, C., Hall, T.C., Eds.; Wiley: Hoboken, NJ, USA, 2009; Volume 4, pp. 285–300. [Google Scholar]
- Salejda, A.M.; Janiewicz, U.; Korzeniowska, M.; Kolniak-Ostek, J.; Krasnowska, G. Effect of walnut green husk addition on some quality properties of cooked sausages. LWT Food Sci. Technol. 2016, 65, 751–757. [Google Scholar] [CrossRef]
- Raja, V.; Ahmad, S.I.; Irshad, M.; Wani, W.A.; Siddiqi, W.A.; Shreaz, S. Anticandidal activity of ethanolic root extract of Juglans regia (L.): Effect on growth, cell morphology, and key virulence factors. J. Mycol. Méd. 2017, 27, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Stampar, F.; Solar, A.; Hudina, M.; Veberic, R.; Colaric, M. Traditional walnut liqueur–cocktail of phenolics. Food Chem. 2006, 95, 627–631. [Google Scholar] [CrossRef]
- Jahanban Esfahlan, A.; Jamei, R.; Jahanban Esfahlan, R. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem. 2010, 120, 349–360. [Google Scholar] [CrossRef]
- Han, H.; Wang, S.; Rakita, M.; Wang, Y.; Han, Q.; Xu, Q. Effect of ultrasound-assisted extraction of phenolic compounds on the characteristics of walnut shells. Food Nutr. Sci. 2018, 9, 1034–1045. [Google Scholar] [CrossRef]
- Yang, J.; Liu, R.H.; Halim, L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT-Food Sci. Technol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Halvorsen, B.L.; Holte, K.; Myhrstad, M.C.; Barikmo, I.; Hvattum, E.; Remberg, S.F.; Wold, A.-B.; Haffner, K.; Baugerød, H.; Andersen, L.F. A systematic screening of total antioxidants in dietary plants. J. Nutr. 2002, 132, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Dubey, A.; Mishra, R.; Barik, N. Study on antioxidant activity of common dry fruits. Food Chem. Toxicol. 2010, 48, 3316–3320. [Google Scholar] [CrossRef] [PubMed]
- Arcan, I.; Yemenicioğlu, A. Antioxidant activity and phenolic content of fresh and dry nuts with or without the seed coat. J. Food Compos. Anal. 2009, 22, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Amaral, J.S.; Casal, S.; Pereira, J.A.; Seabra, R.M.; Oliveira, B.P. Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in Portugal. J. Agric. Food Chem. 2003, 51, 7698–7702. [Google Scholar] [CrossRef] [PubMed]
- Amaral, J.S.; Alves, M.R.; Seabra, R.M.; Oliveira, B.P. Vitamin E composition of walnuts (Juglans regia L.): A 3-year comparative study of different cultivars. J. Agric. Food Chem. 2005, 53, 5467–5472. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, S.; Cappelloni, M.; Gambelli, L.; Nicoli, S.; Carnovale, E. Chemical composition and nutritive value of nuts grown in Italy. Ital. J. Food Sci. 1998, 10, 243–252. [Google Scholar]
- Savage, G.; Dutta, P.; McNeil, D. Fatty acid and tocopherol contents and oxidative stability of walnut oils. J. Am. Oil Chem. Soc. 1999, 76, 1059–1063. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.-Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- Almario, R.U.; Vonghavaravat, V.; Wong, R.; Kasim-Karakas, S.E. Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. Am. J. Clin. Nutr. 2001, 74, 72–79. [Google Scholar] [CrossRef]
- Davis, L.; Stonehouse, W.; Mukuddem-Petersen, J.; van der Westhuizen, F.H.; Hanekom, S.M.; Jerling, J.C. The effects of high walnut and cashew nut diets on the antioxidant status of subjects with metabolic syndrome. Eur J. Nutr. 2007, 46, 155–164. [Google Scholar] [CrossRef]
- Horton, K.; Morgan, J.; Uhrin, L.; Boyle, M.; Altomare, P.; Laskowsky, C.; Walker, K.; Stanton, M.; Newman, L.; Capuzzi, D. The effect of walnuts on serum lipids consumed as part of the national cholesterol educational panel step I diet. J. Am. Diet Assoc. 1999, 99, A109. [Google Scholar] [CrossRef]
- Hu, F.B.; Stampfer, M.J. Nut consumption and risk of coronary heart disease: A review of epidemiologic evidence. Curr. Atheroscler. Rep. 1999, 1, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Hu, F.B.; Ros, E.; Sabaté, J. The role of tree nuts and peanuts in the prevention of coronary heart disease: Multiple potential mechanisms. J. Nutr. 2008, 138, 1746S–1751S. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Yu-Poth, S.; Sabaté, J.; Ratcliffe, H.E.; Zhao, G.; Etherton, T.D. Nuts and their bioactive constituents: Effects on serum lipids and other factors that affect disease risk. Am. J. Clin. Nutr. 1999, 70, 504s–511s. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Zhao, G.; Binkoski, A.E.; Coval, S.M.; Etherton, T.D. The effects of nuts on coronary heart disease risk. Nutr. Rev. 2001, 59, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Lavedrine, F.; Zmirou, D.; Ravel, A.; Balducci, F.; Alary, J. Blood cholesterol and walnut consumption: A cross-sectional survey in France. Prev. Med. 1999, 28, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Nergiz-Ünal, R.; Kuijpers, M.J.E.; de Witt, S.M.; Heeneman, S.; Feijge, M.A.H.; Garcia Caraballo, S.C.; Biessen, E.A.L.; Haenen, G.R.M.M.; Cosemans, J.M.E.M.; Heemskerk, J.W.M. Atheroprotective effect of dietary walnut intake in ApoE-deficient mice: Involvement of lipids and coagulation factors. Thromb. Res. 2013, 131, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Ros, E. Nuts and novel biomarkers of cardiovascular disease. Am. J. Clin. Nutr. 2009, 89, 1649S–1656S. [Google Scholar] [CrossRef] [Green Version]
- Tapsell, L.C.; Gillen, L.J.; Patch, C.S.; Batterham, M.; Owen, A.; Baré, M.; Kennedy, M. Including walnuts in a low-fat/modified-fat diet improves HDL cholesterol-to-total cholesterol ratios in patients with type 2 diabetes. Diabetes Care 2004, 27, 2777–2783. [Google Scholar] [CrossRef]
- Lee, J.; Koo, N.; Min, D. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. Food Saf. 2004, 3, 21–33. [Google Scholar] [CrossRef]
- Anderson, K.J.; Teuber, S.S.; Gobeille, A.; Cremin, P.; Waterhouse, A.L.; Steinberg, F.M. Walnut polyphenolics inhibit in vitro human plasma and LDL oxidation. J. Nutr. 2001, 131, 2837–2842. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tsao, R.; Yang, R.; Liu, C.; Zhu, H.; Young, J.C. Polyphenolic profiles and antioxidant activities of heartnut (Juglans ailanthifolia var. cordiformis) and Persian walnut (Juglans regia L.). J. Agric. Food Chem. 2006, 54, 8033–8040. [Google Scholar] [CrossRef]
- Reiter, R.J.; Manchester, L.; Tan, D.-x. Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition 2005, 21, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Bou Abdallah, I.; Tlili, N.; Martinez-Force, E.; Rubio, A.G.P.; Perez-Camino, M.C.; Albouchi, A.; Boukhchina, S. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Köksal, A.İ.; Artik, N.; Şimşek, A.; Güneş, N. Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 2006, 99, 509–515. [Google Scholar]
- Jahanban-Esfahlan, A.; Davaran, S.; Moosavi-Movahedi, A.; Dastmalchi, S. Investigating the interaction of juglone (5-hydroxy-1, 4-naphthoquinone) with serum albumins using spectroscopic and in silico methods. J. Iran Chem. Soc. 2017, 7, 1527–1540. [Google Scholar] [CrossRef]
- Kiran Aithal, B.; Sunil Kumar, M.; Nageshwar Rao, B.; Udupa, N.; Satish Rao, B. Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells. Cell Biol. Int. 2009, 33, 1039–1049. [Google Scholar] [CrossRef]
- Roufegarinejad, L.; Amarowicz, R.; Jahanban-Esfahlan, A. Characterizing the interaction between pyrogallol and human serum albumin by spectroscopic and molecular docking methods. J. Biomol. Struct. Dyn. 2019. In press. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Amarowicz, R. Walnut (Juglans regia L.) shell pyroligneous acid: Chemical constituents and functional applications. RSC Adv. 2018, 8, 22376–22391. [Google Scholar] [CrossRef]
- Duke, J.A. Handbook of Nts: Hrbal Rference Lbrary; RC Press: Boca Raton, FL, USA, 2000; Volume 4. [Google Scholar]
- Zarghami Moghaddam, P.; Mohammadi, A.; Feyzi, P.; Alesheikh, P. In vitro antioxidant and antibacterial activity of various extracts from exocarps and endocarps of walnut. Pak. J. Pharm. Sci. 2017, 30, 1725–1731. [Google Scholar]
- Greve, L.C.; McGranahan, G.; Hasey, J.; Snyder, R.; Kelly, K.; Goldhamer, D.; Labavitch, J.M. Variation in polyunsaturated fatty acids composition of Persian walnut. J. Am. Soc. Hort. Sci. 1992, 117, 518–522. [Google Scholar] [CrossRef]
- Martínez, M.L.; Mattea, M.A.; Maestri, D.M. Varietal and crop year effects on lipid composition of walnut (Juglans regia) genotypes. J. Am. Oil Chem. Soc. 2006, 83, 791–796. [Google Scholar] [CrossRef]
- Prasad, R. Walnuts and Pecans; Academic Press: London, UK, 2003; pp. 6071–6079. [Google Scholar]
- Lavedrine, F.; Ravel, A.; Villet, A.; Ducros, V.; Alary, J. Mineral composition of two walnut cultivars originating in France and California. Food Chem. 2000, 68, 347–351. [Google Scholar] [CrossRef]
- Savage, G. Chemical composition of walnuts (Juglans regia L.) grown in New Zealand. Plant Foods Hum. Nutr. 2001, 56, 75–82. [Google Scholar] [CrossRef]
- Sze-Tao, K.W.C.; Sathe, S.K. Walnuts (Juglans regia L): Proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J. Sci. Food Agric. 2000, 80, 1393–1401. [Google Scholar] [CrossRef]
- Wardlaw, G.M.; Insel, P.M. Perspectives in Nutrition; McGraw-Hill Education: New York, NY, USA, 1996. [Google Scholar]
- Kagawa, Y. Standard Tables of Food Composition in Japan; Women’s University: Tokyo, Japan, 1995. [Google Scholar]
- Colaric, M.; Veberic, R.; Solar, A.; Hudina, M.; Stampar, F. Phenolic acids, syringaldehyde, and juglone in fruits of different cultivars of Juglans regia L. J. Agric. Food Chem. 2005, 53, 6390–6396. [Google Scholar] [CrossRef] [PubMed]
- Trandafir, I.; Cosmulescu, S.; Botu, M.; Nour, V. Antioxidant activity, and phenolic and mineral contents of the walnut kernel (Juglans regia L.) as a function of the pellicle color. Fruits 2016, 71, 173–184. [Google Scholar] [CrossRef]
- Akbari, V.; Jamei, R.; Heidari, R.; Jahanban Esfahlan, A. Antiradical activity of different parts of Walnut (Juglans regia L.) fruit as a function of genotype. Food Chem. 2012, 135, 2404–2410. [Google Scholar] [CrossRef]
- Fukuda, T.; Ito, H.; Yoshida, T. Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochemistry 2003, 63, 795–801. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2008, 46, 2103–2111. [Google Scholar] [CrossRef]
- Zhang, Z.; Liao, L.; Moore, J.; Wu, T.; Wang, Z. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009, 113, 160–165. [Google Scholar] [CrossRef]
- Ghasemi, K.; Ghasemi, Y.; Ehteshamnia, A.; Nabavi, S.M.; Nabavi, S.F.; Ebrahimzadeh, M.A.; Pourmorad, F. Influence of environmental factors on antioxidant activity, phenol and flavonoids contents of walnut (Juglans regia L.) green husks. J. Med. Plant Res. 2011, 5, 1128–1133. [Google Scholar]
- Jakopic, J.; Colaric, M.; Veberic, R.; Hudina, M.; Solar, A.; Stampar, F. How much do cultivar and preparation time influence on phenolics content in walnut liqueur? Food Chem. 2007, 104, 100–105. [Google Scholar] [CrossRef]
- Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem. Toxicol. 2008, 46, 2326–2331. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wei, Q.; Zhang, S.; Shi, L.; Zhao, Z. Isolation and bioactivities of organic acids and phenols from walnut shell pyroligneous acid. J. Anal. Appl. Pyrolysis 2011, 91, 338–343. [Google Scholar] [CrossRef]
- Mathias, E.V.; Halkar, U.P. Separation and characterization of lignin compounds from the walnut (Juglans regia) shell oil using preparative TLC, GC–MS and 1H NMR. J. Anal. Appl. Pyrolysis 2004, 71, 515–524. [Google Scholar] [CrossRef]
- Zheng, Z.-F.; Zou, J.-C.; Hua, B.; Zhang, H.J.; Wang, R. Study on the constituents of walnut shell. J. Southwest Forestry College 2006, 26, 33–36. [Google Scholar]
- Amaral, J.S.; Seabra, R.M.; Andrade, P.B.; Valentao, P.; Pereira, J.A.; Ferreres, F. Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chem. 2004, 88, 373–379. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Valentão, P.; Andrade, P.B.; Ferreira, I.C.F.R.; Ferreres, F.; Bento, A.; Seabra, R.; Estevinho, L. Walnut (Juglans regia L.) leaves: Phenolic compounds, antibacterial activity and antioxidant potential of different cultivars. Food Chem. Toxicol. 2007, 45, 2287–2295. [Google Scholar] [CrossRef]
- Salimi, M.; Ardestaniyan, M.; Mostafapour Kandelous, H.; Saeidnia, S.; Gohari, A.; Amanzadeh, A.; Sanati, H.; Sepahdar, Z.; Ghorbani, S. Anti-proliferative and apoptotic activities of constituents of chloroform extract of Juglans regia leaves. Cell Prolif. 2014, 47, 172–179. [Google Scholar] [CrossRef]
- Solar, A.; Colarič, M.; Usenik, V.; Stampar, F. Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L.). Plant Sci. 2006, 170, 453–461. [Google Scholar] [CrossRef]
- Cheniany, M.; Ebrahimzadeh, H.; Masoudi-nejad, A. Expression of chalcone synthase influences flavonoid content and frequency of rhizogenesis in microshoots of Juglans regia L. Plant Cell Tissue Organ Cult. 2012, 109, 51–59. [Google Scholar] [CrossRef]
- Cheniany, M.; Ebrahimzadeh, H.; Vahdati, K.; Preece, J.E.; Masoudinejad, A.; Mirmasoumi, M. Content of different groups of phenolic compounds in microshoots of Juglans regia cultivars and studies on antioxidant activity. Acta Physiol. Plant 2013, 35, 443–450. [Google Scholar] [CrossRef]
- Owens, N.; Lee, D. The use of micro bubble flotation technology in secondary and tertiary produced water treatment–a technical comparison with other separation technologies. Presented at the TUV NEL, 5th Produced Water Workshop, Aberdeen, Scotland, 30–31 May 2007. [Google Scholar]
- Altun, T.; Pehlivan, E. Removal of Cr (VI) from aqueous solutions by modified walnut shells. Food Chem. 2012, 132, 693–700. [Google Scholar] [CrossRef]
- Ding, D.; Zhao, Y.; Yang, S.; Shi, W.; Zhang, Z.; Lei, Z.; Yang, Y. Adsorption of cesium from aqueous solution using agricultural residue–Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies. Water Res. 2013, 47, 2563–2571. [Google Scholar] [CrossRef] [PubMed]
- Kazemipour, M.; Ansari, M.; Tajrobehkar, S.; Majdzadeh, M.; Kermani, H.R. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. J. Hazard Mater. 2008, 150, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Köhler, S.J.; Cubillas, P.; Rodríguez-Blanco, J.D.; Bauer, C.; Prieto, M. Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations. Environ. Sci. Technol. 2007, 41, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, E.; Altun, T. Biosorption of chromium (VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard Mater. 2008, 155, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Saadat, S.; Karimi-Jashni, A. Optimization of Pb (II) adsorption onto modified walnut shells using factorial design and simplex methodologies. Chem. Eng. J. 2011, 173, 743–749. [Google Scholar] [CrossRef]
- Saifuddin, M.; Kumaran, P. Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal. Electron. J. Biotechnol. 2005, 8, 43–53. [Google Scholar]
- Saqib, A.N.S.; Waseem, A.; Khan, A.F.; Mahmood, Q.; Khan, A.; Habib, A.; Khan, A.R. Arsenic bioremediation by low cost materials derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans regia L.). Ecol. Eng. 2013, 51, 88–94. [Google Scholar] [CrossRef]
- Shah, J.; Jan, M.R.; Haq, A.; Khan, Y. Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: Kinetics, equilibrium and thermodynamics studies. Front Chem. Sci. Eng. 2013, 7, 428–436. [Google Scholar] [CrossRef]
- Soleimani, M.; Kaghazchi, T. Low-Cost Adsorbents from Agricultural By-Products Impregnated with Phosphoric Acid. Adv. Chem. Eng. Res. 2014, 3, 34–41. [Google Scholar]
- Nowicki, P.; Pietrzak, R.; Wachowska, H. Sorption properties of active carbons obtained from walnut shells by chemical and physical activation. Catal. Today 2010, 150, 107–114. [Google Scholar] [CrossRef]
- Rahman, S. Evaluation of filtering efficiency of walnut granules as deep-bed filter media. J. Petrol. Sci. Eng. 1992, 7, 239–246. [Google Scholar] [CrossRef]
- Zare, H.; Najafpour, G.; Rahimnejad, M.; Tardast, A.; Gilani, S. Biofiltration of ethyl acetate by Pseudomonas putida immobilized on walnut shell. Bioresour. Technol. 2012, 123, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Blumenschein, C.D.; Severing, K.; Boyle, E. Walnut shell filtration for oil and solids removal from steel mill recycle systems. AISE Steel Technol. 2001, 78, 33–37. [Google Scholar]
- Srinivasan, A.; Viraraghavan, T. Removal of oil by walnut shell media. Bioresour. Technol. 2008, 99, 8217–8220. [Google Scholar] [CrossRef]
- Srinivasan, A.; Viraraghavan, T. Oil removal from water using biomaterials. Bioresour. Technol. 2010, 101, 6594–6600. [Google Scholar] [CrossRef]
- Wei, Q.; Ma, X.; Zhao, Z.; Zhang, S.; Liu, S. Antioxidant activities and chemical profiles of pyroligneous acids from walnut shell. J. Anal. Appl. Pyrolysis 2010, 88, 149–154. [Google Scholar] [CrossRef]
- Zhai, M.; Shi, G.; Wang, Y.; Mao, G.; Wang, D.; Wang, Z. Chemical compositions and biological activites of pyroligneous acids from walnut shell. Bioresources 2015, 10, 1715–1729. [Google Scholar] [CrossRef]
- Meshkini, A.; Tahmasbi, M. Anti-platelet aggregation activity of walnut hull extract via suppression of ROS generation and caspase activation. J. Acupunct. Meridian Stud. 2017, 10, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentão, P.; Andrade, P.B.; González-Álvarez, J.; Pereira, J.A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crops Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology. Pharm. Biol. 2016, 54, 2176–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hellemont, J. Compendium de Phytotherapie; Association Pharmaceutique: Bruxelles, Belgium, 1986. [Google Scholar]
- Bruneton, J. Pharmacognosy, Phytochemistry, Medicinal Plants; Intercept: Hampshire, UK, 1999. [Google Scholar]
- Girzu, M.; Carnat, A.; Privat, A.-M.; Fialip, J.; Carnat, A.-P.; Lamaison, J.-L. Sedative effect of walnut leaf extract and juglone, an isolated constituent. Pharm. Biol. 1998, 36, 280–286. [Google Scholar] [CrossRef]
- Hadis, E.; Mostafa, H.-Z.S.; Saeedeh, N.; Mehdi, M. Study of the effects of walnut leaf on the levels of a number of Blood Biochemical Factors in normal male rats fed with high cholesterol diet. Clin. Biochem. 2011, 44, S331. [Google Scholar] [CrossRef]
- Hosseini, S.; Fallah Huseini, H.; Larijani, B.; Mohammad, K.; Najmizadeh, A.; Nourijelyani, K.; Jamshidi, L. The hypoglycemic effect of Juglans regia leaves aqueous extract in diabetic patients: A first human trial. DARU J. Pharm. Sci. 2014, 22, 19. [Google Scholar] [CrossRef]
- Hosseini, S.; Mehrzadi, S.; Najmizadeh, A.R.; Kazem, M.; Alimoradi, H.; Fallah Huseini, H. Effects of Juglans regia L. leaf extract on hyperglycemia and lipid profiles in type two diabetic patients: A randomized double-blind, placebo-controlled clinical trial. J. Ethnopharmacol. 2014, 152, 451–456. [Google Scholar] [CrossRef]
- Mahmoodi, M.; Eghbali, H.; Hosseini zijoud, S.M.; Pourrashidi, A.; Mohamadi, A.; Borhani, M.; Hassanshahi, G.; Rezaeian, M. Study of the effects of walnut leaf on some blood biochemical parameters in hypercholesterolemic rats. Biochem. AnalBiochem. 2011, S331. [Google Scholar] [CrossRef]
- Pitschmann, A.; Zehl, M.; Atanasov, A.G.; Dirsch, V.M.; Heiss, E.; Glasl, S. Walnut leaf extract inhibits PTP1B and enhances glucose-uptake in vitro. J. Ethnopharmacol. 2014, 152, 599–602. [Google Scholar] [CrossRef]
- Alkhawajah, A.M. Studies on the antimicrobial activity of Juglans regia. Am. J. Chin. Med. 1997, 25, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Qa’dan, F.; Thewaini, A.-J.; Ali, D.A.; Afifi, R.; Elkhawad, A.; Matalka, K.Z. The antimicrobial activities of Psidium guajava and Juglans regia leaf extracts to acne-developing organisms. Am. J. Chin. Med. 2005, 33, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Abuajah, C.I.; Ogbonna, A.C.; Osuji, C.M. Functional components and medicinal properties of food: A review. J Food Sci. Technol. 2015, 52, 2522–2529. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Thul, S.T. Phytochemical analysis of the leaf volatile oil of walnut tree (Juglans regia L.) from western Himalaya. Ind. Crops Prod. 2013, 42, 195–201. [Google Scholar] [CrossRef]
- Boukhari, F.; Tigrine-Kordjani, N.; Meklati, B.Y. Phytochemical investigation by microwave-assisted extraction of essential oil of the leaves of walnut cultivated in Algeria. Helv. Chim. Acta 2013, 96, 1168–1175. [Google Scholar] [CrossRef]
- Valdebenito, D.; Farías, D.; Oyanedel, E.; Castro, M.; Lampinen, B.; Tixier, A.; Saa, S. The morphology of a Walnut (Juglans regia L.) shoot is affected by its position in the canopy and correlated to the number and size of its fruits. Sci. Hort. 2017, 220, 303–309. [Google Scholar] [CrossRef]
- Claudot, A.-C.; Ernst, D.; Sandermann, H.; Drouet, A. Chalcone synthase activity and polyphenolic compounds of shoot tissues from adult and rejuvenated walnut trees. Planta 1997, 203, 275–282. [Google Scholar] [CrossRef]
- Radix, P.; Seigle-Murandi, F.; Charlot, G. Walnut blight: Development of fruit infection in two orchards. Crop. Prot. 1994, 13, 629–631. [Google Scholar] [CrossRef]
- Mahoney, N.; Molyneux, R.J.; Campbell, B.C. Regulation of aflatoxin production by naphthoquinones of walnut (Juglans regia). J. Agric. Food Chem. 2000, 48, 4418–4421. [Google Scholar] [CrossRef]
- Taha, N.A.; Al-wadaan, M.A. Utility and importance of walnut, Juglans regia Linn: A review. Afr. J. Microbiol. Res. 2011, 5, 5796–5805. [Google Scholar]
- Kale, A.; Shah, S.; Gaikwad, S.; Mundhe, K.; Deshpande, N.; Salvekar, J. Elements from Stem Bark of Orchard Tree-Juglans regia. Int. J. Chemtech. Res. 2010, 2, 548–550. [Google Scholar]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Valentin, E.; Bakhrouf, A. Antifungal properties of Salvadora persica and Juglans regia L. extracts against oral Candida strains. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Haque, R.; Bin-Hafeez, B.; Parvez, S.; Pandey, S.; Sayeed, I.; Ali, M.; Raisuddin, S. Aqueous extract of walnut (Juglans regia L.) protects mice against cyclophosphamide-induced biochemical toxicity. Hum. Exp. Toxicol. 2003, 22, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K.; Rahman, S.; Ali, M.; Raisuddin, S. In vitro antioxidant activity of Juglans regia L. bark extract and its protective effect on cyclophosphamide-induced urotoxicity in mice. Redox Rep. 2006, 11, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Nirmla Devi, T.; Apraj, V.; Bhagwat, A.; Mallya, R.; Sawant, L.; Pandita, N. Pharmacognostic and Phytochemical Investigation of Juglans regia Linn. bark. Pharm. J. 2011, 3, 39–43. [Google Scholar]
- Zakavi, F.; Golpasand Hagh, L.; Daraeighadikolaei, A.; Farajzadeh Sheikh, A.; Daraeighadikolaei, A.; Leilavi Shooshtari, Z. Antibacterial effect of Juglans regia bark against oral pathologic bacteria. Int. J. Dent. 2013, 854765. [Google Scholar] [CrossRef] [PubMed]
- Allaie, A.H.; Singh, R.; Ganaie, A.A.; Mishra, R.P.; Ali, S. Phytochemically analyzed Juglans regia root extracts and their bactericidal facets against some urinary tract infection causing bacteria. Int. J. Biol. Med. Res 2018, 9, 6304–6308. [Google Scholar]
- Wei, Q.; Ma, X.; Dong, J. Preparation, chemical constituents and antimicrobial activity of pyroligneous acids from walnut tree branches. J. Anal. Appl. Pyrolysis 2010, 87, 24–28. [Google Scholar] [CrossRef]
- Carvalho, M.; Ferreira, P.J.; Mendes, V.S.; Silva, R.; Pereira, J.A.; Jerónimo, C.; Silva, B.M. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem. Toxicol. 2010, 48, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Kafkas, E.; Burgut, A.; Ozcan, H.; Ozcan, A.; Sutyemez, M.; Kafkas, S.; Türemis, N. Fatty acid, total phenol and tocopherol profiles of some walnut cultivars: A comparative study. Food Nutr. Sci. 2017, 8, 1074–1084. [Google Scholar] [CrossRef]
- Dodevska, M.; Šobajić, S.; Djordjević, B. Fibre and polyphenols of selected fruits, nuts and green leafy vegetables used in Serbian diet. J. Serb. Chem. Soc. 2015, 80, 21–33. [Google Scholar] [CrossRef]
- Papoutsi, Z.; Kassi, E.; Chinou, I.; Halabalaki, M.; Skaltsounis, L.A.; Moutsatsou, P. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Brit. J. Nutr. 2008, 99, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Thangthaeng, N.; Poulose, S.M.; Fisher, D.R.; Shukitt-Hale, B. Walnut extract modulates activation of microglia through alteration in intracellular calcium concentration. Nutr. Res. 2017, 49, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Kavuncuoglu, H.; Kavuncuoglu, E.; Karatas, S.M.; Benli, B.; Sagdic, O.; Yalcin, H. Prediction of the antimicrobial activity of walnut (Juglans regia L.) kernel aqueous extracts using artificial neural network and multiple linear regression. J. Microbiol. Meth. 2018, 148, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Ogunmoyole, T.; Kade, I.J.; Korodele, B. In vitro antioxidant properties of aqueous and ethanolic extracts of walnut (Juglans regia). J. Med. Plant Res. 2011, 5, 6839–6848. [Google Scholar] [CrossRef]
- Anjum, S.; Gani, A.; Ahmad, M.; Shah, A.; Masoodi, F.; Shah, Y.; Gani, A. Antioxidant and antiproliferative activity of walnut extract (Juglans regia L.) processed by different methods and identification of compounds using GC/MS and LC/MS technique. J. Food Process. Pres. 2017, 41, e12756. [Google Scholar] [CrossRef]
- Amin, F.; Masoodi, F.A.; Baba, W.N.; Khan, A.A.; Ganie, B.A. Effect of different ripening stages on walnut kernel quality: Antioxidant activities, lipid characterization and antibacterial properties. J. Food Sci. Technol. 2017, 54, 3791–3801. [Google Scholar] [CrossRef]
- Yang, J.; Chen, C.; Zhao, S.; Ge, F.; Liu, D. Effect of solvents on the antioxidant activity of walnut (Juglans regia L.) shell extracts. J. Food Nutr. Res. 2014, 2, 621–626. [Google Scholar] [CrossRef]
- Yang, J.; Chen, C.; Zhao, S.; Ge, F.; Liu, D. The inhibitory effect of different solvents extracts from walnut shell (Juglans regia L.) on pancreatic lipase and adipogenesis of 3T3-L1 preadipocytes. J. Food Nutr. Res. 2014, 2, 664–670. [Google Scholar] [CrossRef]
- Sharma, P.; Gomathi, D.; Ravikumar, G.; Kalaiselvi, M.; Chandrasekaran, U. Phytochemical screening and high performance thin layer chromatography finger printing analysis of green hull of Juglans regia (walnut). Elective. Med. J. 2014, 2, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Izadiyan, Z.; Shameli, K.; Hara, H.; Mohd Taib, S.H. Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract. J. Mol. Struct. 2018, 1151, 97–105. [Google Scholar] [CrossRef]
- Amaral, J.S.; Valentão, P.; Andrade, P.B.; Martins, R.C.; Seabra, R.M. Do cultivar, geographical location and crop season influence phenolic profile of walnut leaves? Molecules 2008, 13, 1321–1332. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.I.; Sharma, E.; Shah, G.A. Anti-proliferative, cytotoxicity and anti-oxidant activity of Juglans regia extract. Am. J. Cancer Prev. 2015, 3, 45–50. [Google Scholar]
- Uysal, S.; Zengin, G.; Aktumsek, A. Studies on in vitro antioxidant activities of nine different fruit tree leaves collected from Mediterranean region of Turkey. J. Med. Herbs. Ethnomed. 2015, 1, 97–102. [Google Scholar] [CrossRef]
- Eser, F.; Sanal, S.; Temiz, C.; Yilmaz, F.; Onal, A. Effect of acid pretreatment on the dyeing performance of walnut (Juglans regia) leaves on wool fibers. Fiber Polym. 2015, 16, 1657–1662. [Google Scholar] [CrossRef]
- Jabli, M.; Sebeia, N.; Boulares, M.; Faidi, K. Chemical analysis of the characteristics of Tunisian Juglans regia L. fractions: Antibacterial potential, gas chromatography-mass spectroscopy and a full investigation of their dyeing properties. Ind. Crops Prod. 2017, 108, 690–699. [Google Scholar] [CrossRef]
- Einali, A.; Azizian-Shermeh, O.; Ghasemi, A. Phytochemical screening and antimicrobial activities of Periploca aphylla Decne, Persian walnut (Juglans regia L.) and oleander (Nerium indicum Mill.) Leaf extracts. J. Food Meas. Charact. 2018, 12, 1350–1359. [Google Scholar] [CrossRef]
- Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.P.; Ferreira, I.C.F.R.; Ferreira, l. Enhanced extraction of phenolic compounds using choline chloride based deep eutectic solvents from Juglans regia L. Ind. Crops Prod. 2018, 115, 261–271. [Google Scholar] [CrossRef]
- Upadhyay, V.; Kambhoja, S.; Harshaleena, K. Antifungal activity and preliminary phytochemical analysis of stem bark extracts of Juglans regia linn. Int. J. Pharm. Biol. Arch 2010, 1, 442–447. [Google Scholar]
- Noumi, E.; Snoussi, M.; Noumi, I.; Valentin, E.; Aouni, M.; Al-sieni, A. Comparative study on the antifungal and antioxydant properties of natural and colored Juglans regia L. barks: A high activity against vaginal Candida strains. Life Sci. J. 2014, 11, 327–335. [Google Scholar]
- Aldawood, T.; Alyousef, A.; Alyousef, S.; Aldosari, N.; Hussam, S.; Alhadad, A.; Bhaian, F.; Sharaf Eldeen, D.; Sayed Abdul, N. Antibacterial effect of Juglans regia L. bark extract at different concentrations against human salivary microflora. J. Oral. Med. Oral. Surger Oral. Pathol. Oral. Radiol. 2017, 3, 214–217. [Google Scholar]
- Labuckas, D.O.; Maestri, D.M.; Perelló, M.; Martínez, M.L.; Lamarque, A.L. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chem. 2008, 107, 607–612. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Verardo, V.; Segura-Carretero, A.; Caboni, M.F.; Fernández-Gutiérrez, A. Development of a rapid method to determine phenolic and other polar compounds in walnut by capillary electrophoresis-electrospray ionization time-of-flight mass spectrometry. J Chromatogr. A 2008, 1209, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Bendini, A.; Cerretani, L.; Malaguti, D.; Cozzolino, E.; Caboni, M.F. Capillary gas chromatography analysis of lipid composition and evaluation of phenolic compounds by micellar electrokinetic chromatography in italian walnut (Juglans regia L.): Irrigation and fertilization influence. J. Food Qual. 2009, 32, 262–281. [Google Scholar] [CrossRef]
- Shi, D.; Chen, C.; Zhao, S.; Ge, F.; Liu, D.; Song, H. Walnut polyphenols inhibit pancreatic lipase activity in vitro and have hypolipidemic effect on high-fat diet-induced obese Mice. J. Food Nutr. Res. 2014, 2, 757–763. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, M.; Su, G.; Cai, M.; Zhou, C.; Huang, J.; Lin, L. The antioxidant activities and the xanthine oxidase inhibition effects of walnut (Juglans regia L.) fruit, stem and leaf. Int. J. Food Sci. Technol. 2015, 50, 233–239. [Google Scholar] [CrossRef]
- Sadighara, P.; Godarzi, S.; Bahmani, M.; Asadi-Samani, M. Antioxidant activity and properties of walnut brown seed coat extract. J. Global Pharma. Technol. 2016, 11, 26–30. [Google Scholar]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Ionica, M.; Tutulescu, F. Phenolics content, antioxidant activity and color of green walnut extracts for preparing walnut liquor. Not. Bot. Horti. Agrobot. 2014, 42, 551–555. [Google Scholar] [CrossRef]
- Tabaraki, R.; Rastgoo, S. Comparison between conventional and ultrasound-assisted extractions of natural antioxidants from walnut green husk. Korean J. Chem. Eng. 2014, 31, 676–683. [Google Scholar] [CrossRef]
- Sharafi Chegeni, A.; Ezatpour, B.; Mohebali, M.; Mahmoudvand, H.; Zibaei, M.; Ebrahimzadeh, F.; Rashidipour, M.; Babaei, N.; Chaharmiri Dokhaharani, S. Effect of peel and leaf extract of walnut (Juglans regia l.) on cutaneous leishmaniasis caused by Leishmania major in BALB/c Mice. J. Chem. Pharm. Sci. 2016, 9, 2490–2495. [Google Scholar]
- Almeida, I.F.; Fernandes, E.; Lima, J.L.; Costa, P.C.; Fernanda Bahia, M. Walnut (Juglans regia L.) leaf extracts are strong scavengers of pro-oxidant reactive species. Food Chem. 2008, 106, 1014–1020. [Google Scholar] [CrossRef]
- Sharafati-Chaleshtori, R.; Sharafati-Chaleshtori, F.; Rafieian, M. Biological characterization of Iranian walnut (Juglans regia) leaves. Turk. J. Biol. 2011, 35, 635–639. [Google Scholar]
- Salimi, M.; Majd, A.; Sepahdar, Z.; Azadmanesh, K.; Irian, S.; Ardestaniyan, M.H.; Hedayati, M.H.; Rastkari, N. Cytotoxicity effects of various Juglans regia (walnut) leaf extracts in human cancer cell lines. Pharm. Biol. 2012, 50, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Sharafati-chaleshtori, R.; Sharafati-chaleshtori, F.; Sharafati-chaleshtori, A.; Rafieian, M. Antibacterial effects of ethanolic extract of walnut leaves (Juglans regia) on propionibacterium acnes. ZUMS J. 2012, 18, 42–49. [Google Scholar]
- Zhao, M.-H.; Jiang, Z.-T.; Liu, T.; Li, R. Flavonoids in Juglans regia L. leaves and evaluation of In vitro antioxidant activity via intracellular and chemical methods. Sci. World J. 2014, 303878. [Google Scholar]
- Hashemi, S.S.; Khaksar, Z.; Rafati, A.R. Morphometric study of the effect of walnut (Juglans regia) leaf extract on cerebrum malformation in offsprings of diabetic rats. Biomed. Pharmacol. J. 2015, 8, 467–475. [Google Scholar]
- Hashemi, S.S.; Khaksar, Z.; Tadjalli, M. Morphometric study of the effect of Walnut (Juglans regia) leaf extract on cerebrum malformation in fetuses of diabetic rats. J. Chem. Pharm. Res. 2015, 7, 441–445. [Google Scholar]
- Holowacz, S.; Blondeau, C.; Guinobert, I.; Guilbot, A.; Bardot, V.; Cotte, C.; Ripoche, I.; Chalard, P.; Hidalgo-Lucas, S.; Bisson, J.-F. Anti-diarrheal and anti-nociceptive effects of a hydroethanolic leaf extract of walnut in rats. Med. Aromat. Plants 2016, 5, 5. [Google Scholar] [CrossRef]
- Abbasi, Z.; Jelodar, G.; Nazifi, S. Extracts of the walnut leaf (Juglans regia L.) improved activity of sorbitol dehydrogenase in diabetic male rats. Physiol. Pharmacol. 2017, 21, 80–86. [Google Scholar]
- Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.P.; Ferreira, O.; Ferreira, I.C.F.R. Optimization and comparison of maceration and microwave extraction systems for the production of phenolic compounds from Juglans regia L. for the valorization of walnut leaves. Ind. Crops Prod. 2017, 107, 341–352. [Google Scholar] [CrossRef]
- Rabiei, K.; Ebrahimzadeh, M.A.; Saeedi, M.; Bahar, A.; Akha, O.; Kashi, Z. Effects of a hydroalcoholic extract of Juglans regia (walnut) leaves on blood glucose and major cardiovascular risk factors in type 2 diabetic patients: A double-blind, placebo-controlled clinical trial. BMC Complement. Altern. Med. 2018, 18, 206. [Google Scholar] [CrossRef] [PubMed]
- Moori Bakhtiari, N.; Jamshidian, J.; Khalafi, E. Effect of Juglans regia L. stem bark hydroalcoholic extract on methicillin resistant Staphylococcus aureus. Jundishapur J. Nat. Pharm. Prod. 2016, 11, e29095. [Google Scholar] [CrossRef]
- Qamar, W.; Sultana, S. Polyphenols from Juglans regia L. (walnut) kernel modulate cigarette smoke extract induced acute inflammation, oxidative stress and lung injury in Wistar rats. Hum. Exp. Toxicol. 2010, 30, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Abe, L.T.; Lajolo, F.M.; Genovese, M.I. Comparison of phenol content and antioxidant capacity of nuts. Ciência Tecnol. Alime 2010, 30, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Le, V.; Esposito, D.; Grace, M.H.; Ha, D.; Pham, A.; Bortolazzo, A.; Bevens, Z.; Kim, J.; Okuda, R.; Komarnytsky, S.; et al. Cytotoxic effects of ellagitannins isolated from walnuts in human cancer cells. Nutr. Cancer 2014, 66, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Martínez, P.; Arellano-Cárdenas, S.; Dorantes-Álvarez, L.; García-Ochoa, F.; López-Cortez, M.D.S. Comparison between antioxidant activities of phenolic extracts from Mexican peanuts, peanuts skins, nuts and pistachios. J. Mex Chem. Soc. 2014, 58, 185–193. [Google Scholar] [CrossRef]
- Grace, M.H.; Warlick, C.W.; Neff, S.A.; Lila, M.A. Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS. Food Chem. 2014, 158, 229–238. [Google Scholar] [CrossRef]
- Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. Identification and quantification of phenolic compounds in kernels, oil and bagasse pellets of common walnut (Juglans regia L.). Food Res. Int. 2015, 67, 255–263. [Google Scholar] [CrossRef]
- Cerİt, İ.; Sariçam, A.; Demİrkol, O.; Ünver, H.; Sakar, E.; Coşansu, S. Comparative study of functional properties of eight walnut (Juglans regia L.) genotypes. Food Sci. Technol. 2017, 37, 472–477. [Google Scholar] [CrossRef]
- Rahmani, F.; Dehganiasl, M.; Heidari, R.; Rezaee, R.; Darvishzadeh, R. Genotype impact on antioxidant potential of hull and kernel in Persian walnut (Juglans regia L.). Int. Food Res. J. 2018, 25, 35–42. [Google Scholar]
- Ganesapillai, M.; Mathew, M.; Singh, A.; Simha, P. Influence of microwave and ultrasound pretreatment on solvent extraction of bio-components from walnut (Julgans regia L.) shells. Period. Polytech. Chem. Eng. 2016, 60, 40–48. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Veberic, R.; Stampar, F.; Solar, A. Phenolic response in green walnut husk after the infection with bacteria Xanthomonas arboricola pv. juglandis. Physiol. Mol. Plant. Pathol. 2011, 76, 159–165. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I. Variation of phenols content in walnut (Juglans regia L.). South. West. J. Hortic. Biol. Environ. 2011, 2, 25–33. [Google Scholar]
- Cosmulescu, S.; Trandafir, I. Seasonal variation of total phenols in leaves of walnut (Juglans regia L.). J. Med. Plant. Res. 2011, 5, 4938–4942. [Google Scholar]
- Mirzapour, M.; Hamedi, M.M.; Rahimipanah, M.; Shokrpour, N. Walnut leaves: Influence of different extraction methods on the total phenol and flavonoid contents. Agro Food Ind. Hi Tech. 2012, 23, 27–30. [Google Scholar]
- Nour, V.; Trandafir, I.; Cosmulescu, S. HPLC determination of phenolic acids, flavonoids and juglone in walnut leaves. J. Chromatogr. Sci. 2013, 51, 883–890. [Google Scholar] [CrossRef]
- Santos, A.; Barros, L.; Calhelha, R.C.; Duenas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Leaves and decoction of Juglans regia L.: Different performances regarding bioactive compounds and in vitro antioxidant and antitumor effects. Ind. Crops Prod. 2013, 51, 430–436. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V. Seasonal variation of the main individual phenolics and juglone in walnut (Juglans regia) leaves. Pharm. Biol. 2013, 52, 575–580. [Google Scholar] [CrossRef]
- Garbaczewska, S.; Cieniecka-Rosłonkiewicz, A.; Michalczyk, A.; Kieł Czewska, A. The use of components of the extract from the leaves of walnut Juglans regia L against the fungus Ascosphaera apis. Chemik 2014, 68, 117–122. [Google Scholar]
- Sytykiewicz, H.; Chrzanowski, G.; Czerniewicz, P.; Leszczyński, B.; Sprawka, I.; Krzyzanowski, R.; Matok, H. Antifungal activity of Juglans regia (L.) leaf extracts against Candida albicans isolates. Pol. J. Environ. Stud. 2015, 24, 1339–1448. [Google Scholar] [CrossRef]
- Shah, U.N.; Mir, J.I.; Ahmed, N.; Jan, S.; Fazili, K.M. Bioefficacy potential of different genotypes of walnut Juglans regia L. J. Food Sci. Technol. 2018, 55, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Khan, U.; Khan, K.; Nawaz, M.; Khan, N.; Ali, F. In vitro anti-pseudomonal potential of Juglans regia and Otostegia limbata leaves extract against planktonic and biofilm form of Pseudomonas aeruginosa. Pak. J. Bot. 2018, 50, 827–833. [Google Scholar]
- Noumi, E.; Snoussi, M.; Trabelsi, N.; Hajlaoui, H.; Ksouri, R.; Valentin, E. Amina Bakhrouf Antibacterial, anticandidal and antioxidant activities of Salvadora persica and Juglans regia L. extracts. J. Med. Plant. Res. 2011, 5, 4138–4146. [Google Scholar]
- Hasan, T.N.; Grace B, L.; Shafi, G.; Al-Hazzani, A.A.; Alshatwi, A.A. Anti-proliferative effects of organic extracts from root bark of Juglans regia L. (RBJR) on MDA-MB-231 human breast cancer cells: Role of Bcl-2/Bax, caspases and Tp53. Asian Pac. J. Cancer Prev. 2011, 12, 525–530. [Google Scholar] [PubMed]
- Ara, I.; Shinwari, M.M.A.; Rashed, S.A.; Bakir, M.A. Evaluation of antimicrobial properties of two different extracts of Juglans regia tree bark and search for their compounds using gas chromatohraphy-mass spectrum. Int J. Biol. 2013, 5. [Google Scholar] [CrossRef]
- NirmlaDevi, T.; Gaikar, V.G.; Sen, D.; Mazumder, S.; Pandita, N.S. Phytosynthesis of silver nanoparticles using walnut (Juglans regia) bark with characterization of the antibacterial activity against Streptococcus mutans. Anal. Lett. 2017, 50, 690–711. [Google Scholar]
- Christopoulos, M.V.; Tsantili, E. Effects of temperature and packaging atmosphere on total antioxidants and colour of walnut (Juglans regia L.) kernels during storage. Sci. Hort. 2011, 131, 49–57. [Google Scholar] [CrossRef]
- Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap-Orbitrap mass spectrometry. Food Chem. 2014, 152, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Boncler, M.; Różalski, M.; Krajewska, U.; Podsędek, A.; Watala, C. Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells. J. Pharmacol. Toxicol. Met. 2014, 69, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ma, S.; Han, Y.; Wang, Y.; Guo, Y.; Weng, Q.; Xu, M. Walnut polyphenol extract attenuates immunotoxicity induced by 4-pentylphenol and 3-methyl-4-nitrophenol in murine splenic lymphocyte. Nutrients 2016, 8, 287. [Google Scholar] [CrossRef] [PubMed]
- Rywaniak, J.; Luzak, B.; Podsedek, A.; Dudzinska, D.; Rozalski, M.; Watala, C. Comparison of cytotoxic and anti-platelet activities of polyphenolic extracts from Arnica montana flowers and Juglans regia husks. Platelets 2015, 26, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Malmir, H.A. The changes in phenolic and flavonoids compound related to the harvest times and enzyme activity during stages of leaves development in Juglans regia L. Int J. Agric. For. 2014, 4, 338–342. [Google Scholar]
- Li, W.; Li, D.-Y.; Wang, H.-D.; Zheng, Z.-J.; Hu, J.; Li, Z.-Z. Juglans regia hexane extract exerts antitumor effect, apoptosis induction and cell circle arrest in prostate cancer cells In vitro. Trop J. Pharm. Res. 2015, 14, 399–405. [Google Scholar] [CrossRef]
- Vieira, V.; Pereira, C.; Pires, T.C.; Calhelha, R.C.; Alves, M.J.; Ferreira, O.; Barros, L.; Ferreira, I.C. Phenolic profile, antioxidant and antibacterial properties of Juglans regia L.(walnut) leaves from the Northeast of Portugal. Ind. Crops Prod. 2019, 134, 347–355. [Google Scholar] [CrossRef]
- Arranz, S.; Pérez-Jiménez, J.; Saura-Calixto, F. Antioxidant capacity of walnut (Juglans regia L.): Contribution of oil and defatted matter. Eur. Food Res. Technol. 2008, 227, 425–431. [Google Scholar] [CrossRef]
- Tapia, M.I.; Sanchez-Morgado, J.R.; Garcıa-Parra, J.; Ramırez, R.; Hernandez, T.; Gonzalez-Gomez, D. Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. J. Food Compos. Anal. 2013, 31, 232–237. [Google Scholar] [CrossRef]
- Essa, M.M.; Subash, S.; Dhanalakshmi, C.; Manivasagam, T.; Al-Adawi, S.; Guillemin, G.J.; Thenmozhi, A.J. Dietary supplementation of walnut partially reverses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced neurodegeneration in a mouse model of Parkinson’s disease. Neurochem. Res. 2015, 40, 1283–1293. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Salvatore, S.; Del Rio, D.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol. Nutr. Food Res. 2006, 50, 1030–1038. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J. Agric. Food Chem. 2004, 52, 4026–4037. [Google Scholar] [CrossRef]
- Espín, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2, 2-diphenyl-1-picrylhydrazyl radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef]
- Craft, B.D.; Kerrihard, A.L.; Amarowicz, R.; Pegg, R.B. Phenol-based antioxidants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. Food Saf. 2012, 11, 148–173. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Braude, E.; Brook, A.; Linstead, R. Hydrogen transfer. Part V. Dehydrogenation reactions with diphenylpicrylhydrazyl. J. Chem. Soc. 1954, 3574–3578. [Google Scholar] [CrossRef]
No | Solvent | Part | References | |
---|---|---|---|---|
1 | Water | Fruit | Kernel | [28,69,70,136,137,138,139] |
Shell | [56], [140]25, [141]25 | |||
Husk | [18,56,73,103,142,143] | |||
Other parts | Leaf | [78]25, [109], [144]24, [145,146], [147]25, [148,149], [150]28 | ||
Bark | [128], [151]32, [152,153] | |||
Stem | [148] | |||
2 | Ethanol | Fruit | Kernel | [28]9, [137], [154]16, [155]11, [156]11, [157]4, [158]34 |
Skin | [154]16, [159]35 | |||
Shell | [24]4, [140,141], [158]34 | |||
Husk | [18], [103]4, [142], [158]34, [160]6, [161], [162]4 | |||
Other parts | Leaf | [104]30, [110]6, [145], [149], [158]34, [162]4, [163]31, [164]22, [165]23, [166]22, [167]26, [168,169], [170]20, [171,172], [173]6 | ||
Bark | [128,151], [174]2 | |||
Stem | [158]34 | |||
Root | [21] | |||
3 | Methanol | Fruit | Kernel | [27,66,67,131,132,133,134,135,138], [154]17, [175], [176]12, [177], [178]12, [179]14, [180]15, [181]12, [182] |
Skin | [66,67], [154]16 | |||
Shell | [56,67,140,141,183] | |||
Husk | [18,56,67,71], [103]5, [131,182], [184,185], | |||
Other parts | Leaf | [77,112,131,145,146,148,165,185,186], [187]27, [188,189,190,191], [192]21, [193,194] | ||
Shoot | [80], [81]37, [82]37 | |||
Bark | [124,151,152,195,196], [197]33, [198]3 | |||
Stem | [148] | |||
Root | [129] | |||
4 | Ethyl acetate | Fruit | Kernel | [70] |
Shell | [56,140,141] | |||
Husk | [18,56,142] | |||
Other parts | Leaf | [165] | ||
Bark | [124,152,195] | |||
Root | [129] | |||
5 | Acetone | Fruit | Kernel | [16]18, [25]10, [46]18, [138], [199]8, [200]13, [201]7, [202]19, |
Shell | [183] | |||
Husk | [18], [102]7, [203]7 | |||
Other parts | Leaf | [145,204] | ||
Bark | [124]1, [151], [152]1, [153], [195]8 | |||
6 | Hexane | Fruit | Husk | [18] |
Other parts | Leaf | [165], [205]29 | ||
Bark | [196] | |||
Root | [129] | |||
7 | Dichloromethane | Fruit | Shell | [56] |
Husk | [56] | |||
8 | Petroleum ether | Fruit | Kernel | [70,131] |
Husk | [131,142] | |||
Other parts | Leaf | [131] | ||
Bark | [151] | |||
9 | Chloroform | Fruit | Shell | [140,141] |
Husk | [142] | |||
Other parts | Leaf | [79,165] | ||
Bark | [151,196] | |||
10 | n-Butanol | Fruit | Kernel | [68,70] |
Shell | [140,141] | |||
11 | Benzene | Other parts | Leaf | [145] |
Bark | [151] | |||
12 | Cyclohexane | Other parts | Leaf | [171] |
No | Parts | Unit | Content | References | |
---|---|---|---|---|---|
1 | TPC | Kernel | mg GAEs/50 g FW | 802 | [46] |
mg GAEs/100 g nut | 1625 | [16] | |||
mg GAEs/g extract a | 95.06 ± 0.03 | [69] | |||
mg GAEs/g extract a | 25.6 ± 4.73 | [154] | |||
mg GAEs/100 g DM | 1071 ± 35.00 | [207] | |||
mg GAEs/100 g DM | 605 | [156] | |||
mg GAEs/100 g nut | 1580 ± 58.0 | [25] | |||
mg GAEs/100 g sample a | 515 ± 21 | [28] | |||
mg GAEs/100 g FW | 2499 ± 94 | [176] | |||
mg GAEs/g extract | 116.22 ± 3.7 | [131] | |||
mg GAEs/g extract | 31.66 ± 0.11 | [27] | |||
mg GAEs/g DW | 22 | [199] | |||
mg GAEs/g a | 35.22 ± 0.75 | [137] | |||
mg GAEs/100 g sample a | 145 ± 12.58 | [67] | |||
mg GAEs/g FW | 58 ± 3 | [208] | |||
mg GAEs/100 g DM | 1404 ± 23 | [178] | |||
mg GAEs/100 g | 2464 ± 22 | [200] | |||
mg GAEs/g extract | 166 ± 0.8 | [201] | |||
mg GAEs/g FW | 86.67 ± 0.09 | [209] | |||
mg GAEs/100 g FW | 1456 ± 235 | [133] | |||
mg GAEs/kg FW b | 7351.65 ± 564.60 | [180] | |||
g GAEs/100 g DE | 10.43 ± 0.18 | [158] | |||
mg GAEs/100 g DW b | 1861.11 ± 535.50 | [66] | |||
mg GAEs/g a | 50.3 ± 0.7 | [181] | |||
mg GAEs/g extract a | 86.56 ± 2.00 | [139] | |||
mg GAEs/100 g extract | 3490 ± 4.9 | [132] | |||
mg GAEs/g a | 66.55 ± 4.98 | [182] | |||
Skin | mg GAEs/g extract a | 490 ± 27.3 | [154] | ||
mg GAEs/100 g sample a | 5205 ± 127.61 | [67] | |||
mg GAEs/100 g DW b | 27903.86 ± 5980.09 | [66] | |||
Shell | mg GAEs/100 g sample a | 1804 ± 42.02 | [67] | ||
mg GAEs/g extract a | 200.40 ± 0.70 | [141] | |||
g GAEs/100 g DE | 14.81 ± 0.50 | [158] | |||
mg GAEs/g DE a | 68.34 ± 5.9 | [56] | |||
Husk | mg/100 g DW | 1526 ± 111.00 | [22] | ||
mg GAEs/g extract a | 74.08 ± 0.02 | [73] | |||
mg GAEs/g extract | 50.18 ± 2.7 | [131] | |||
mg GAEs/g extract a | 108.11 ± 4.6 | [71] | |||
mg GAEs/100 g sample a | 3610 ± 55 | [67] | |||
mg GAEs/g extract a | 84.46 ± 2.96 | [103] | |||
mg GAEs/DS. | 7.23 | [161] | |||
mg GAEs/L extract a | 4610 ± 262.73 | [160] | |||
mg/g | 46.88 | [142] | |||
g GAEs/100 g DE | 8.74 ± 0.33 | [158] | |||
mg GAEs/g sample | 6.27 | [18] | |||
mg GAEs/g extract a | 166.44 ± 1.87 | [203] | |||
mg GAEs/g DE a | 58.66 ± 0.37 | [56] | |||
mg GAEs/g DE a | 95.2 ± 6.29 | [102] | |||
mg GAEs/g a | 122.26 ± 1.34 | [182] | |||
2 | TFC | Kernel | mg CEs/100 g nut c | 744.8 ± 93.3 | [25] |
mg QEs/g a | 20.02 ± 0.12 | [137] | |||
mg CEs/100 g sample a | 93.07 ± 7.86 | [67] | |||
mg QEs/100 g DW b | 119.80 ± 27.82 | [66] | |||
mg CEs/g a | 13.57± 2.27 | [182] | |||
Skin | mg CEs/100 g sample a | 1096 ± 42.27 | [67] | ||
mg QEs/100 g DW b | 51.94 ± 7.95 | [66] | |||
Shell | mg CEs/100 g sample a | 486 ± 37.22 | [67] | ||
mg REs/g extract a | 162.54 ± 1.61 | [140] | |||
mg QEs/g extract a | 80.40 ± 0.55 | [141] | |||
Husk | mg QEs/g extract a | 22.91 ± 1.1 | [71] | ||
mg CEs/100 g sample a | 1064 ± 81 | [67] | |||
mg QEs/L extract a | 423.97 ± 10.37 | [160] | |||
mg TAEs/g | 12.88 | [142] | |||
mg REs/g sample a | 0.71 | [18] | |||
mg CEs/g DE | 65.2 ± 5.53 | [102] | |||
mg CEs/g a | 49 ± 3.17 | [182] | |||
3 | TFOC | Kernel | mg QEs/g extract a | 2.3 ± 0.1 | [201] |
Husk | mg QEs/g extract a | 2.3 ± 0.1 | [203] | ||
mg REs/g extract | 21.2 ± 5.53 | [102] | |||
4 | TFAC | Kernel | mg CEs/g extract | 34.7 ± 1.1 | [201] |
mg/kg FW b | 582.10 ± 35.49 | [180] | |||
Husk | mg CEs/g extract | 34.7 ± 0.8 | [203] | ||
5 | THTC | Kernel | mg GAEs/100 g DM | 1700 ± 221 | [207] |
mg/kg FW b | 1999.50 ± 48.11 | [180] | |||
6 | TCTC | Kernel | g/100 g DM | 0.38 ± 0.026 | [207] |
mg CYEs/g extract | 59.8 ± 2.0 | [201] | |||
Husk | mg CEs/g sample a | 3.18 | [18] | ||
mg LEs/g extract | 5.8 | [102] |
Content (mg/g) | |||||||
---|---|---|---|---|---|---|---|
TPC | TFC | ||||||
DW | FW | Extract | DW | FW | Extract | ||
Fruit | Kernel | 1.45–18.61 | 7.35–86.67 | 25.06–166 | 0.9–7.44 | - | 10–20 |
Skin | 52.05–279.3 | - | 490 | 0.5–10.96 | - | - | |
Shell | 18.04 | - | 68.34–200 | 4.86 | - | 80.40–162.5 | |
Husk | 6.27–36.10 | - | 50.18–166.44 | 0.7–12.22 | - | 22.91–65.2 | |
Other parts of tree | Leaf | 34–194 | - | 33.67–410 | 20 | - | 20.17–149 |
Shoot | - | 46.53 | - | - | 3.83 | - | |
Bark | 34.83–311 | - | 9.8 | - | - | - | |
Stem | - | - | 71–117 | - | - | 12.14 |
No | Parts | Unit | Content | References | |
---|---|---|---|---|---|
1 | TPC | Leaf | g/kg DB a | 34.5 | [77] |
mg/kg DB a | 64596.4 | [78] | |||
mg GAEs/g LE a | 270 ± 3.00 | [163] | |||
mg GAEs/g extract | 94.39 ± 5.63 | [131] | |||
mg GAEs/g | 410 ± 14.43 | [164] | |||
mg GAEs/g extract a | 33.67 ± 3.06 | [186] | |||
mg GAEs/100 g DS | 3704 ± 88 | [187] | |||
mg GAEs/g DE | 267.30 ± 2.19 | [165] | |||
% DW extract a | 80.3 ± 0.5 | [192] | |||
mg GAEs/g extract | 94.39 ± 5.63 | [145] | |||
g GAEs/100 g DE | 8.74 ± 0.33 | [158] | |||
mg GAEs/L extract | 10125.4 | [104] | |||
mg GAEs/g DE | 103.33 | [148] | |||
mg QGEs/g DS | 194.9 | [172] | |||
mg GAEs/g DW a | 46.47 ± 0.89 | [193] | |||
mg GAEs/g DW | 52.82 ± 0.73 | [149] | |||
Shoot | mg GAEs/g of FW a | 46.534 | [82] | ||
Bark | mg GAEs/g extract | 9.8 | [126] | ||
4mg GAEs/g DW | 34.833 | [195] | |||
mg GAEs/g DW | 311.5 | [152] | |||
Stem | g GAEs/100 g DE | 11.70 ± 0.05 | [158] | ||
mg GAEs/g DE | 71.51 | [148] | |||
2 | TFC | Leaf | mg REs/g | 330 ± 12.21 | [164] |
mg QEs/g DE | 149.00 ± 2.55 | [165] | |||
mg QEs/100 g DS | 3117 ± 84 | [187] | |||
mg QEs/L extract | 2952 | [104] | |||
mg QEs/g DE | 20.17 | [148] | |||
mg QEs/g | 28.48 ± 0.12 | [193] | |||
mg GAEs/g DW a | 20.06 ± 1.07 | [149] | |||
Shoot | mg QEs/g FW a | 3.837 | [82] | ||
Stem | mg QEs/g DE | 12.14 | [148] | ||
3 | TFOC | Leaf | mg REs/g | 270 ± 22.33 | [164] |
mg CAEs/g DS | 66 | [172] | |||
mg QEs/g | 21.76 ± 0.25 | [193] | |||
4 | TCTC | Leaf | mg LEs/g DE | 950.56 ± 4.50 | [165] |
µg CEs/mg | 5.37 ± 0.07 | [146] | |||
Shoot | mg CEs/g FW a | 47.983 | [82] | ||
Bark | mg CEs/g DW a | 16.167 | [195] | ||
mg CEs/g DW | 38.5 | [152] |
No | Parts | Unit | Content | References | |
---|---|---|---|---|---|
1 | TAA | Kernel | mg TEs/L b | 7850 ± 337.55 | [160] |
2 | RP | Kernel | EC50 (mg/mL) a | 0.16 | [69] |
EC50 (mg/mL) | 11.03 ± 0.36 | [27] | |||
Abs at 700 nm c | 0.13 ± 0.0 | [67] | |||
IC50 (μg/mL) | 238.38 ± 2.90 | [158] | |||
EC50 (mg/mL) a | 0.2 ± 0.001 | [139] | |||
Skin | Abs at 700 nm c | 1.25 ± 0.02 | [67] | ||
Shell | Abs at 700 nm c | 0.56 ± 0.02 | [67] | ||
IC50 (μg/mL) | 115.86 ± 2.05 | [158] | |||
Husk | EC50 (mg/mL) a | 0.5 | [73] | ||
Abs at 700 nm c | 0.44 ± 0.01 | [67] | |||
EC50 (mg/mL) a | 0.95 ± 0.02 | [103] | |||
IC50 (μg/mL) | 150.33 ± 3.60 | [158] | |||
3 | FRAP | Kernel | µmol TEs/g DM | 154.88 ± 15.26 | [207] |
µmol Fe2+/100 g FW | 13.24 ± 1.99 | [133] | |||
mg FeSO4 /g b | 302 ± 12 | [181] | |||
µM Fe2+/g extract | 522 ± 13.40 | [139] | |||
Shell | mmol Fe2+/g DE | 2202.29 ± 0.5 | [56] | ||
Husk | mmol Fe2+/g DS. | 0.33–0.46 | [161] | ||
Abs at 593 nm | 0.024–0.509 | [18] | |||
µmol TEs/g extract | 896 ± 18 | [203] | |||
mmol Fe2+/g DE | 1220 ± 0.6 | [56] | |||
4 | Lipid peroxidation inhibition | Kernel | EC25 (mg/mL) a | 1.56 | [69] |
Husk | EC25 (mg/mL) a | 1.27 | [73] | ||
SC50 (μg/mL) | 120 ± 2.1 | [102] | |||
5 | ORAC | Kernel | µmol TEs/g DM | 187.49 ± 25.31 | [207] |
µmol TEs/g extract | 1481.21 ± 14.68 | [158] | |||
Shell | µmol TEs/g extract | 3423.44 ± 142.52 | [158] | ||
Husk | µmol TEs/g extract | 2079.77 ± 90.13 | [158] |
No | Parts | Unit | Content | References | |
---|---|---|---|---|---|
1 | TAA | Shoot | mg VCEs/100 g DW | 2872.4 ± 28.26 | [82] |
Bark | mg GAEs/g DW a | 329 | [195] | ||
mg GAEs/g of DW a | 420.66 | [152] | |||
2 | RP | Leaf | EC50 (mg/mL) a | 0.192 | [78] |
IC50 (μg/mL) | 121.72 ± 5.18 | [158] | |||
EC50 (μg/mL) | 1.81 ± 0.11 | [149] | |||
Shoot | 50% Abs (mg/mL) a | 0.374 ± 0.01 | [82] | ||
Bark | EC50 (μg/mL) a | 99 | [195] | ||
EC50 (μg/mL) a | 220 | [152] | |||
Stem | IC50 (μg/mL) | 134.50 ± 3.38 | [158] | ||
3 | FRAP | Leaf | µM Fe2+/g FW | 418.92-1067.94 | [193] |
4 | β- carotene bleaching test | Leaf | EC50 (mg/mL) a | 0.742 | [78] |
Inhibition (%) | 84.62 ± 2.85 | [146] | |||
Bark | IC50 (μg/mL) a | 280 | [195] | ||
IC50 (μg/mL) a | 730 | [152] | |||
Branch | IC50 (μg/mL) a | ||||
5 | ORAC | Leaf | µmol TEs/mg extract | 2.17 ± 0.22 | [163] |
µmol TEs/g extract | 2543.50 ± 90.10 | [158] | |||
Stem | µmol TEs/g extract | 2540.63 ± 121.01 | [158] |
No | Free Radicals | Plant Part | Unit | Content | References | |
---|---|---|---|---|---|---|
1 | ROS | H2O2 | Kernel | Scavenging (%) b | 239.80 ± 2.00 | [182] |
Husk | Scavenging (%) b | 236.86 ± 3.40 | [182] | |||
O2•– | Kernel | Scavenging (%) c | 63.89 ± 0.100 | [67] | ||
Scavenging (%) b | 98.48 ± 4.2 | [182] | ||||
Skin | Scavenging (%) c | 128.48 ± 2.12 | [67] | |||
Shell | Scavenging (%) c | 108.12 ± 2.04 | [67] | |||
EC50 (µg/mL) a | 173.41 ± 3.56 | [140] | ||||
Husk | Scavenging (%) c | 244.76 ± 1.52 | [67] | |||
Scavenging (%) b | 98.48 ± 7.20 | [182] | ||||
HO• | Shell | EC50 (µg/mL) a | 97.32 ± 3.29 | [140] | ||
2 | RNS | •NO | Kernel | Scavenging (%) c | 9.87 ± 1.82 | [67] |
Scavenging (%) b | 54.68±1.56 | [182] | ||||
Skin | Scavenging (%) c | 68.50 ± 1.97 | [67] | |||
Shell | Scavenging (%) c | 70.26 ± 2.19 | [67] | |||
Husk | IC50 (μg/mL) a | 141 ± 0.4 | [71] | |||
Scavenging (%) c | 69.18 ± 1.57 | [67] | ||||
Scavenging (%) b | 60.45 | [103] | ||||
Scavenging (%) b | 31.35 ± 1.70 | [182] | ||||
3 | Other radicals | DPPH• | Kernel | ppm BHTEs | 92.6 ± 39.5 | [154] |
EC50 (mg/mL) | 0.15 | [69] | ||||
EC50 (g/DM/g DPPH) | 4.05 ± 0.21 | [207] | ||||
EC50 (mg/mL extract) | 0.143 ± 0.020 | [131] | ||||
µmol TEs/g FW | 120 ± 10 | [176] | ||||
Scavenging (%) c | 1.2 ± 0.10 | [67] | ||||
µmol TEs/g sample | 191 ± 4.2 | [178] | ||||
mmol TEs/100 g sample | 25.7 ± 2.1 | [200] | ||||
mmol TEs/100 g DW | 20.42 ± 3.84 | [66] | ||||
Scavenging (%) b | 40 ± 1 | [181] | ||||
EC50 (mg/mL) | 0.19 ± 0.02 | [139] | ||||
Scavenging (%) b | 27.48 ± 1.01 | [182] | ||||
Skin | ppm BHTEs | 286 ± 2.72 | [154] | |||
Scavenging (%) c | 73.33 ± 1.18 | [67] | ||||
Scavenging (%) b | 92.8 ± 0.4 | [159] | ||||
mmol TEs/100 g DW | 303.01 ± 59.15 | [66] | ||||
Shell | Scavenging (%) c | 7.19 ± 0.11 | [67] | |||
EC50 (µg/mL) a | 81.03 ± 2.31 | [140] | ||||
IC50 (μg/mL) a | 10.3 ± 0.8 | [56] | ||||
Husk | EC50 (mg/mL) | 0.35 | [73] | |||
EC50 (mg/mL extract) | 0.412 ± 0.025 | [131] | ||||
IC50 (μg/mL) a | 122 ± 4.5 | [71] | ||||
Scavenging (%) c | 12.83 ± 0.08 | [67] | ||||
EC50 (mg/mL) | 0.33 ± 0.02 | [103] | ||||
IC50 (μg/mL) a | 33.98 | [161] | ||||
IC50 (μg/mL) a | 54.9 | [18] | ||||
IC50 (μg/mL) a | 114 ± 1.4 | [56] | ||||
SC50 (μg/mL) | 85 ± 1.6 | [102] | ||||
Scavenging (%) b | 89.81 ± 1.21 | [182] | ||||
ABTS•+ | Kernel | µmol TEs/100 g DW | 7713 ± 176 | [28] | ||
mmol TEs/100 g DW a | 0.2 | [156] | ||||
mmol TEs/100 g sample | 21.4 ± 2 | [200] | ||||
Husk | IC50 (μg/mL) a | 324.8 | [18] | |||
6µmol TEs/g extract | 1251 ± 16 | [203] |
No | Free Radicals | Plant Parts | Unit | Content | References | |
---|---|---|---|---|---|---|
1 | ROS | H2O2 | Leaf | IC50 (μg/mL) | 383 ± 17 | [163] |
EC50 (μg/mL) | 4.30 ± 0.06 | [149] | ||||
Bark | IC50 (mg/mL) | 1.2 | [126] | |||
O2•– | Leaf | IC50 (μg/mL) | 47.6 ± 4.6 | [163] | ||
mg TEs/g extract | 86.29 ± 2.00 | [146] | ||||
Bark | IC50 (mg/mL) | 0.885 | [126] | |||
IC50 (μg/mL) | 70 | [195] | ||||
HO∙ | Leaf | Scavenging (%) | 62.98 ± 7.48 | [146] | ||
2 | RNS | ∙NO | Leaf | IC50 (μg/mL) | 1.95 ± 0.29 | [163] |
Scavenging (%) | 65.85 ± 0.99 | [146] | ||||
ONOO∙ | Leaf | IC50 (μg/mL) | 1.66 ± 0.10 | [163] | ||
3 | Other radicals | DPPH∙ | Leaf | EC50 (mg/mL) a | 0.151 | [78] |
EC50 (mg/mL extract) | 0.199 ± 0.023 | [131] | ||||
% b | 70.8 | [192] | ||||
EC50 (mg/mL extract) | 0.199 ± 0.023 | [145] | ||||
mmol TEs/L extract | 56.84 ± 1.88 | [104] | ||||
IC50 (mg/mL) | 0.244 | [148] | ||||
% b | 73.5 | [193] | ||||
EC50 (μg/mL) | 7.49 ± 0.05 | [149] | ||||
Shoot | EC50 (mg/mL) a | 0.312 ± 0.01 | [82] | |||
Bark | IC50 (mg/mL) | 0.582 | [126] | |||
IC50 (μg/mL) | 3 | [195] | ||||
IC50 (μg/mL) a | 4.8 | [152] | ||||
Stem | IC50 (mg/mL) | 0.343 | [148] | |||
ABTS•+ | Bark | IC50 (mg/mL) | 0.601 | [126] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules 2019, 24, 2133. https://doi.org/10.3390/molecules24112133
Jahanban-Esfahlan A, Ostadrahimi A, Tabibiazar M, Amarowicz R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules. 2019; 24(11):2133. https://doi.org/10.3390/molecules24112133
Chicago/Turabian StyleJahanban-Esfahlan, Ali, Alireza Ostadrahimi, Mahnaz Tabibiazar, and Ryszard Amarowicz. 2019. "A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree" Molecules 24, no. 11: 2133. https://doi.org/10.3390/molecules24112133
APA StyleJahanban-Esfahlan, A., Ostadrahimi, A., Tabibiazar, M., & Amarowicz, R. (2019). A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules, 24(11), 2133. https://doi.org/10.3390/molecules24112133