Preparation and Characterization of Carbon Paste Electrode Bulk-Modified with Multiwalled Carbon Nanotubes and Its Application in a Sensitive Assay of Antihyperlipidemic Simvastatin in Biological Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Scanning Electrochemical Microscopy (SECM) Analysis
2.2. SEM Analysis
2.3. Atomic Force Microscopy (AFM) Analysis
2.4. Electrochemical Behavior of SIM on the MWCNT-CPEs
2.5. Analytical Parameters and Validation of the Method
2.6. Determination of SIM in Pharmaceutical Dosage Form and Its Assay in Spiked Plasma
2.7. Interference Study
3. Materials and Methods
3.1. Chemicals
3.2. Apparatus
3.3. Preparation of the Working Electrode
3.4. Pharmaceutical Dosage Form Assay Procedure
3.5. Recovery Studies in Spiked Human Plasma Samples
3.6. Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pedersen, T.R.; Tobert, J.A. Simvastatin: A review. Expert Opin. Pharmacother. 2004, 5, 2583–2596. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.J.; Xie, I.H.; Yang, A.Y.; Roadcap, B.A.; Rogers, J. Quantitation of simvastatin and its β-hydroxy acid in human plasma by liquid–liquid cartridge extraction and liquid chromatography/tandem mass spectrometry. J. Mass Spectrom. 2000, 35, 1133–1143. [Google Scholar] [CrossRef]
- Liao, J.K. Effects of statins on 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition beyond low-density lipoprotein cholesterol. Am. J. Cardiol. 2005, 96, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Willey, J.Z.; Elkind, M.S. 3-Hydroxy-3-methylglutaryl–Coenzyme A Reductase Inhibitors in the Treatment of Central Nervous System Diseases. Arch. Neurol. 2010, 67, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Subhan, M.; Faryal, R.; Macreadie, I. Exploitation of Aspergillus terreus for the Production of Natural Statins. J. Fungi 2016, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, P.; Lerman, L.; Napoli, C.; Lerman, A. Statin effects beyond lipid lowering—Are they clinically relevant? Eur. Heart J. 2003, 24, 225–248. [Google Scholar] [CrossRef]
- Ramkumar, S.; Raghunath, A.; Raghunath, S. Statin therapy: Review of safety and potential side effects. Acta Cardiol. Sin. 2016, 32, 631. [Google Scholar]
- Björkhem-Bergman, L.; Lindh, J.D.; Bergman, P. What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Brit. J. Clin. Pharmacol. 2011, 72, 164–165. [Google Scholar] [CrossRef] [Green Version]
- Bu, D.; Tarrio, M.; Grabie, N.; Zhang, Y.; Yamazaki, H.; Stavrakis, G.; Maganto-Garcia, E.; Pepper-Cunningham, Z.; Jarolim, P.; Aikawa, M. Statin-induced Kruppel-like factor 2 expression in human and mouse T cells reduces inflammatory and pathogenic responses. J. Clin. Investig. 2010, 120, 1961–1970. [Google Scholar] [CrossRef] [Green Version]
- Chow, O.A.; von Köckritz-Blickwede, M.; Bright, A.T.; Hensler, M.E.; Zinkernagel, A.S.; Cogen, A.L.; Gallo, R.L.; Monestier, M.; Wang, Y.; Glass, C.K. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 2010, 8, 445–454. [Google Scholar] [CrossRef]
- Youssef, S.; Stüve, O.; Patarroyo, J.C.; Ruiz, P.J.; Radosevich, J.L.; Hur, E.M.; Bravo, M.; Mitchell, D.J.; Sobel, R.A.; Steinman, L. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 2002, 420, 78. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, G.; Mazzeo, P.; Biordi, L.; Bologna, M. Simultaneous determination of simvastatin and its hydroxy acid form in human plasma by high-performance liquid chromatography with UV detection. J. Pharmaceut. Biomed. 1992, 10, 693–697. [Google Scholar] [CrossRef]
- Jemal, M.; Ouyang, Z.; Powell, M.L. Direct-injection LC–MS–MS method for high-throughput simultaneous quantitation of simvastatin and simvastatin acid in human plasma. J. Pharmaceut. Biomed. 2000, 23, 323–340. [Google Scholar] [CrossRef]
- Ochiai, H.; Uchiyama, N.; Imagaki, K.; Hata, S.; Kamei, T. Determination of simvastatin and its active metabolite in human plasma by column-switching high-performance liquid chromatography with fluorescence detection after derivatization with 1-bromoacetylpyrene. J. Chromatogr. B 1997, 694, 211–217. [Google Scholar] [CrossRef]
- Yang, H.; Feng, Y.; Luan, Y. Determination of Simvastatin in human plasma by liquid chromatography–mass spectrometry. J. Chromatogr. B 2003, 785, 369–375. [Google Scholar] [CrossRef]
- Takano, T.; Abe, S.; Hata, S. A selected ion monitoring method for quantifying simvastatin and its acid form in human plasma, using the ferroceneboronate derivative. Biol. Mass Spectr. 1990, 19, 577–581. [Google Scholar] [CrossRef]
- Srinivasu, M.; Raju, A.N.; Reddy, G.O. Determination of lovastatin and simvastatin in pharmaceutical dosage forms by MEKC. J. Pharmaceut. Biomed. 2002, 29, 715–721. [Google Scholar] [CrossRef]
- El-Din, M.M.S.; Attia, K.A.; Nassar, M.W.; Kaddah, M.M. Colorimetric determination of simvastatin and lovastatin in pure form and in pharmaceutical formulations. Spectrochim. Acta A 2010, 76, 423–428. [Google Scholar] [CrossRef]
- Al-Ghamdi, A.F.; Hefnawy, M.M.; El-Shabrawy, Y. Non-extractive ultra-trace determination of simvastatin in biological fluids by voltammetric method via complexation with cadmium. Dig. J. Nanomater. Biostruct. 2014, 9, 355–368. [Google Scholar]
- Nigović, B.; Komorsky-Lovrić, Š.; Devčić, D. Rapid voltammetric identification and determination of simvastatin at trace levels in pharmaceuticals and biological fluid. Croatica Chem. Acta 2008, 81, 453–459. [Google Scholar]
- Coruh, Ö.; Özkan, S. Determination of the antihyperlipidemic simvastatin by various voltammetric techniques in tablets and serum samples. Int. J. Pharmaceut. Sci. 2006, 61, 285–290. [Google Scholar]
- Deepa, M.; Mamatha, G.; Naik, Y.A.; Sherigara, B.; Manjappa, S.; Vijaya, B. Electrochemical studies of simvastatin at glassy carbon electrode and immobilized by sodium dodecyl sulfate surfactant. J. Chem. Pharm. Res 2012, 4, 2803–2816. [Google Scholar]
- Zhang, H.; Hu, C.; Wu, S.; Hu, S. Enhanced Oxidation of Simvastatin at a Multi-Walled Carbon Nanotubes-Dihexadecyl Hydrogen Phosphate Composite Modified Glassy Carbon Electrode and the Application in Determining Simvastatin in Pharmaceutical Dosage Forms. Electroanalysis 2005, 17, 749–754. [Google Scholar] [CrossRef]
- Svancara, I.; Kalcher, K.; Walcarius, A.; Vytras, K. Electroanalysis with Carbon Paste Electrodes; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Akhoundian, M.; Alizadeh, T.; Ganjali, M.R.; Norouzi, P. Ultra-trace detection of methamphetamine in biological samples using FFT-square wave voltammetry and nano-sized imprinted polymer/MWCNTs -modified electrode. Talanta 2019, 200, 115–123. [Google Scholar] [CrossRef]
- Rajaei, M.; Foroughi, M.M.; Jahani, S.; Shahidi Zandi, M.; Hassani Nadiki, H. Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J. Mol. Liq. 2019, 284, 462–472. [Google Scholar] [CrossRef]
- Teixeira, M.d.C.; Felix, F.S.; Thomasi, S.S.; Magriotis, Z.M.; da Silva, J.M.; Okumura, L.L.; Saczk, A.A. Voltammetric determination of organic nitrogen compounds in environmental samples using carbon paste electrode modified with activated carbon. Microchem. J. 2019, 148, 66–72. [Google Scholar] [CrossRef]
- Khrizanforov, M.N.; Arkhipova, D.M.; Shekurov, R.P.; Gerasimova, T.P.; Ermolaev, V.V.; Islamov, D.R.; Miluykov, V.A.; Kataeva, O.N.; Khrizanforova, V.V.; Sinyashin, O.G.; et al. Novel paste electrodes based on phosphonium salt room temperature ionic liquids for studying the redox properties of insoluble compounds. J. Solid State Electrochem. 2015, 19, 2883–2890. [Google Scholar] [CrossRef]
- Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun. 2002, 4, 743–746. [Google Scholar] [CrossRef]
- Fanjul-Bolado, P.; Queipo, P.; Lamas-Ardisana, P.J.; Costa-García, A. Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools. Talanta 2007, 74, 427–433. [Google Scholar] [CrossRef]
- Ashrafi, A.M.; Kurbanoglu, S.; Vytřas, K.; Uslu, B.; Ozkan, S.A. Electrochemical mechanism and sensitive assay of antiretroviral drug Abacavir in biological sample using multiwalled carbon nanotube modified pyrolytic graphite electrode. J. Electroanal. Chem. 2014, 712, 178–184. [Google Scholar] [CrossRef]
- Mikysek, T.; Švancara, I.; Kalcher, K.; Bartoš, M.; Vytřas, K.; Ludvík, J. New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes. Anal. Chem. 2009, 81, 6327–6333. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, J.; Žužek, M.; Benčina, M.; Cimerman, A.; Štrancar, A.; Radež, I. High-performance liquid chromatographic analysis of mevinolin as mevinolinic acid in fermentation broths. J. Chromatogr. A 1995, 704, 363–367. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R.; Leddy, J.; Zoski, C.G. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, NY, USA, 1980; Volume 2, pp. 26–52. [Google Scholar]
- Tafel, J. Über die Polarisation bei kathodischer Wasserstoffentwicklung. Zeitschrift für Physikalische Chemie 1905, 50, 641–712. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P.J.O.P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Bard, A.J.; Mirkin, M.V. Scanning Electrochemical Microscopy; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
Sample Availability: Not available. |
Calibration with Standards | Drug Dosage Form | Spiked Plasma | |||
---|---|---|---|---|---|
Peak potential (V) | 1.10 | Potential | 1.10 | Potential | 1.10 |
Linearity range (µM) | 3.75–20 | Slope | 0.1183 | Slope | 0.154 |
Slope (µA∙µM−1) | 0.121 ± 0.005 | Intercept | 0.8854 | Intercept | 1.532 |
Intercept | 0.041 | Correlation coefficient r | 0.996 | Correlation coefficient r | 0.999 |
Correlation coefficient (r) | 0.998 ± 0.004 | Labelled claim (mg) | 10 | Spiked (µM) | 10 |
LOD 1 (µM) | 2.4 × 10−7 | Found (mg) | 9.97 | Found (µM) | 9.95 |
LOQ (µM) | 8.0 × 10−7 | Recovery rate % | 99.7 | Bias % | 0.5 |
RSD% (n = 8) | 4.8 | Bias % | 0.3 | Spiking Recovery rate% | 99.5 |
Confidence interval 2 | ±1.0 × 10−8 | RSD% (n = 3) | 1.8 | RSD% (n = 3) | 2.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashrafi, A.M.; Richtera, L. Preparation and Characterization of Carbon Paste Electrode Bulk-Modified with Multiwalled Carbon Nanotubes and Its Application in a Sensitive Assay of Antihyperlipidemic Simvastatin in Biological Samples. Molecules 2019, 24, 2215. https://doi.org/10.3390/molecules24122215
Ashrafi AM, Richtera L. Preparation and Characterization of Carbon Paste Electrode Bulk-Modified with Multiwalled Carbon Nanotubes and Its Application in a Sensitive Assay of Antihyperlipidemic Simvastatin in Biological Samples. Molecules. 2019; 24(12):2215. https://doi.org/10.3390/molecules24122215
Chicago/Turabian StyleAshrafi, Amir M., and Lukáš Richtera. 2019. "Preparation and Characterization of Carbon Paste Electrode Bulk-Modified with Multiwalled Carbon Nanotubes and Its Application in a Sensitive Assay of Antihyperlipidemic Simvastatin in Biological Samples" Molecules 24, no. 12: 2215. https://doi.org/10.3390/molecules24122215
APA StyleAshrafi, A. M., & Richtera, L. (2019). Preparation and Characterization of Carbon Paste Electrode Bulk-Modified with Multiwalled Carbon Nanotubes and Its Application in a Sensitive Assay of Antihyperlipidemic Simvastatin in Biological Samples. Molecules, 24(12), 2215. https://doi.org/10.3390/molecules24122215