Quality Attributes and Fatty Acid, Volatile and Sensory Profiles of “Arbequina” hydroSOStainable Olive Oil
Abstract
:1. Introduction
2. Results
2.1. Irrigation
2.2. Analytical Parameters for Olive Oil Grading
2.3. Antioxidant Activity (ABTS+ and DPPH· Methods) and Total Polyphenols
2.4. Fatty Acids
2.5. Volatile Compounds
2.6. Descriptive Sensory Analysis
2.7. Pearson Correlation
3. Discussion
4. Materials and Methods
4.1. Experimental Design and Sample Processing
- Control (T0): trees were watered to supply the 100% crop evapotranspiration (ETc).
- Optimal RDI (T1): trees were under non-limited water conditions during stage I and III while regulated deficit irrigation was applied during stage II (58% of reduction of total water irrigation amount).
- Confederation RDI (T2): the same way was followed as in T1 but with the limitation of water dotation of Guadalquivir hydrographic confederation (66% of reduction of total water irrigation amount).
- Confederation SDI (T3): sustained deficit irrigation with the water amount allowed by the Guadalquivir hydrographic confederation (66% of reduction of total water irrigation amount).
4.2. Analytical Parameters for Olive Oil Grading
4.3. Antioxidant Activity (ABTS+ and DPPH· Methods) and Total Polyphenols
4.4. Fatty Acids
4.5. Headspace Solid-Phase Microextraction (HS-SPME)
4.6. Gas Chromatography and Mass Spectrometry (GC-MS)
4.7. Descriptive Sensory Analysis
4.8. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lavee, S. The Revolutionary impact of introducing irrigation-intensification to the Olive Oil Industry. Acta Hortic. 2011, 888, 21–30. [Google Scholar] [CrossRef]
- Aparicio, R.; Harwood, J. Handbook of Olive Oil: Analysis and Properties; Springer: New York, NY, USA, 2013; 620p. [Google Scholar]
- MAPAMA. ESYRCE (Encuesta Sobre Superficies y Rendimientos de Cultivos) Informe Sobre Regadíos en España. Available online: https://www.mapa.gob.es/ca/estadistica/temas/estadisticas-agrarias/regadios2018_tcm34-504665.pdf (accessed on 15 April 2019).
- Fereres, E.; Goldhamer, D.A.; Sadras, V.O. Yield Response to Water of Fruit Trees and Vines: Guidelines; FAO: Rome, Italy, 2012. [Google Scholar]
- EEC. Commision Regulation (EEC) No. 2568/91 on the Characteristics of Olive Oil and Olive-Pomace Oil and on the Relevant Methods of Analysis. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01991R2568-20151016 (accessed on 26 January 2018).
- International Olive Council (IOC). Available online: http://www.internationaloliveoil.org/ (accessed on 10 April 2019).
- European Union (EU). Commission Regulation (EU) No. 432/2012 of 16 May 2012 establishing a list of permited health claims made on foods, other than those referring to the reduction of disease risk and to children’s development and health. Off. J. Eur. 2012, 136. [Google Scholar]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Noguera-Artiaga, L.; Lipan, L.; Vázquez-Araújo, L.; Barber, X.; Pérez-López, D.; Carbonell-Barrachina, Á. Opinion of Spanish Consumers on Hydrosustainable Pistachios. J. Food Sci. 2016, 81, S2559–S2565. [Google Scholar] [CrossRef]
- Lipan, L.; Cano-Lamadrid, M.; Corell, M.; Sendra, E.; Hernandez, F.; Stan, L.; Vodnar, D.C.; Vazquez-Araujo, L.; Carbonell-Barrachina, A.A. Sensory profile and acceptability of HydroSOStainable almonds. Foods 2019, 8, 64. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Girón, I.F.; Pleite, R.; Burló, F.; Corell, M.; Moriana, A.; Carbonell-Barrachina, A.A. Quality attributes of table olives as affected by regulated deficit irrigation. LWT Food Sci. Technol. 2015, 62, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Collado-González, J.; Moriana, A.; Girón, I.F.; Corell, M.; Medina, S.; Durand, T.; Guy, A.; Galano, J.-M.; Valero, E.; Garrigues, T.; et al. The phytoprostane content in green table olives is influenced by Spanish-style processing and regulated deficit irrigation. LWT Food Sci. Technol. 2015, 64, 997–1003. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Carbonell-Barrachina, Á.A.; Wojdyło, A.; Sendra, E.; Hernández, F. Polyphenol profile in manzanilla table olives as affected by water deficit during specific phenological stages and spanish-style processing. J. Agric. Food Chem. 2019, 67, 661–670. [Google Scholar] [CrossRef]
- Gomez Del Campo, M.; Garcia, J.M. Summer deficit-irrigation strategies in a hedgerow olive cv. Arbequina orchard: Effect on oil quality. J. Agric. Food Chem. 2013, 61, 8899–8905. [Google Scholar] [CrossRef]
- Hernández, M.L.; Velázquez-Palmero, D.; Sicardo, M.D.; Fernández, J.E.; Diaz-Espejo, A.; Martínez-Rivas, J.M. Effect of a regulated deficit irrigation strategy in a hedgerow ‘Arbequina’ olive orchard on the mesocarp fatty acid composition and desaturase gene expression with respect to olive oil quality. Agric. Water Manag. 2018, 204, 100–106. [Google Scholar] [CrossRef]
- Sena-Moreno, E.; Cabrera-Bañegil, M.; Pérez-Rodríguez, J.M.; De Miguel, C.; Prieto, M.H.; Martín-Vertedor, D. Influence of water deficit in bioactive compounds of olive paste and oil content. J. Am. Oil Chem. Soc. 2018, 95, 349–359. [Google Scholar] [CrossRef]
- Fernández, J.E.; Perez-Martin, A.; Torres-Ruiz, J.M.; Cuevas, M.V.; Rodriguez-Dominguez, C.M.; Elsayed-Farag, S.; Morales-Sillero, A.; García, J.M.; Hernandez-Santana, V.; Diaz-Espejo, A. A regulated deficit irrigation strategy for hedgerow olive orchards with high plant density. Plant Soil 2013, 372, 279–295. [Google Scholar] [CrossRef] [Green Version]
- García, J.M.; Cuevas, M.V.; Fernández, J.E. Production and oil quality in ‘Arbequina’ olive (Olea europaea, L.) trees under two deficit irrigation strategies. Irrig. Sci. 2013, 31, 359–370. [Google Scholar] [CrossRef]
- Moriana, A.; Corell, M.; Girón, I.F.; Conejero, W.; Morales, D.; Torrecillas, A.; Moreno, F. Regulated deficit irrigation based on threshold values of trunk diameter fluctuation indicators in table olive trees. Sci. Hortic. 2013, 164, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Caruso, G.; Gucci, R.; Urbani, S.; Esposto, S.; Taticchi, A.; Di Maio, I.; Selvaggini, R.; Servili, M. Effect of different irrigation volumes during fruit development on quality of virgin olive oil of cv. Frantoio. Agric. Water Manag. 2014, 134, 94–103. [Google Scholar] [CrossRef]
- Garcia, J.M.; Morales-Sillero, A.; Perez-Rubio, A.G.; Diaz-Espejo, A.; Montero, A.; Fernandez, J.E. Virgin olive oil quality of hedgerow ‘Arbequina’ olive trees under deficit irrigation. J. Sci. Food Agric. 2017, 97, 1018–1026. [Google Scholar] [CrossRef]
- Giron, I.; Corell, M.; Martín-Palomo, M.J.; Galindo, A.; Torrecillas, A.; Moreno, F.; Moriana, A. Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees. Agric. Water Manag. 2016, 161, 114–126. [Google Scholar] [CrossRef]
- Sarolic, M.; Gugic, M.; Tuberoso, C.I.; Jerkovic, I.; Suste, M.; Marijanovic, Z.; Kus, P.M. Volatile profile, phytochemicals and antioxidant activity of virgin olive oils from Croatian autochthonous varieties Masnjaca and Krvavica in comparison with Italian variety Leccino. Molecules 2014, 19, 881–895. [Google Scholar] [CrossRef]
- Servili, M.; Esposto, S.; Lodolini, E.; Selvaggini, R.; Taticchi, A.; Urbani, S.; Montedoro, G.; Serravalle, M.; Gucci, R. Irrigation effects on quality, phenolic composition, and selected volatiles of virgin olive oils cv. Leccino. J. Agric. Food Chem. 2007, 55, 6609–6618. [Google Scholar] [CrossRef]
- Tuberoso, C.I.; Jerkovic, I.; Maldini, M.; Serreli, G. Phenolic Compounds, Antioxidant Activity, and Other Characteristics of Extra Virgin Olive Oils from Italian Autochthonous Varieties Tonda di Villacidro, Tonda di Cagliari, Semidana, and Bosana. J. Chem. 2016, 2016, 8462741. [Google Scholar] [CrossRef]
- Roodaki, M.S.M.; Sahari, M.A.; Tarzi, B.G.; Barzegar, M.; Gharachorloo, M. Bioactive compounds of virgin olive oil extracted from bladi and arbequina cultivars. Curr. Nut. Food Sci. 2018, 14, 17–27. [Google Scholar] [CrossRef]
- Horner, J.D. Nonlinear effects of water deficits on foliar tannin concentration. Biochem. Syst. Ecol. 1990, 18, 211–213. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Gennai, C.; Esposto, S.; Urbani, S.; Servili, M. Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development. Agric. Water Manag. 2019, 212, 88–98. [Google Scholar] [CrossRef]
- Dag, A.; Naor, A.; Ben-Gal, A.; Harlev, G.; Zipori, I.; Schneider, D.; Birger, R.; Peres, M.; Gal, Y.; Kerem, Z. The effect of water stress on super-high- density ‘Koroneiki’ olive oil quality. J. Sci. Food Agric. 2015, 95, 2016–2020. [Google Scholar] [CrossRef] [PubMed]
- Stefanoudaki, E.; Williams, M.; Chartzoulakis, K.; Harwood, J. Effect of irrigation on quality attributes of olive oil. J. Agric. Food Chem. 2009, 57, 7048–7055. [Google Scholar] [CrossRef] [PubMed]
- Motilva, M.J.; Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J. Influence of regulated deficit irrigation strategies applied to olive trees (Arbequina cultivar) on oil yield and oil composition during the fruit ripening period. J. Sci. Food Agric. 2000, 80, 2037–2043. [Google Scholar] [CrossRef]
- Servili, M.; Conner, J.M.; Piggott, J.R.; Withers, S.J.; Paterson, A. Sensory characterisation of virgin olive oil and relationship with headspace composition. J. Sci. Food Agric. 1995, 67, 61–70. [Google Scholar] [CrossRef]
- García-Mesa, J.A.; Pereira-Caro, G.; Fernández-Hernández, A.; García-Ortíz Civantos, C.; Mateos, R. Influence of lipid matrix in the bitterness perception of virgin olive oil. Food Qual. Prefer. 2008, 19, 421–430. [Google Scholar] [CrossRef]
- Campestre, C.; Angelini, G.; Gasbarri, C.; Angerosa, F. The compounds responsible for the sensory profile in monovarietal virgin olive oils. Molecules 2017, 22, 1833. [Google Scholar] [CrossRef]
- Dabbou, S.; Chehab, H.; Faten, B.; Dabbou, S.; Esposto, S.; Selvaggini, R.; Taticchi, A.; Servili, M.; Francesco Montedoro, G.; Hammami, M. Effect of three irrigation regimes on Arbequina olive oil produced under Tunisian growing conditions. Agric. Water Manag. 2010, 97, 763–768. [Google Scholar] [CrossRef]
- Hermoso, M.; Uceda, M.; Frias, L.; Beltran, G.; Maduración, D.B.; Fernandez-Escobar, R.; Rallo, L. El Cultivo Del Olivo; Junta de Andalucía, Mundi Prensa: Madrid, Spain, 1997; p. 605. [Google Scholar]
- Myers, B.J. Water stress integral—A link between short-term stress and long-term growth. Tree Physiol. 1988, 4, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; Kowalczyk, A.; Sarritzu, E.; Cabras, P. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chem. 2007, 103, 1494–1501. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Bjork, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food. Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- ISO-12966-2. Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0058662 (accessed on 2 February 2018).
- ISO-12966-4. Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0055849 (accessed on 2 February 2018).
- Vazquez-Araujo, L.; Adhikari, K.; Chambers, E.T.; Chambers, D.H.; Carbonell-Barrachina, A.A. Cross-cultural perception of six commercial olive oils: A study with Spanish and US consumers. Food Sci. Technol. Int. 2015, 21, 454–466. [Google Scholar] [CrossRef] [PubMed]
- International Olive Council (IOC). Sensory Analysis of Olive Oil: Method for the Organoleptic Assessment of Virgin Olive Oil. Available online: http://www.internationaloliveoil.org/estaticos/view/224-testing-methods (accessed on 26 January 2018).
Sample Availability: Samples of the compounds are available from the authors until the end of 2019. The samples are stored at 4 °C in the absence of light, and it is planned to store them until the end of 2019. |
ANOVA† | T0 | T1 | T2 | T3 | |
Watering Technique Conditions | |||||
Applied water (mm) | 468 | 197 | 160 | 162 | |
Stress integral (MPa × day) | NS† | 53.4 | 152 | 182 | 132 |
Min ψstem (MPa) | NS | −3.80 | −4.00 | −4.68 | −4.04 |
Yield (kg ha−1) | NS | 7287 | 6902 | 6316 | 6764 |
Oil Yield (% dry weight) | NS | 28.0 | 30.4 | 30.1 | 33.0 |
Olive Oil Quality Parameters | |||||
Acidity index (%) | NS | 0.31 | 0.37 | 0.24 | 0.31 |
Peroxide value (meq O2 kg−1) | NS | 9.29 | 8.07 | 9.36 | 10.1 |
K232 | NS | 2.15 | 1.91 | 2.14 | 2.02 |
K270 | NS | 0.10 | 0.10 | 0.11 | 0.10 |
ΔK | NS | −0.03 | −0.02 | −0.02 | −0.02 |
Antioxidant Activity and Total Phenol Content | |||||
ABTS+ (mmol Trolox eq L−1) | NS | 0.113 | 0.098 | 0.114 | 0.151 |
DPPH (mmol Trolox eq L−1) | NS | 0.233 | 0.223 | 0.265 | 0.282 |
TPC (mg GAE L−1) | * | 259.8 a‡ | 126.8 b | 267.3 a | 181.5 ab |
Compound | Concentration (g 100 g−1 Olive Oil) | |||||
---|---|---|---|---|---|---|
ANOVA† | T0 | T1 | T2 | T3 | ||
1 | Tetradecanoic acid (Myristic acid) | NS | 0.025 | 0.024 | 0.022 | 0.025 |
2 | Pentadecanoic acid | NS | 0.016 | 0.018 | 0.019 | 0.017 |
3 | Hexadecanoic acid (Palmitic acid) | * | 19.93 a‡ | 19.06 b | 18.96 b | 19.05 b |
4 | cis-6-Hexadecenoic acid (Sapienic acid) | NS | 0.207 | 0.206 | 0.196 | 0.202 |
5 | cis-9-Hexadecenoic acid (Palmitoleic acid) | NS | 3.624 | 3.254 | 3.292 | 3.071 |
6 | cis-11-Hexadecenoic acid | NS | 0.030 | 0.025 | 0.023 | 0.021 |
7 | Heptadecanoic acid (Margaric acid) | NS | 0.135 | 0.150 | 0.161 | 0.154 |
8 | cis-9-Heptadecenoic acid | * | 0.279 b | 0.310 a | 0.324 a | 0.312 ab |
9 | Octadecanoic acid (Stearic acid) | * | 1.880 b | 1.970 a | 2.039 a | 2.052 a |
10 | trans-9-Octadecenoic acid (Eleaidic acid) | NS | 0.013 | 0.020 | 0.015 | 0.016 |
11 | cis-9-Octadecenoic acid (Oleic acid) | ** | 47.38 b | 50.13 a | 51.29 a | 51.00 a |
12 | cis-11-Octadecenoic acid | NS | 7.026 | 6.514 | 6.537 | 6.419 |
13 | 9,12-Octadecadienoic acid (Linoleaidic acid) | NS | 0.032 | 0.031 | 0.027 | 0.029 |
14 | 9,12-Octadecadienoic acid (Linoleic acid) | NS | 17.55 | 15.90 | 14.76 | 15.38 |
15 | Eicosanoic acid (Arachidic acid) | NS | 0.512 | 0.499 | 0.497 | 0.506 |
16 | 6,9,12-Octadecatrienoic acid (γ-linolenic acid) | NS | 0.007 | 0.010 | 0.010 | 0.008 |
17 | cis-11-Eicosenoic acid (Gondoic acid) | NS | 0.333 | 0.341 | 0.339 | 0.341 |
18 | 9,12,15-Octadecatrienoic acid (α-linolenic acid | NS | 0.902 | 0.866 | 0.799 | 0.794 |
19 | Heneicosanoic acid | NS | 0.014 | 0.015 | 0.014 | 0.015 |
20 | Docosanoic acid (Behenic acid) | NS | 0.159 | 0.155 | 0.154 | 0.161 |
21 | Tricosanoic acid | NS | 0.043 | 0.040 | 0.040 | 0.035 |
22 | Tetracosanoic acid (Lignoceric acid) | * | 0.101 a | 0.091 b | 0.090 b | 0.091 b |
Σ SFAs | NS | 22.29 | 22.00 | 21.98 | 22.09 | |
Σ MUFAs | ** | 59.78 b | 61.66 a | 62.81 a | 62.17 a | |
Σ PUFAs | NS | 17.61 | 15.96 | 14.82 | 15.43 | |
Atherogenic index, AI | NS | 0.326 | 0.311 | 0.303 | 0.308 | |
Thrombogenic index, TI | NS | 0.520 | 0.513 | 0.515 | 0.517 |
RI¥ | Compound | Sensory Descriptor | Concentration (mg L−1 Olive Oil) | |||||
---|---|---|---|---|---|---|---|---|
ANOVA† | T0 | T1 | T2 | T3 | ||||
V1 | <500 | Ethanol | Alcohol, apple, sweet | * | 56.3 b‡ | 51.0 b | 54.7 b | 149 a |
V2 | 568 | Ethyl acetate | Aromatic, bitter, fruity | * | 11.0 b | 13.7 b | 0.00 c | 41.4 a |
V3 | 609 | Pentanal | Nutty, fruity, vanilla | * | 12.8 a | 0.01 c | 9.68 b | 11.2 ab |
V4 | 659 | 2-Methylbutanal | Apple, fruity, ripe | ** | 7.00 b | 8.93 b | 17.1 a | 0.01 c |
V5 | 677 | Pent-1-en-3-ol | Butter, fruity, green | * | 19.7 c | 17.0 c | 32.5 a | 26.0 b |
V6 | 684 | Pentan-2-one | Fruity, apple, pineapple | ** | 30.8 b | 26.9 c | 41.4 a | 36.3 ab |
V7 | 697 | Pentan-3-one | Bitter, green, mustard | * | 30.1 c | 34.1 bc | 39.7 b | 49.2 a |
V8 | 726 | 3-Methylbutan-1-ol | Sweet, woody, yeast | *** | 10.2 c | 12.1 b | 11.3 b | 15.7 a |
V9 | 730 | 2-Methylbutan-1-ol | Winey, spicy | * | 14.0 c | 20.6 b | 21.3 b | 31.1 a |
V10 | 757 | Pentan-1-ol | Balsamic, fruity, pungent | * | 5.52 c | 8.07 b | 9.30 b | 12.0 a |
V11 | 762 | (Z)-Pent-2-en-1-ol | Almond, banana, fruity | ** | 10.5 b | 13.2 b | 12.3 b | 22.7 a |
V12 | 799 | Hexanal | Apple, banana, grass, green | *** | 63.1 b | 38.3 c | 65.9 b | 87.3 a |
V13 | 848 | (E)-Hex-2-enal | Almond, apple, astringent | *** | 373 a | 161 c | 237 b | 187 bc |
V14 | 851 | (Z)-Hex-3-en-1-ol | Apple, banana, fresh, grass | *** | 198 b | 285 ab | 279 ab | 303 a |
V15 | 861 | (E)-Hex-2-en-1-ol | Apple, flowers, fruity, grass | * | 237 b | 362 ab | 360 ab | 727 a |
V16 | 863 | Hexan-1-ol | Banana, fruity, soft, tomato | NS | 388 | 397 | 345 | 368 |
V17 | 890 | Heptan-2-one | Banana, cinnamon, fruity | NS | 4.51 | 1.22 | 3.07 | 0.00 |
V18 | 898 | 2-propenylcyclopentane | NS | 9.01 | 4.47 | 14.2 | 8.27 | |
V19 | 904 | Heptanal | * | 10.0 ab | 12.2 ab | 16.6 a | 8.48 b | |
V20 | 935 | 3-Ethylocta-1,5-diene (isomer 1) | * | 25.4 ab | 19.8 b | 28.5 a | 28.6 a | |
V21 | 942 | 3-Ethylocta-1,5-diene (isomer 2) | * | 26.7 ab | 18.6 b | 28.5 a | 28.3 a | |
V22 | 998 | 4,8-dimethylnona-1,7-diene | ** | 45.8 a | 27.7 b | 48.7 a | 42.3 a | |
V23 | 1007 | (Z)-Hex-3-enyl acetate | Green, banana | *** | 229 b | 377 a | 357 a | 236 b |
V24 | 1016 | Hexyl acetate | Green, fruity, sweet | * | 70.7 c | 112 a | 116 a | 103 b |
V25 | 1019 | (Z)-Hex-2-enyl acetate | Apple, banana, grape | *** | 8.41 a | 8.35 a | 8.85 a | 0.87 b |
V26 | 1053 | (E)-β-Ocimene | Sweet, herbal | * | 22.7 a | 10.3 ab | 8.96 ab | 6.61 b |
V27 | 1098 | Methyl benzoate | Fruity | ** | 5.65 a | 0.21 b | 0.01 b | 0.87 b |
V28 | 1107 | Nonanal | Apple, coconut, grape | * | 12.7 a | 5.86 b | 10.6 ab | 8.51 ab |
V29 | 1120 | (E)-4,8-Dimethylnona-1,3,7-triene | - | * | 14.4 a | 9.25 b | 13.2 ab | 12.9 ab |
V30 | 1208 | Methylcyclodecane | - | NS | 17.3 | 7.85 | 12.7 | 11.8 |
Σ Alcohols | *** | 938 b | 1165 ab | 1124 ab | 1654 a | |||
Σ Aldehydes | *** | 478 a | 226 b | 356 ab | 302 ab | |||
Σ Ketones | ** | 143 ab | 112 b | 167 a | 162 a | |||
Σ Esters | *** | 324 b | 511 a | 482 a | 382 b | |||
Σ Hydrocarbons | ** | 82.9 a | 47.3 c | 70.8 ab | 61.8 b | |||
Σ Volatile compounds | * | 1966 b | 2061 b | 2200 ab | 2562 a |
Descriptor | References | ANOVA† | T0 | T1 | T2 | T3 | |
---|---|---|---|---|---|---|---|
Flavor (positive attributes) | |||||||
D1 | Fruity-olive | Canned Ripe Olives, Pitted Black = 2.3 Hacendado, Manzanilla Green olives = 5.3 | *** | 3.9 ab‡ | 3.3 b | 4.2 a | 4.3 a |
D2 | Fruity-green (under-ripe olive) | Canned Ripe Olives, Pitted Black = 1.0 Hacendado, Manzanilla Green olives = 2.7 | * | 2.6 ab | 2.2 b | 3.0 a | 2.6 ab |
D3 | Fruity-ripe (ripe olive) | Canned, Ripe Olives, Pitted Black = 1.0 Hacendado, Manzanilla Green olives = 3.7 | NS | 1.50 | 1.75 | 1.63 | 1.75 |
D4 | Floral | Pompadour, Chamomile Herbal Tea = 5.0 Carrefour, White Grape Juice (diluted 1:1) = 4.7 | * | 1.3 a | 0..8 b | 1.2 a | 1.3 a |
D5 | Green-artichoke | Hacendado, Artichoke Hearts = 3.0 | NS | 0.8 | 0.5 | 0.6 | 0.7 |
D6 | Green-avocado | Under-ripe Fresh Avocado = 5.3 | NS | 0.5 | 0.5 | 0.5 | 0.6 |
D7 | Green-banana | Under-ripe Green Banana = 4.0 | NS | 0.40 | 0.38 | 0.34 | 0.31 |
D8 | Green-herbs | Verdifresh Arugula (organic, washed) = 5.7 | * | 2.2 a | 1.3 b | 1.6 b | 1.6 b |
D9 | Green-grass | Cis-3-Hexen-1-ol 1000 ppm= 10.0 | * | 1.3 ab | 0.8 b | 1.5 a | 0.9 b |
D10 | Green-peppery | Hacendado, Green-Peppercorns (dried) = 2.0 | NS | 0.6 | 0.5 | 0.6 | 0.5 |
D11 | Apple | Fuji Apple = 5.0 | NS | 0.1 | 0. | 0.21 | 0.4 |
D12 | Buttery | Under-ripe Fresh Avocado = 4.0 | NS | 0.9 | 0.7 | 0.7 | 0.9 |
D13 | Almond | Hacendado, almonds = 5.0 | * | 0.3 b | 0.4 a | 0.4 a | 0.5 a |
D14 | Walnut | Hacendado, walnuts = 6.0 | * | 0.2 b | 0.5 a | 0.4 a | 0.4 a |
D15 | Woody | Hacendado, walnuts = 3.0 | * | 0.4 ab | 0.5 a | 0.4 b | 0.6 a |
D16 | Piney | Hacendado, pine nuts = 3.5 | NS | 0.4 | 0.5 | 0.5 | 0.5 |
D17 | Sweet | 1% sucrose solution = 3.0 | * | 0.8 b | 1.4 a | 1.3 a | 1.4 a |
D18 | Sour | 0.05% citric solution = 2.5 | ** | 0.8 a | 0.4 b | 0.6 b | 0.6 b |
D19 | Bitter | 0,01% caffeine solution = 1.0 | ** | 0.8 a | 0.5 b | 0.7 a | 0.9 a |
Flavor (negative attributes) | |||||||
D20 | Oxidized | La Masía, 100% sunflower oil a = 4.0 | NS | 0.00 | 0.00 | 0.00 | 0.00 |
D21 | Painty | Hacendado, Green-Peppercorns (dried) = 3.3 | NS | 0.00 | 0.00 | 0.00 | 0.00 |
D22 | Rancid | International olive council standard = 9.2 | NS | 0.00 | 0.00 | 0.00 | 0.00 |
D23 | Musty | International olive council standard = 4.65 | NS | 0.00 | 0.00 | 0.00 | 0.00 |
D24 | Muddy | International olive council standard = 7.9 | NS | 0.00 | 0.00 | 0.00 | 0.00 |
Mouthfeel | |||||||
D25 | Astringent | 0,10% alum solution = 4.0 | *** | 0.9 b | 0.7 b | 1.9 a | 1.2 ab |
D26 | Pungent | Verdifresh Arugula (organic, washed) = 5.0 | NS | 2.7 | 2.5 | 2.6 | 2.9 |
D27 | Viscosity | Hacendado, condensed milk = 10.0 | *** | 3.9 b | 3.3 b | 4.2 a | 4.2 a |
SI | |
---|---|
Fatty Acids | |
C17:1 cis | 0.546†* |
Linoleic (C18:2 cis) | −0.568* |
SFAs | −0.562* |
Volatile Compounds | |
2-Methylbutanal | 0.657** |
2-Methylbutan-1-ol | 0.559* |
(Z)-Hex-3-en-1-ol | 0.670** |
(Z)-Hex-3-enyl acetate | 0.778** |
Hexyl acetate | 0.729** |
(Z)-Hex-2-enyl acetate | 0.602* |
Σ Aldehydes | −0.706** |
Σ Esters | 0.871*** |
Descriptive Sensory Analysis | |
Green-herbs | −0.841*** |
Almond | 0.834*** |
Walnut | 0.811*** |
Sweet | 0.881*** |
Sour | −0.849*** |
Astringent | 0.603* |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Rodríguez, L.; Kranjac, M.; Marijanović, Z.; Jerković, I.; Corell, M.; Moriana, A.; Carbonell-Barrachina, Á.A.; Sendra, E.; Hernández, F. Quality Attributes and Fatty Acid, Volatile and Sensory Profiles of “Arbequina” hydroSOStainable Olive Oil. Molecules 2019, 24, 2148. https://doi.org/10.3390/molecules24112148
Sánchez-Rodríguez L, Kranjac M, Marijanović Z, Jerković I, Corell M, Moriana A, Carbonell-Barrachina ÁA, Sendra E, Hernández F. Quality Attributes and Fatty Acid, Volatile and Sensory Profiles of “Arbequina” hydroSOStainable Olive Oil. Molecules. 2019; 24(11):2148. https://doi.org/10.3390/molecules24112148
Chicago/Turabian StyleSánchez-Rodríguez, Lucía, Marina Kranjac, Zvonimir Marijanović, Igor Jerković, Mireia Corell, Alfonso Moriana, Ángel A. Carbonell-Barrachina, Esther Sendra, and Francisca Hernández. 2019. "Quality Attributes and Fatty Acid, Volatile and Sensory Profiles of “Arbequina” hydroSOStainable Olive Oil" Molecules 24, no. 11: 2148. https://doi.org/10.3390/molecules24112148
APA StyleSánchez-Rodríguez, L., Kranjac, M., Marijanović, Z., Jerković, I., Corell, M., Moriana, A., Carbonell-Barrachina, Á. A., Sendra, E., & Hernández, F. (2019). Quality Attributes and Fatty Acid, Volatile and Sensory Profiles of “Arbequina” hydroSOStainable Olive Oil. Molecules, 24(11), 2148. https://doi.org/10.3390/molecules24112148