Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties
Abstract
:1. Introduction
2. Results and Discussions
3. Materials and Methods
3.1. Sample Preparation
3.2. Characterizations
Structural and Morphological Characterizations
3.3. Antimicrobial Assays
3.3.1. Microbial Strains and Culture
3.3.2. Agar Diffusion Method
3.3.3. Broth Micro-Dilution Assay
3.3.4. Flow Cytometry Testing
3.4. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Zaeddi, H.; Martínez-Tomé, J.; Calín-Sánchez, Á.; Burló, F.; Carbonell-Barrachina, Á.A. Volatile Composition of Essential Oils from Different Aromatic Herbs Grown in Mediterranean Regions of Spain. Foods 2016, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Shiwakoti, S.; Sintim, H.Y.; Poudyal, S.; Bufalo, J.; Cantrell, C.L.; Astatkie, T.; Jeliazkova, E.; Ciampa, L.; Zheljazkov, V.D. Diurnal effects of Mentha canadensis oil concentration and composition at two different havests. HortScience 2015, 50, 85–89. [Google Scholar] [CrossRef]
- Brar, S.K.; Gill, B.S.; Brar, A.S.; Kaur, T. Planting date and Straw mulch affect biomass yield, oil yield and oil quality of Japanese mint (Mentha arvensis L.) harvested at successive intervals. J. Essent. Oil Bear. Pl. 2014, 17, 676–695. [Google Scholar] [CrossRef]
- De Sousa Barros, A.; de Morais, S.M.; Ferreira, P.A.T.; Vieira, Í.G.P.; Craveiro, A.A.; Dos Santos Fontenelle, R.O.; de Menezes, J.E.S.A.; da Silva, F.W.F.; de Sousa, H.A. Chemical composition and functional properties of essential oils from Mentha species. Ind. Crops Prod. 2015, 76, 557–564. [Google Scholar] [CrossRef]
- Loolaie, M.; Moasefi, N.; Rasouli, H.; Adibi, H. Peppermint and Its Functionality: A Review. Arch. Clin. Microbiol. 2017, 8, 1–16. [Google Scholar]
- Reichling, J.; Schnitzler, P.; Suschke, U.; Saller, R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties—an overview. Forsch 2009, 16, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Shaaban, H.A.; Ghorab, A.H.; Shibamoto, T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil. Res. 2012, 24, 203–212. [Google Scholar] [CrossRef]
- Mahboubi, M.; Kazempour, N. Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) essential oil. Songklanakarin J. Sci. Technol. 2014, 36, 83–87. [Google Scholar]
- Mucciarelli, M.; Camusso, W.; Maffei, M.; Panicco, P.; Bicchi, C. Volatile terpenoids of endophyte-free and infected peppermint (Mentha piperita L.): Chemical partitioning of a symbiosis. Microb. Ecol. 2007, 54, 685–696. [Google Scholar] [CrossRef]
- Bohnert, T.; Patel, A.; Templeton, I.; Chen, Y.; Lu, C. Evaluation of a new molecular entity as a victim of metabolic drug-drug interactions-an industry perspective. Drug Metab. Dispos. 2016, 115, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.; Dupret, J.M. 3D model of human arylamine N-acetyltransferase 2: Structural basis of the slow acetylator phenotype of the R64Q variant and analysis of the active-site loop. Biochem. Biophys. Res. Commun. 2002, 291, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, H.; Wang, J.; Zhou, L.; Yang, P. Chemical composition and anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita grown in China. PloS ONE 2014, 9, e114767. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Naim, A.; Tariq, P. In vitro antibacterial activity of peppermint. Pak. J. Bot. 2006, 38, 869–872. [Google Scholar]
- Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and antifungal activity of essential oils of Menthe suaveolens. Phytother. Res. 2002, 16, 727–731. [Google Scholar] [CrossRef]
- Iconaru, S.L.; Prodan, A.M.; Buton, N.; Predoi, D. Structural Characterization and Antifungal Studies of Zinc-Doped Hydroxyapatite Coatings. Molecules 2017, 22, 604. [Google Scholar] [CrossRef]
- Ciobanu, C.S.; Constantin, L.V.; Predoi, D. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 °C. Nanoscale Res. Lett. 2011, 6, 613. [Google Scholar] [CrossRef]
- Shah, P.P.; Mello, P.M.D. A review of medicinal uses and pharmacological effects of Mentha piperita. Ind. J. Nat. Prod. Res. 2004, 3, 214–221. [Google Scholar]
- Mosciano, G.; Fasano, M.; Cassidy, J.; Connelly, K.; Mazeiko, P.; Montenegro, A. Organoleptic characteristics of flavor materials. Perfumer Flavorist 1993, 18, 38–41. [Google Scholar]
- Kerman, E.; Kucera, L. Antiviral substances in plants of the mint family. Peppermint and other mint plants. Proc. Soc. Exp. Biol. Med. 1967, 124, 874–875. [Google Scholar]
- Girme, A.S.; Bhalke, R.D.; Ghogare, P.B.; Tambe, R.S.; Jadhav, R.S.; Nirma, S.A. Comparative In vitro anthelmintic activity of Mentha piperita and Lantana camara from Western India. Dhaka Univ. J. Pharm. Sci. 2006, 5, 5–7. [Google Scholar] [CrossRef]
- Iscan, G.; Kirimer, N.M.; Demirci, F. Antimicrobial Screening of Mentha piperita Essential Oils. J. Agric. Food Chem. 2002, 50, 3943–3946. [Google Scholar] [CrossRef] [PubMed]
- Behnam, S.; Farzaneh, M.; Ahmadzadeh, M.; Tehrani, A.S. Composition and antifungal activity of essential oils of Mentha piperita and Lavendula angustifolia on post-harvest phytopathogens. Commun. Agric. Appl. Biol. Sci. 2006, 71, 1321–1326. [Google Scholar] [PubMed]
- Sokovic, M.D.; Vukojevi, J.; Marin, P.D.; Brki, D.D.; Vajs, V.; Griensven, L.J.L.D. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.N. Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics; Wiley Interscience: New York, NY, USA, 1980. [Google Scholar]
- Hoffmann, B.G.; Lunder, L.T. Flavonoids from Mentha piperita leaves. Planta Med. 1984, 50, 361. [Google Scholar] [CrossRef] [PubMed]
- Lis-Balchin, M.; Deans, S.G.; Hart, S. A study of the variability of commercial peppermint oils using antimicrobial and pharmacological parameters. Med. Sci. Res. 1997, 25, 151–152. [Google Scholar]
- Maffei, M.; Sacco, T. Chemical and morphometrical comparison between two peppermint notomorphs. Planta Med. 1987, 53, 214–216. [Google Scholar] [CrossRef]
- Singh, R.; Shushni, M.A.M.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef]
- Schmidt, E.; Bail, S.; Buchbauer, G.; Stoilova, I.; Atanasova, T.; Stoyanova, A.; Krastanov, A.; Jirovetz, L. Chemical Composition, Olfactory Evaluation and Antioxidant Effects of Essential Oil from Mentha x piperita. Nat. Prod. Commun. 2009, 4, 1107–1112. [Google Scholar] [CrossRef]
- Predoi, D.; Groza, A.; Iconaru, S.L.; Predoi, G.; Barbuceanu, F.; Guegan, R.; Motelica-Heino, M.S.; Cimpeanu, C. Properties of Basil and Lavender Essential Oils Adsorbed on the Surface of Hydroxyapatite. Materials 2018, 11, 652. [Google Scholar] [CrossRef] [PubMed]
- Predoi, D.; Iconaru, S.L.; Buton, N.; Badea, M.L.; Marutescu, L. Antimicrobial Activity of New Materials Based on Lavender and Basil Essential Oils and Hydroxyapatite. Nanomaterials 2018, 8, 291. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Hao, L.; Du, C.; Wang, Y. A systematic examination of the morphologyof hydroxyapatite in the presence of citrate. RSC Adv. 2013, 3, 23184–23189. [Google Scholar] [CrossRef]
- Delgado-López, J.M.; Frison, R.; Cervellino, A.; Gómez-Morales, J.; Guagliardi, A.; Masciocchi, N. Crystal size, morphology, and growth mechanism inbio-inspired apatite nanocrystals. Adv. Funct. Mater. 2014, 24, 1090–1099. [Google Scholar] [CrossRef]
- Kumar, A.; Negi, Y.S.; Choudhary, V.; Bhardwaj, N.K. Microstructural and mechanical properties of porous bio composite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose 2014, 21, 3409–3426. [Google Scholar] [CrossRef]
- Kumar, A.; Negi, Y.S.; Choudhary, V.; Bhardwaj, N.K. Effect of modified cellulose nanocrystals on microstructural and mechanical properties of polyvinylalcohol/ovalbumin biocomposite scaffolds. Mater. Lett. 2014, 129, 61–64. [Google Scholar] [CrossRef]
- Berry, E.E. The Structure and Composition of Some Calcium Deficient Apatite. J. Inorg. Nucl. Chem. 1967, 29, 317–327. [Google Scholar] [CrossRef]
- Jorisk, S.J.; Amberg, C.H. The Nature of Deficiency in Nonstoichiometric Hydroxyapatites. II. Spectroscopic Studies of Calcium and Strontium Hydroxyapatites. J. Phys. Chem. 1971, 75, 3172–3178. [Google Scholar] [CrossRef]
- Rapacz-Kmita, A.; Elósarczyk, A.; Paszkiewicz, Z.C.; Paluszkiewicz, C. Phase stability of hydroxyapatite-zirconia (HAp-ZrO2) composites for bone replacement. J. Mol. Struct. 2004, 704, 333–340. [Google Scholar] [CrossRef]
- Lamoniera, C.; Lamoniera, J.-F.; Aellach, B.; Ezzamarty, A.; Leglise, J. Specific tuning of acid/base sites in apatite materials to enhance their methanol thiolation catalytic performances. Catal. Today 2011, 164, 124–130. [Google Scholar] [CrossRef]
- Iconaru, S.L.; Chifiriuc, M.C.; Groza, A. Structural and Antimicrobial Evaluation of Silver Doped Hydroxyapatite-Polydimethylsiloxane Thin Layers. J. Nanomater. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Popa, C.L.; Groza, A.; Chapon, P.; Ciobanu, C.S.; Ghita, R.V.; Trusca, R.; Ganciu, M.; Predoi, D. Analysis of the polydimethylsiloxane interlayer influence on a hydroxyapatite doped with silver coating. J. Nanomater. 2015, 2015, 1–10. [Google Scholar] [CrossRef]
- Kasiri, N.; Fathi, M. Entrapment of peppermint oil using cellulose nanocrystals. Cellulose 2018, 25, 319–329. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. Spectrometric Identification of Organic Compounds, 5th ed.; John Wiley and Sons. Inc.: New York, NY, USA, 1991; pp. 72–126. [Google Scholar]
- Bardakçı, B.; Yılmazer, M. Investigation of chemical structure of thyme oil from Sütçüler region, in Isparta. SDÜ Fen Edebiyat Fakültesi Fen Dergisi 2007, 2, 77–82. (In Turkish) [Google Scholar]
- Morar, M.I.; Fetea, F.; Rotar, A.M.; Nagy, M.; Semeniuc, C.A. Characterization of essential oils extracted from different aromatic plants by FTIR spectroscopy. Bulletin UASVM Food Sci. Technol. 2017, 74, 1–2. [Google Scholar] [CrossRef]
- Nowak, A.; Kalemba, D.; Piotrowska, M.; Czyżowska, A. Effects of thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) essential oils on growth of Brochothrix thermosphacta. Afr. J. Microbiol. Res. 2013, 7, 3396–3404. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach, Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Samfira, I.; Rodino, S.; Petrache, P.; Cristina, R.T.; Butu, M.; Butnariu, M. Characterization and identity confirmation of essential oils by mid infrared absorbtion spectrophometry. Dig. J. Nanomater. Biostruct. 2015, 10, 557–566. [Google Scholar]
- Lafhal, S.; Vanloot, P.; Bombarda, I.; Kister, J.; Dupuy, N. Identification of metabolomic markers of lavender and lavandin essential oils using mid-infrared spectroscopy. Vib. Spectrosc. 2016, 85, 79–90. [Google Scholar] [CrossRef]
- Allene, J.; Mark, H.F. Encyclopedia in Polymer Science and Engineering Technology; Mark, H.F., Gaylord, N.G., Bikales, N.M., Eds.; JohnWiley & Sons: New York, NY, USA, 1966; pp. 805–824. [Google Scholar]
- Heinze, T.; Liebert, T.; Heublein, B.; Hornig, S. Functional polymers base on dextran. Adv. Polymer Sci. 2006, 205, 199–291. [Google Scholar]
- Cao, L.; Si, J.Y.; Liu, Y.; Sun, H.; Jin, W.; Li, Z.; Hong, X.; Rui, Z.; Pan, L. Essential oil composition, antimicrobial and antioxidant of Mosla chinesis Maxim. Food Chem. 2009, 115, 801–815. [Google Scholar] [CrossRef]
- Oke, F.; Aslim, B.; Ozturk, S.; Altundag, S. Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chem. 2009, 112, 874–879. [Google Scholar] [CrossRef]
- Lopes-Lutz, D.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 2008, 69, 1732–1738. [Google Scholar] [CrossRef] [PubMed]
- Deans, S.G.; Baratta, M.T. Antimicrobial & Antioxidant properties of some essential oils. Flau. Fragrance 1998, 13, 235–244. [Google Scholar]
- Valsaraj, R.; Pushpangadan, P.; Smith, U.W.; Adsersen, A.; Nyman, U. Antimicrobial screening of selected medicinal plants from India. J. Ethnopharmacol. 1997, 58, 75–83. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatile by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadruple Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2001. [Google Scholar]
- Groza, A.; Surmeian, A. Characterization of the oxides present in a polydimethylsiloxane layer obtained by polymerisation of its liquid precursor in corona discharge. J. Nanomater. 2015, 2015. [Google Scholar] [CrossRef]
- Prodan, A.M.; Iconaru, S.L.; Chifiriuc, M.C.; Bleotu, C.; Ciobanu, C.S.; Motelica-Heino, M.; Sizaret, S.; Predoi, D. Magnetic Properties and Biological Activity Evaluation of Iron Oxide Nanoparticles. J. Nanomater. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Prodan, A.M.; Beuran, M.; Turculet, C.S.; Popa, M.; Andronescu, E.; Bleotu, C.; Raita, S.M.; Soare, M.; Lupescu, O. In vitro evaluation of glycerol coated iron oxide nanoparticles in solution. Rom. Biotechnol. Lett. 2018, 23, 13901–13908. [Google Scholar]
- Turculet, C.S.; Prodan, A.M.; Negoi, I.; Teleanu, G.; Popa, M.; Andronescu, E.; Beuran, M.; Stanciu, G.A.; Hristu, R.; Badea, M.L.; et al. Preliminary evaluation of the antifungal activity of samarium doped hydroxyapatite thin films. Rom. Biotechnol. Lett. 2018, 23, 13928–13932. [Google Scholar]
- Nikolić, M.; Jovanović, K.K.; Marković, T.; Marković, D.; Gligorijević, N.; Radulović, S.; Soković, M. Chemical composition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils. Ind. Crops Prod. 2014, 61, 225–232. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Microbial Strains | P-EO | HAp-P | HAp | DMSO |
---|---|---|---|---|
Escherichia coli ATCC 25922 | 22 ± 0.2 | 8 ± 0.2 | 0 ± 0.1 | 0 ± 0.1 |
Escherichia coli C5 | 20 ± 0.3 | 7 ± 0.3 | 0 ± 0.1 | 0 ± 0.1 |
Pseudomonas aeruginosa ATCC 27853 | 10 ± 0.5 | 7 ± 0.5 | 0 ± 0.1 | 0 ± 0.1 |
Pseudomonas aeruginosa ATCC 9027 | 11 ± 0.3 | 6 ± 0.2 | 0 ± 0.1 | 0 ± 0.1 |
Staphylococcus aureus ATCC 25923 | 12 ± 0.3 | 10 ± 0.5 | 0 ± 0.1 | 0 ± 0.1 |
Staphylococcus aureus ATCC 6538 | 8 ± 0.2 | 7 ± 0.6 | 0 ± 0.1 | 0 ± 0.1 |
Methicillin-resistant Staphylococcus aureus (MRSA) 388 | 10 ± 0.5 | 0 ± 0.1 | 0 ± 0.1 | 0 ± 0.1 |
Enterococcus faecium DSM 13590 | 0 ± 0.1 | 0 ± 0.1 | 0 ± 0.1 | 0 ± 0.1 |
Candida parapsilosis ATCC 22019 | 0 ± 0.1 | 0 ± 0.1 | 0 ± 0.1 | 0 ± 0.1 |
Microbial Strains | P-EO | HAp-P | HAp | DMSO |
---|---|---|---|---|
Escherichia coli ATCC 25922 | 31.25 ± 0.1 15.62 ± 0.3 | 250 ± 1.4 62.5 ± 0.4 | >250 ± 1.5 | >250 ± 1.6 |
Escherichia coli C5 | 31.25 ± 0.5 15.62 ± 0.5 | 250 ± 1.7 125 ± 1.9 | >250 ± 1.5 | >250 ± 1.8 |
Pseudomonas aeruginosa ATCC 27853 | 31.25 ± 0.5 15.62 ± 0.5 | 31.25 ± 0.5 15.62 ± 0.7 | >250 ± 1.6 | >250 ± 1.6 |
Pseudomonas aeruginosa ATCC 9027 | 31.25 ± 0.7 15.62 ± 0.5 | 31.25 ± 0.5 15.62 ± 0.3 | >250 ± 1.9 | >250 ± 1.5 |
Staphylococcus aureus ATCC 25923 | 31.25 ± 0.3 15.62 ± 0.4 | 250 ± 1.8 62.5 ± 0.5 | >250 ± 1.2 | >250 ± 1.9 |
Staphylococcus aureus ATCC 6538 | 31.25 ± 0.7 15.62 ± 0.3 | 250 ± 1.7 62.5 ± 0.9 | >250 ± 1.5 | >250 ± 1.3 |
Methicillin-resistant Staphylococcus aureus (MRSA) 388 | 31.25 ± 0.5 15.62 ± 0.5 | 250 ± 1.5 62.5 ± 0.7 | >250 ± 1.8 | >250 ± 1.6 |
Enterococcus faecium DSM 13590 | 62.5 ± 1.2 62.5 ± 0.9 | 125 ± 0.5 62.6 ± 0.2 | >250 ± 1.4 | >250 ± 1.7 |
Candida parapsilosis ATCC 22019 | 15.62 ± 0.3 15.62 ± 0.4 | 31.25 ± 0.6 31.25 ± 0.4 | 250 ± 1.5 125 ± 1.7 | 250 ± 1.5 |
Microbial Strains | P-EO | HAp-P | Control |
---|---|---|---|
Escherichia coli ATCC 25922 | 0.0% | 32.2% | 0.0% |
Pseudomonas aeruginosa aeruginosa ATCC 27853 | 0.1% | 57.3% | 0.0% |
Staphylococcus aureus ATCC 25923 | 13.3% | 27.9% | 0.6% |
Enterococcus faecium faecium DSM 13590 | 14.8% | 1.6% | 0.3% |
Candida parapsilosis ATCC 22019 | 17.1% | 1.5% | 1.3% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badea, M.L.; Iconaru, S.L.; Groza, A.; Chifiriuc, M.C.; Beuran, M.; Predoi, D. Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties. Molecules 2019, 24, 2169. https://doi.org/10.3390/molecules24112169
Badea ML, Iconaru SL, Groza A, Chifiriuc MC, Beuran M, Predoi D. Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties. Molecules. 2019; 24(11):2169. https://doi.org/10.3390/molecules24112169
Chicago/Turabian StyleBadea, Monica Luminita, Simona Liliana Iconaru, Andreea Groza, Mariana Carmen Chifiriuc, Mircea Beuran, and Daniela Predoi. 2019. "Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties" Molecules 24, no. 11: 2169. https://doi.org/10.3390/molecules24112169
APA StyleBadea, M. L., Iconaru, S. L., Groza, A., Chifiriuc, M. C., Beuran, M., & Predoi, D. (2019). Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties. Molecules, 24(11), 2169. https://doi.org/10.3390/molecules24112169