Anti-Migraine Effect of the Herbal Combination of Chuanxiong Rhizoma and Cyperi Rhizoma and UPLC-MS/MS Method for the Simultaneous Quantification of the Active Constituents in Rat Serum and Cerebral Cortex
Abstract
:1. Introduction
2. Results
2.1. Effects of CRCR on Cerebral Blood Flow
2.2. ET-1, GABA, NOS and NO Levels in the Serum
2.3. 5-HT, 5-HIAA, CGRP and β-EP Levels in the BrainStem
2.4. mRNA Expressions of CGRP and c-Fos in the Brainstem
2.5. Optimization for UPLC-MS/MS Parameters
2.6. UPLC-MS/MS Method Validation
2.6.1. Selectivity
2.6.2. Linearity and LLOQ
2.6.3. Precision and Accuracy
2.6.4. Matrix Effect and Extraction Recovery
2.6.5. Stability
2.7. The Concentrations of Active Constituents in Rat Serum and Cerebral Cortex Determined by the Developed UPLC-MS/MS Method
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Preparation and Standardisation of CRCR Extract
4.3. Animals
4.4. Experimental Plan
4.5. Cerebral Blood Flow Measurement
4.6. ELISA
4.7. qRT-PCR
4.8. Chromatographic and Mass Spectrometric Conditions
4.9. Preparation of the Stock and Working Solutions
4.10. Preparation of Calibration Standards and Quality Control Samples
4.11. Serum Sample and Cerebral Cortex Sample Treatment for UPLC-MS/MS
4.12. UPLC-MS/MS Method Validation
4.12.1. Selectivity
4.12.2. Linearity and LLOQ
4.12.3. Precision and Accuracy
4.12.4. Matrix Effect and Extraction Recovery
4.12.5. Stability
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CRCR | Chuanxiong Rhizoma and Cyperi Rhizoma |
NTG | nitroglycerin |
FA | ferulic acid |
SA | senkyunolide A |
NBP | 3-n-butylphthalide |
LIG | Z-ligustilide |
BDPH | Z-3-butylidenephthalide |
CYT | cyperotundone |
NKT | nookatone |
CYP | α-cyperone |
BUS | buspirone |
GEN | genistein |
IS | internal standard |
5-HT | 5-hydroxytryptamine |
5-HIAA | 5-hydoxyindoleacetic acid |
CGRP | calcitonin gene-related peptide |
β-EP | β-endorphin |
ET-1 | endothelin-1 |
GABA | γ-aminobutyric acid |
NO | nitric oxide |
NOS | nitric oxide synthase |
UPLC-MS/MS | ultra-performance liquid chromatography tandem mass spectrometry |
LLOQ | lower limit of quantification |
ELISA | enzyme-linked immunosorbent assay |
qRT-PCR | quantitative real-time polymerase chain reaction |
References
- Wang, Y.; Tye, A.E.; Zhao, J.; Ma, D.; Raddant, A.C.; Bu, F.; Spector, B.L.; Winslow, N.K.; Wang, M.; Russo, A.F. Induction of calcitonin gene-related peptide expression in rats by cortical spreading depression. Cephalalgia 2016, 39, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Charles, A. The pathophysiology of migraine: Implications for clinical management. Lancet Neurol. 2018, 17, 174–182. [Google Scholar] [CrossRef]
- Worthington, I.; Pringsheim, T.; Gawel, M.J.; Gladstone, J.; Cooper, P.; Dilli, E.; Aube, M.; Leroux, E.; Becker, W.J. Canadian Headache Society Guideline: Acute drug therapy for migraine headache. Can. J. Neurol. Sci. 2013, 40 (Suppl. 3), S1–S80. [Google Scholar] [CrossRef] [PubMed]
- Dodick, D.W. Migraine. Lancet 2018, 391, 1315–1330. [Google Scholar] [CrossRef]
- Moore, N.; Salvo, F.; Duong, M.; Blin, P.; Pariente, A. Cardiovascular risks associated with low-dose ibuprofen and diclofenac as used OTC. Expert Opin. Drug Saf. 2014, 13, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Levin, M. Opioids in headache. Headache 2014, 54, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.-S.; Xu, Q.-Q.; Shi, Y.-H.; Wang, Y.; He, Z.-X.; Zheng, G.-Q. Chuanxiong Formulae for Migraine: A Systematic Review and Meta-Analysis of High-Quality Randomized Controlled Trials. Front. Pharmacol. 2018, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, G.; Cevoli, S.; Cologno, D. Herbal therapy in migraine. Neurol. Sci. 2014, 35 (Suppl. 1), 135–140. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, C.; Gao, F.; Fu, Q.; Fu, C.; He, Y.; Zhang, J. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem. Toxicol. 2018, 119, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Zuo, A.; Wang, L.; Xiao, H.; Li, L.; Liu, Y.; Yi, J. Identification of the absorbed components and metabolites in rat plasma after oral administration of Rhizoma Chuanxiong decoction by HPLC–ESI-MS/MS. J. Pharm. Biomed. Anal. 2011, 56, 1046–1056. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Xie, X.; Wang, L.; Guo, L.; Hu, T. Pharmacodynamic action and mechanism of volatile oil from Rhizoma Ligustici Chuanxiong Hort. on treating headache. Phytomedicine 2009, 16, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K.; Singh, A.; Shukla, S.V. Chemical Investigation and Pharmaceutical Action of Cyperus rotundus-A Review. J. Boil. Act. Prod. Nat. 2013, 3, 166–172. [Google Scholar]
- Jebasingh, D.; Devavaram Jackson, D.; Venkataraman, S.; Adeghate, E.; Starling Emerald, B. The protective effects ofCyperus rotunduson behavior and cognitive function in a rat model of hypoxia injury. Pharm. Biol. 2014, 52, 1558–1569. [Google Scholar] [CrossRef] [PubMed]
- Lawal, O.; Oyedeji, A. Chemical Composition of the Essential Oils of Cyperus rotundus L. from South Africa. Molecules 2009, 14, 2909–2917. [Google Scholar] [CrossRef] [PubMed]
- Meena, A.; Yadav, A.K.; Niranjan, U.S.; Singh, B.; Nagariya, A.K.; Verma, M. Review on Cyperus rotundus-A potential herb. Int. J. Pharm. Clin. Res. 2010, 2, 20–22. [Google Scholar]
- Li, W.; Tang, Y.; Qian, Y.; Shang, E.; Wang, L.; Zhang, L.; Su, S.; Duan, J.-A. Comparative analysis of main aromatic acids and phthalides in Angelicae Sinensis Radix, Chuanxiong Rhizoma, and Fo-Shou-San by a validated UHPLC–TQ-MS/MS. J. Pharm. Biomed. Anal. 2014, 99, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, W.; Peng, Y.; Bian, Q.; Wang, N.; Lee, D.Y.; Dai, R. Ultra-high performance liquid chromatography with tandem mass spectrometry method for the simultaneous quantitation of five phthalides in rat plasma: Application to a comparative pharmacokinetic study of Huo Luo Xiao Ling Dan and herb-pair extract. J. Sep. Sci. 2016, 39, 2057–2067. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.-Q.; Tang, Y.-P.; Cao, Y.-J.; Tan, Y.-J.; Jin, Y.; Shi, X.-Q.; Huang, S.-L.; Sun, D.-Z.; Sun, J.; Tang, Z.-S.; et al. Comparatively evaluating the pharmacokinetic of fifteen constituents in normal and blood deficiency rats after oral administration of Xin-Sheng-Hua Granule by UPLC–MS/MS. J. Chromatogr. B 2017, 1061–1062, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, W.; Lu, J.; Ji, N.; Fu, C.; Xin, Y.; Liu, G.; Yu, J. Determination of cyperotundone, nootkatone and α-cyperone in Cyperus rotundus L. from different growing areas by HPLC. Chin. Tradit. Pat. Med. 2015, 37, 588–591. [Google Scholar]
- Wang, M.; Fu, S.; Zhang, X.; Li, J.; Gong, M.; Qiu, F. LC-ESI-MS/MS Analysis and Pharmacokinetics of Plantainoside D Isolated from Chirita longgangensis var. hongyao, a Potential Anti-Hypertensive Active Component in Rats. Molecules 2014, 19, 15103–15115. [Google Scholar] [CrossRef] [Green Version]
- Sances, G.; Tassorelli, C.; Pucci, E.; Ghiotto, N.; Sandrini, G.; Nappi, G. Reliability of the nitroglycerin provocative test in the diagnosis of neurovascular headaches. Cephalalgia 2004, 24, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; He, X.; Zhong, P.; Zhao, J.; Huang, C.; Hu, Z. A Metabolism-Based Synergy for Total Coumarin Extract of Radix Angelicae Dahuricae and Ligustrazine on Migraine Treatment in Rats. Molecules 2018, 23, 1004. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Shang, E.-X.; Zhu, Y.; Qian, D.-W.; Duan, J.-A. Volatile component interaction effects on compatibility of Cyperi Rhizoma and Angelicae Sinensis Radix or Chuanxiong Rhizoma by UPLC-MS/MS and response surface analysis. J. Pharm. Biomed. Anal. 2018, 160, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Kastrup, A.; Thomas, C.; Hartmann, C.; Schabet, M. Cerebral blood flow and CO2 reactivity in interictal migraineurs: A transcranial Doppler study. Headache 1998, 38, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Friberg, L.; Olesen, J.; Iversen, H.K.; Sperling, B. Migraine pain associated with middle cerebral artery dilatation: Reversal by sumatriptan. Lancet 1991, 338, 13–17. [Google Scholar] [CrossRef]
- Lippi, G.; Cervellin, G.; Mattiuzzi, C. Migraine and erythrocyte biology: A review. Int. J. Lab. Hematol. 2014, 36, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Edvinsson, L. Neuronal Signal Substances as Biomarkers of Migraine. Headache J. Head Face Pain 2006, 46, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Iljazi, A.; Ayata, C.; Ashina, M.; Hougaard, A. The Role of Endothelin in the Pathophysiology of Migraine-a Systematic Review. Curr. Pain Headache Rep. 2018, 22, 27. [Google Scholar] [CrossRef] [PubMed]
- Dreier, J.P.; Kleeberg, J.; Petzold, G.; Priller, J.; Windmuller, O.; Orzechowski, H.D.; Lindauer, U.; Heinemann, U.; Einhaupl, K.M.; Dirnagl, U. Endothelin-1 potently induces Leao’s cortical spreading depression in vivo in the rat: A model for an endothelial trigger of migrainous aura? Brain 2002, 125, 102–112. [Google Scholar] [CrossRef]
- Kallela, M.; Farkkila, M.; Saijonmaa, O.; Fyhrquist, F. Endothelin in migraine patients. Cephalalgia 1998, 18, 329–332. [Google Scholar] [CrossRef]
- Hasselblatt, M.; Kohler, J.; Volles, E.; Ehrenreich, H. Simultaneous monitoring of endothelin-1 and vasopressin plasma levels in migraine. Neuroreport 1999, 10, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.A.; Bertels, Z.; Akerman, S. Targeted Nitric Oxide Synthase Inhibitors for Migraine. Neurotherapeutics 2018, 15, 391–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandran, B.D.K.; Ploug, K.B.; Hay-Schmidt, A.; Jansen-Olesen, I.; Gupta, S.; Olesen, J. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation. Cephalalgia 2014, 34, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Vecchia, D.; Pietrobon, D. Migraine: A disorder of brain excitatory-inhibitory balance? Trends Neurosci. 2012, 35, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Negro, A.; Koverech, A.; Martelletti, P. Serotonin receptor agonists in the acute treatment of migraine: A review on their therapeutic potential. J. Pain Res. 2018, 11, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Deen, M.; Christensen, C.E.; Hougaard, A.; Hansen, H.D.; Knudsen, G.M.; Ashina, M. Serotonergic mechanisms in the migraine brain-a systematic review. Cephalalgia 2017, 37, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Aguila, M.-E.R.; Rebbeck, T.; Leaver, A.M.; Lagopoulos, J.; Brennan, P.C.; Hübscher, M.; Refshauge, K.M. The Association Between Clinical Characteristics of Migraine and Brain GABA Levels: An Exploratory Study. J. Pain 2016, 17, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Aguila, M.-E.R.; Lagopoulos, J.; Leaver, A.M.; Rebbeck, T.; Hübscher, M.; Brennan, P.C.; Refshauge, K.M. Elevated levels of GABA+ in migraine detected using1H-MRS. NMR Biomed. 2015, 28, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Edvinsson, L. The Trigeminovascular Pathway: Role of CGRP and CGRP Receptors in Migraine. Headache 2017, 57 (Suppl. 2), 47–55. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.S.; Eftekhari, S.; Bower, R.L.; Wilderman, A.; Insel, P.A.; Edvinsson, L.; Waldvogel, H.J.; Jamaluddin, M.A.; Russo, A.F.; Hay, D.L. A second trigeminal CGRP receptor: Function and expression of the AMY1receptor. Ann. Clin. Transl. Neurol. 2015, 2, 595–608. [Google Scholar] [CrossRef]
- Misra, U.K.; Kalita, J.; Tripathi, G.; Bhoi, S.K. Role of β endorphin in pain relief following high rate repetitive transcranial magnetic stimulation in migraine. Brain Stimul. 2017, 10, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, R.M.; Zielman, R.; Noga, M.; Dekkers, O.M.; Hankemeier, T.; van den Maagdenberg, A.M.J.M.; Terwindt, G.M.; Ferrari, M.D. Migraine biomarkers in cerebrospinal fluid: A systematic review and meta-analysis. Cephalalgia 2016, 37, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Tassorelli, C.; Armentero, M.T.; Greco, R.; Fancellu, R.; Sandrini, G.; Nappi, G.; Blandini, F. Behavioral responses and Fos activation following painful stimuli in a rodent model of Parkinson’s disease. Brain Res. 2007, 1176, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Peerzada, A.M.; Ali, H.H.; Naeem, M.; Latif, M.; Bukhari, A.H.; Tanveer, A. Cyperus rotundus L.: Traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol. 2015, 174, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Or, T.C.; Yang, C.L.; Law, A.H.; Li, J.C.; Lau, A.S. Isolation and identification of anti-inflammatory constituents from Ligusticum chuanxiong and their underlying mechanisms of action on microglia. Neuropharmacology 2011, 60, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.; Fu, R.H.; Huang, Y.C.; Chen, S.Y.; Hsu, C.J.; Lin, S.Z.; Tu, C.T.; Chang, L.H.; Wu, P.A.; Liu, S.P. Adipose-derived Stem Cells Stimulated with n-Butylidenephthalide Exhibit Therapeutic Effects in a Mouse Model of Parkinson’s Disease. Cell Transplant. 2018, 27, 456–470. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zhang, R.; Li, Y.; Yang, Z.; Yang, H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int. J. Mol. Med. 2017, 40, 1444–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, M.; Xu, M.; Li, T.; Fan, K.; Yan, T.; Xiao, F.; Bi, K.; Jia, Y. Nootkatone, a neuroprotective agent from Alpiniae Oxyphyllae Fructus, improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer’s disease. Int. Immunopharmacol. 2018, 62, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhai, Y.; Wang, M.; Xu, Y.; Gong, M.; Wu, S. Study on simultaneous determination of seven effective components in Ligusticum chuanxiong Hort.-Cyperus rotundus L. Beijing J. Tradit. Chin. Med. 2018, 37, 225–229. [Google Scholar]
- Tfelt-Hansen, P.; Hougaard, A. Sumatriptan: A review of its pharmacokinetics, pharmacodynamics and efficacy in the acute treatment of migraine. Expert Opin. Drug Metab. Toxicol. 2013, 9, 91–103. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Day 1 | Day 2 | Day 3 | Inter-day | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Analytes | Spiked Conc. (ng/mL) | Mean ± SD (ng/mL) | RSD (%) | RE (%) | Mean ± SD (ng/mL) | RSD (%) | RE (%) | Mean ± SD (ng/mL) | RSD (%) | RE (%) | Mean ± SD (ng/mL) | RSD (%) | RE (%) |
FA | 10 | 9.01 ± 1.10 | 12.22 | −9.87 | 9.69 ± 1.04 | 10.77 | −3.09 | 8.56 ± 0.65 | 7.58 | −14.37 | 9.01 ± 0.97 | 10.77 | −9.91 |
100 | 97.85 ± 8.02 | 8.19 | −2.15 | 108.84 ± 5.10 | 4.68 | 8.84 | 97.86 ± 11.46 | 11.71 | −2.14 | 101.52 ± 8.19 | 8.19 | 1.52 | |
800 | 743.52 ± 20.29 | 2.73 | −7.06 | −765.477 ± 33.65 | 4.40 | −4.32 | 788.46 ± 26.90 | 3.41 | −1.44 | 765.82 ± 26.94 | 3.51 | −4.27 | |
SA | 10 | 10.33 ± 1.59 | 15.38 | 3.26 | 9.55 ± 1.38 | 14.47 | −4.53 | 8.69 ± 0.86 | 9.90 | −13.12 | 9.52 ± 0.40 | 4.20 | −4.79 |
100 | 100.99 ± 2.74 | 2.71 | 0.99 | 101.89 ± 3.07 | 3.01 | 1.89 | 103.35 ± 4.19 | 4.05 | 3.35 | 102.08 ± 3.38 | 3.31 | 2.08 | |
800 | 785.81 ± 38.86 | 4.95 | −1.77 | 771.21 ± 7.51 | 0.97 | −3.60 | 808.8 ± 15.66 | 1.94 | 1.10 | 788.61 ± 28.38 | 3.60 | −1.42 | |
NBP | 10 | 9.96 ± 0.77 | 7.74 | −0.42 | 9.08 ± 0.86 | 9.46 | -9.20 | 9.22 ± 0.74 | 8.08 | −7.78 | 9.42 ± 0.13 | 1.33 | −5.80 |
100 | 101.51 ± 2.98 | 2.93 | 1.51 | 101.24 ± 4.76 | 4.71 | 1.24 | 102.32 ± 5.97 | 5.83 | 2.32 | 101.69 ± 4.53 | 4.45 | 1.69 | |
800 | 809.29 ± 16.12 | 1.99 | 1.16 | 814.75 ± 42.07 | 5.16 | 1.84 | 812.76 ± 13.51 | 1.66 | 1.59 | 812.27 ± 25.94 | 3.19 | 1.53 | |
LIG | 10 | 8.63 ± 1.08 | 12.49 | −13.72 | 9.07 ± 0.82 | 9.01 | −9.26 | 10.55 ± 0.42 | 4.01 | 5.47 | 9.42 ± 0.09 | 0.92 | −5.84 |
100 | 115.81 ± 2.42 | 2.09 | 15.81 | 113.35 ± 5.88 | 5.19 | 13.35 | 112.69 ± 2.42 | 2.15 | 12.69 | 113.95 ± 5.18 | 4.54 | 13.95 | |
800 | 830.05 ± 32.01 | 3.86 | 3.76 | 840.54 ± 47.91 | 5.70 | 5.07 | 859.33 ± 29.24 | 3.40 | 7.42 | 843.31 ± 36.92 | 4.38 | 5.41 | |
BDPH | 10 | 8.42 ± 0.09 | 1.03 | −15.84 | 8.59 ± 0.47 | 5.45 | −14.11 | 9.80 ± 0.90 | 9.15 | −2.00 | 8.93 ± 0.10 | 1.08 | −10.65 |
100 | 93.06 ± 6.86 | 7.37 | −6.94 | 94.52 ± 6.71 | 7.10 | −5.48 | 92.26 ± 5.85 | 6.34 | −7.74 | 93.28 ± 6.19 | 6.63 | −6.72 | |
800 | 691.98 ± 36.60 | 5.29 | −13.50 | 722.03 ± 17.34 | 2.40 | −9.75 | 714.55 ± 27.37 | 3.83 | −10.68 | 709.52 ± 29.66 | 4.18 | −11.31 | |
CYT | 10 | 8.54 ± 0.31 | 3.62 | −14.56 | 8.99 ± 0.48 | 5.31 | −10.10 | 9.87 ± 0.84 | 8.49 | −1.35 | 9.13 ± 0.10 | 1.05 | −8.67 |
100 | 100.69 ± 4.60 | 4.57 | 0.69 | 99.43 ± 2.37 | 2.38 | −0.57 | 101.27 ± 3.73 | 3.69 | 1.27 | 100.46 ± 3.55 | 3.53 | 0.46 | |
800 | 840.36 ± 14.60 | 1.74 | 5.05 | 836.68 ± 18.23 | 2.18 | 4.59 | 842.71 ± 23.42 | 2.78 | 5.34 | 839.92 ± 18.69 | 2.22 | 4.99 | |
NKT | 10 | 8.60 ± 0.39 | 4.56 | −13.97 | 8.46 ± 0.48 | 5.69 | −15.44 | 8.85 ± 0.08 | 0.95 | −11.51 | 8.60 ± 0.08 | 0.89 | −13.98 |
100 | 98.23 ± 3.40 | 3.46 | −1.76 | 98.99 ± 3.66 | 3.69 | −1.01 | 101.72 ± 3.81 | 3.75 | 1.72 | 99.65 ± 3.68 | 3.69 | −0.35 | |
800 | 831.78 ± 19.20 | 2.31 | 3.97 | 809.02 ± 32.33 | 3.98 | 1.13 | 819.4 ± 8.84 | 1.08 | 2.42 | 820.07 ± 22.64 | 2.76 | 2.51 | |
CYP | 10 | 8.49 ± 0.55 | 6.45 | −15.11 | 8.67 ± 0.49 | 5.63 | −13.29 | 9.27 ± 0.86 | 9.26 | −7.29 | 8.81 ± 0.05 | 0.58 | −11.90 |
100 | 97.75 ± 1.32 | 1.35 | −2.25 | 101.08 ± 1.27 | 1.26 | 1.08 | 99.85 ± 1.74 | 1.74 | −0.15 | 99.56 ± 1.97 | 1.98 | −0.44 | |
800 | 816.27 ± 24.25 | 2.97 | 2.03 | 839.54 ± 34.55 | 4.12 | 4.94 | 835.68 ± 43.43 | 5.20 | 4.46 | 830.5 ± 34.47 | 4.15 | 3.81 |
Day 1 | Day 2 | Day 3 | Inter-day | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Analytes | Spiked Conc. (ng/mL) | Mean±SD (ng/mL) | RSD(%) | RE(%) | Mean±SD (ng/mL) | RSD(%) | RE(%) | Mean±SD (ng/mL) | RSD(%) | RE(%) | Mean±SD (ng/mL) | RSD(%) | RE(%) |
SA | 10 | 10.20 ± 0.33 | 3.25 | 2.02 | 10.20 ± 0.36 | 3.59 | 1.97 | 9.27 ± 0.21 | 2.25 | −7.34 | 9.89 ± 0.30 | 3.02 | −1.12 |
100 | 107.11 ± 4.87 | 4.55 | 7.11 | 94.00 ± 2.24 | 2.38 | −6.00 | 92.26 ± 3.27 | 3.55 | −7.74 | 97.79 ± 3.46 | 3.49 | −2.21 | |
800 | 770.88 ± 27.38 | 3.55 | −3.64 | 767.86 ± 32.04 | 4.17 | −4.02 | 703.46 ± 25.53 | 3.63 | −12.07 | 747.40 ± 28.32 | 3.78 | −6.57 | |
NBP | 10 | 9.81 ± 0.35 | 3.59 | −1.90 | 10.64 ± 0.45 | 4.25 | 6.42 | 9.42 ± 0.22 | 2.32 | −5.76 | 9.96 ± 0.34 | 3.39 | −0.41 |
100 | 106.47 ± 3.18 | 2.99 | 6.47 | 94.27 ± 2.12 | 2.24 | −5.73 | 92.39 ± 2.62 | 2.83 | −7.61 | 97.71 ± 2.64 | 2.69 | −2.29 | |
800 | 768.72 ± 33.47 | 4.35 | −3.91 | 771.41 ± 35.18 | 4.56 | −3.57 | 714.29 ± 36.62 | 5.13 | −10.71 | 751.47 ± 35.09 | 4.68 | −6.07 | |
LIG | 10 | 9.38 ± 0.37 | 3.95 | −6.15 | 9.73 ± 0.28 | 2.91 | −2.74 | 8.73 ± 0.32 | 3.66 | −12.7 | 9.28 ± 0.32 | 3.51 | −7.20 |
100 | 106.81 ± 4.83 | 4.52 | 6.81 | 93.92 ± 2.24 | 2.38 | −6.08 | 90.81 ± 3.13 | 3.45 | −9.19 | 97.18 ± 3.40 | 3.45 | −2.82 | |
800 | 809.52 ± 32.48 | 4.01 | 1.19 | 803.00 ± 42.98 | 5.35 | 0.37 | 731.19 ± 31.90 | 4.36 | −8.6 | 781.24 ± 35.78 | 4.58 | −2.35 | |
BDPH | 10 | 9.70 ± 0.56 | 5.74 | −2.98 | 10.26 ± 0.28 | 2.77 | 2.61 | 8.78 ± 0.37 | 4.25 | −12.24 | 9.58 ± 0.40 | 4.25 | −4.21 |
100 | 102.51 ± 3.12 | 3.05 | 2.51 | 93.16 ± 2.79 | 3.00 | −6.84 | 89.32 ± 3.26 | 3.65 | −10.68 | 95.00 ± 3.06 | 3.23 | −5.00 | |
800 | 770.61 ± 25.70 | 3.33 | −3.67 | 793.52 ± 35.03 | 4.41 | −0.81 | 719.14 ± 24.01 | 3.34 | −10.11 | 761.09 ± 28.24 | 3.70 | −4.86 | |
CYT | 10 | 10.00 ± 0.28 | 2.81 | −0.02 | 10.40 ± 0.39 | 3.75 | 4.02 | 9.85 ± 0.23 | 2.31 | −1.52 | 10.08 ± 0.30 | 2.96 | 0.83 |
100 | 106.11 ± 4.24 | 4.00 | 6.11 | 94.56 ± 2.94 | 3.11 | −5.44 | 96.76 ± 3.46 | 3.58 | −3.24 | 99.15 ± 3.55 | 3.56 | −0.85 | |
800 | 781.57 ± 25.55 | 3.27 | −2.30 | 776.37 ± 44.71 | 5.76 | −2.95 | 762.13 ± 39.57 | 5.19 | −4.73 | 773.36 ± 36.61 | 4.74 | −3.33 | |
CYP | 10 | 8.56 ± 0.94 | 10.98 | −14.42 | 8.72 ± 0.74 | 8.45 | −12.80 | 9.25 ± 1.09 | 11.75 | −7.49 | 8.84 ± 0.92 | 10.39 | −11.57 |
100 | 96.88 ± 3.86 | 3.98 | −3.12 | 87.57 ± 2.30 | 2.62 | −12.43 | 84.99 ± 4.46 | 5.25 | −15.00 | 89.82 ± 3.54 | 3.95 | −10.18 | |
800 | 751.52 ± 21.48 | 2.86 | −6.06 | 798.13 ± 50.76 | 6.36 | −0.23 | 726.66 ± 40.08 | 5.52 | −9.17 | 758.77 ± 37.44 | 4.91 | −5.15 |
Matrix Effect | Recovery | ||||
---|---|---|---|---|---|
Analytes | Spiked Conc. (ng/mL) | Mean ± SD (ng/mL) | RSD(%) | Mean ± SD (ng/mL) | RSD(%) |
FA | 10 | 116.61 ± 2.78 | 2.38 | 85.29 ± 2.11 | 2.47 |
100 | 104.11 ± 5.46 | 5.24 | 95.27 ± 5.80 | 6.09 | |
800 | 98.58 ± 3.40 | 3.45 | 102.51 ± 3.92 | 3.82 | |
SA | 10 | 104.60 ± 3.42 | 3.27 | 97.34 ± 2.38 | 2.44 |
100 | 101.09 ± 4.93 | 4.88 | 104.04 ± 0.67 | 0.64 | |
800 | 101.34 ± 1.39 | 1.37 | 100.42 ± 2.57 | 2.56 | |
NBP | 10 | 99.28 ± 1.08 | 1.09 | 100.50 ± 1.24 | 1.24 |
100 | 93.90 ± 0.71 | 0.76 | 105.39 ± 2.08 | 1.98 | |
800 | 99.78 ± 1.46 | 1.46 | 99.41 ± 4.44 | 4.47 | |
LIG | 10 | 99.71 ± 0.22 | 0.22 | 99.74 ± 0.07 | 0.07 |
100 | 97.98 ± 2.85 | 2.91 | 102.63 ± 1.89 | 1.85 | |
800 | 97.17 ± 1.27 | 1.30 | 102.78 ± 2.42 | 2.36 | |
BDPH | 10 | 98.33 ± 0.51 | 0.52 | 102.54 ± 0.94 | 0.91 |
100 | 94.16 ± 2.24 | 2.38 | 103.14 ± 5.51 | 5.34 | |
800 | 95.99 ± 3.99 | 4.16 | 95.94 ± 4.32 | 4.50 | |
CYT | 10 | 95.23 ± 0.94 | 0.99 | 108.49 ± 2.88 | 2.65 |
100 | 97.05 ± 0.48 | 0.49 | 102.68 ± 1.48 | 1.44 | |
800 | 97.35 ± 4.56 | 4.68 | 103.61 ± 1.59 | 1.53 | |
NKT | 10 | 97.85 ± 2.41 | 2.46 | 101.40 ± 0.47 | 0.46 |
100 | 101.34 ± 2.87 | 2.84 | 102.43 ± 3.18 | 3.10 | |
800 | 101.44 ± 2.61 | 2.57 | 101.65 ± 2.85 | 2.80 | |
CYP | 10 | 104.94 ± 2.09 | 1.99 | 97.19 ± 2.22 | 2.28 |
100 | 97.46 ± 3.43 | 3.52 | 103.91 ± 2.26 | 2.17 | |
800 | 104.63 ± 1.53 | 1.46 | 98.44 ± 2.74 | 2.78 |
Matrix Effect | Recovery | ||||
---|---|---|---|---|---|
Analytes | Spiked Conc. (ng/mL) | Mean ± SD (ng/mL) | RSD(%) | Mean ± SD (ng/mL) | RSD(%) |
SA | 10 | 92.55 ± 0.32 | 0.35 | 86.75 ± 0.80 | 0.92 |
100 | 94.89 ± 2.90 | 3.06 | 97.16 ± 6.39 | 6.58 | |
800 | 102.12 ± 3.35 | 3.28 | 98.70 ± 1.43 | 1.45 | |
NBP | 10 | 96.96 ± 0.92 | 0.95 | 86.95 ± 10.17 | 11.69 |
100 | 94.83 ± 1.82 | 1.92 | 88.12 ± 13.12 | 14.89 | |
800 | 103.36 ± 1.42 | 1.38 | 98.21 ± 2.20 | 2.24 | |
LIG | 10 | 99.54 ± 3.49 | 3.51 | 87.34 ± 2.79 | 3.19 |
100 | 95.32 ± 2.38 | 2.50 | 101.33 ± 3.86 | 3.81 | |
800 | 100.10 ± 1.91 | 1.91 | 98.33 ± 3.11 | 3.17 | |
BDPH | 10 | 102.78 ± 6.59 | 6.41 | 87.74 ± 12.13 | 13.82 |
100 | 97.30 ± 1.85 | 1.90 | 89.55 ± 12.28 | 13.72 | |
800 | 101.85 ± 2.15 | 2.11 | 98.00 ± 2.16 | 2.21 | |
CYT | 10 | 87.30 ± 3.77 | 4.32 | 97.28 ± 12.93 | 13.29 |
100 | 95.68 ± 1.19 | 1.25 | 91.29 ± 10.96 | 12.01 | |
800 | 99.56 ± 3.53 | 3.55 | 100.20 ± 2.06 | 2.06 | |
CYP | 10 | 97.27 ± 2.95 | 3.03 | 84.96 ± 9.73 | 11.46 |
100 | 86.62 ± 11.35 | 13.11 | 102.39 ± 9.33 | 9.12 | |
800 | 101.45 ± 2.03 | 2.00 | 107.23 ± 13.05 | 12.17 |
Room Temperature for 24 h | At −80 °C for 30 Days | Three Freeze-thaw Cycles | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Analytes | Spiked Conc. (ng/mL) | Mean ± SD (ng/mL) | RSD (%) | RE (%) | Mean ± SD (ng/mL) | RSD (%) | RE (%) | Mean ± SD (ng/mL) | RSD (%) | RE (%) |
FA | 10 | 8.79 ± 0.27 | 3.04 | −12.11 | 8.77 ± 0.35 | 3.97 | −12.34 | 8.40 ± 0.15 | 1.83 | −15.99 |
100 | 85.72 ± 5.69 | 6.64 | −14.28 | 87.07 ± 4.59 | 5.27 | −12.93 | 89.87 ± 2.25 | 2.50 | −10.13 | |
800 | 759.35 ± 29.99 | 3.95 | −5.08 | 802.77 ± 11.52 | 1.43 | 0.35 | 729.41 ± 12.38 | 1.70 | −8.82 | |
SA | 10 | 11.22 ± 0.43 | 3.82 | 12.24 | 10.54 ± 0.22 | 2.07 | 5.38 | 11.16 ± 0.61 | 5.47 | 11.62 |
100 | 106.01 ± 1.91 | 1.80 | 6.01 | 108.86 ± 0.82 | 0.75 | 8.86 | 105.69 ± 3.65 | 3.45 | 5.69 | |
800 | 806.11 ± 27.70 | 3.44 | 0.76 | 801.30 ± 17.63 | 2.20 | 0.16 | 816.77 ± 7.32 | 0.90 | 2.10 | |
NBP | 10 | 9.77 ± 0.06 | 0.57 | −2.35 | 9.87 ± 0.09 | 0.87 | −1.32 | 9.71 ± 0.06 | 0.58 | −2.87 |
100 | 111.97 ± 1.98 | 1.76 | 11.97 | 113.29 ± 1.60 | 1.41 | 13.26 | 107.04 ± 2.83 | 2.64 | 7.04 | |
800 | 838.88 ± 11.37 | 1.36 | 4.86 | 830.25 ± 21.08 | 2.53 | 4.16 | 830.01 ± 21.06 | 2.54 | 3.75 | |
LIG | 10 | 10.68 ± 0.75 | 7.02 | 6.76 | 10.41 ± 0.62 | 5.97 | 4.10 | 9.20 ± 0.81 | 8.83 | −7.95 |
100 | 111.69 ± 3.33 | 2.98 | 11.69 | 114.18 ± 1.70 | 1.49 | 14.18 | 110.57 ± 2.73 | 2.47 | 10.57 | |
800 | 804.52 ± 10.70 | 1.33 | 0.56 | 813.62 ± 8.03 | 0.99 | 1.70 | 811.95 ± 11.88 | 1.46 | 1.49 | |
BDPH | 10 | 11.05 ± 0.60 | 5.42 | 10.50 | 11.34 ± 0.26 | 2.29 | 13.44 | 10.70 ± 0.17 | 1.56 | 7.00 |
100 | 100.05 ± 2.12 | 2.11 | 0.05 | 104.30 ± 0.98 | 0.94 | 4.30 | 103.1 ± 4.50 | 4.36 | 3.10 | |
800 | 754.77 ± 28.27 | 3.75 | −5.65 | 759.20 ± 9.40 | 1.24 | −5.10 | 770.56 ± 8.90 | 1.16 | −3.68 | |
CYT | 10 | 9.78 ± 0.08 | 0.83 | −2.17 | 9.86 ± 0.35 | 3.59 | −1.42 | 9.79 ± 0.09 | 0.88 | −2.05 |
100 | 103.59 ± 3.83 | 3.69 | 3.59 | 99.21 ± 3.23 | 3.25 | −0.79 | 101.18 ± 4.77 | 4.71 | 1.18 | |
800 | 853.39 ± 33.91 | 3.97 | 6.67 | 866.15 ± 16.88 | 1.95 | 8.27 | 854.54 ± 6.58 | 0.77 | 6.82 | |
NKT | 10 | 9.83 ± 0.11 | 1.08 | −1.66 | 9.67 ± 0.04 | 0.40 | −3.32 | 9.66 ± 0.07 | 0.75 | −3.38 |
100 | 104.65 ± 4.89 | 4.68 | 4.65 | 103.29 ± 1.58 | 1.53 | 3.29 | 101.77 ± 2.21 | 2.17 | 1.77 | |
800 | 799.56 ± 16.00 | 2.00 | −0.06 | 830.96 ± 2.56 | 0.31 | 3.87 | 808.31 ± 31.1 | 3.85 | 1.04 | |
CYP | 10 | 10.37 ± 0.12 | 1.20 | 3.69 | 9.93 ± 0.03 | 0.30 | −0.73 | 10.41 ± 0.09 | 0.85 | 4.06 |
100 | 107.47 ± 4.16 | 3.87 | 7.47 | 105.42 ± 1.41 | 1.34 | 5.42 | 106.74 ± 1.81 | 1.70 | 6.74 | |
800 | 819.35 ± 18.63 | 2.27 | 2.42 | 854.21 ± 25.57 | 2.99 | 6.78 | 858.57 ± 19.45 | 2.27 | 7.32 |
Room Temperature for 24 h | At −80 °C for 30 Days | Three Freeze-thaw Cycles | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Analytes | Spiked Conc. (ng/mL) | Mean ± SD (ng/mL) | RSD(%) | RE(%) | Mean ± SD (ng/mL) | RSD(%) | RE(%) | Mean ± SD (ng/mL) | RSD(%) | RE(%) |
SA | 10 | 11.57 ± 0.34 | 2.94 | 15.71 | 11.78 ± 0.36 | 3.05 | 17.76 | 11.36 ± 0.49 | 4.31 | 13.62 |
100 | 94.24 ± 3.37 | 3.58 | −5.76 | 118.32 ± 3.48 | 2.94 | 18.32 | 106.00 ± 13.18 | 12.43 | 6.00 | |
800 | 695.93 ± 16.75 | 2.41 | −13.01 | 784.94 ± 58.92 | 7.51 | −1.88 | 699.79 ± 22.43 | 3.20 | −12.53 | |
NBP | 10 | 11.79 ± 0.83 | 7.06 | 17.94 | 11.76 ± 0.49 | 4.18 | 17.60 | 11.34 ± 0.63 | 5.58 | 13.41 |
100 | 96.12 ± 4.77 | 4.96 | −3.88 | 116.79 ± 3.38 | 2.89 | 16.79 | 106.56 ± 12.70 | 11.92 | 6.56 | |
800 | 690.98 ± 12.03 | 1.74 | −13.63 | 791.92 ± 71.99 | 9.09 | −1.01 | 707.28 ± 27.04 | 3.82 | −11.59 | |
LIG | 10 | 11.55 ± 0.39 | 3.41 | 15.45 | 11.83 ± 0.54 | 4.58 | 18.31 | 11.66 ± 0.44 | 3.74 | 16.55 |
100 | 94.22 ± 3.24 | 3.44 | −5.78 | 117.34 ± 2.70 | 2.30 | 17.34 | 99.84 ± 11.11 | 11.13 | −0.16 | |
800 | 754.92 ± 2.98 | 0.39 | −5.63 | 800.66 ± 75.63 | 9.45 | 0.08 | 744.87 ± 35.58 | 4.78 | −6.89 | |
BDPH | 10 | 11.34 ± 0.82 | 7.24 | 13.37 | 9.36 ± 1.43 | 15.28 | −6.42 | 8.45 ± 1.46 | 17.31 | −15.47 |
100 | 86.68 ± 1.94 | 2.24 | −13.32 | 108.47 ± 4.73 | 4.36 | 8.47 | 97.54 ± 10.22 | 10.47 | −2.46 | |
800 | 754.64 ± 10.13 | 1.34 | −5.67 | 760.72 ± 19.30 | 2.54 | −4.91 | 751.83 ± 36.02 | 4.79 | −6.02 | |
CYT | 10 | 11.32 ± 0.59 | 5.19 | 13.21 | 11.66 ± 0.40 | 3.41 | 16.60 | 11.34 ± 0.14 | 1.23 | 13.44 |
100 | 91.59 ± 2.13 | 2.33 | −8.41 | 115.20 ± 1.63 | 1.41 | 15.20 | 104.71 ± 11.23 | 10.73 | 4.71 | |
800 | 720.43 ± 17.57 | 2.44 | −9.95 | 833.54 ± 64.02 | 7.68 | 4.19 | 717.10 ± 36.67 | 5.11 | −10.36 | |
CYP | 10 | 10.98 ± 0.51 | 4.64 | 9.84 | 11.88 ± 0.30 | 2.55 | 18.76 | 11.17 ± 0.55 | 4.96 | 11.74 |
100 | 86.69 ± 3.07 | 3.54 | −13.31 | 114.96 ± 4.89 | 4.25 | 14.96 | 105.74 ± 13.31 | 12.59 | 5.74 | |
800 | 665.61 ± 38.39 | 5.77 | −16.80 | 783.49 ± 58.64 | 7.49 | −2.06 | 678.78 ± 13.11 | 1.93 | −15.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Guo, L.; Qiu, F.; Gong, M. Anti-Migraine Effect of the Herbal Combination of Chuanxiong Rhizoma and Cyperi Rhizoma and UPLC-MS/MS Method for the Simultaneous Quantification of the Active Constituents in Rat Serum and Cerebral Cortex. Molecules 2019, 24, 2230. https://doi.org/10.3390/molecules24122230
Wu S, Guo L, Qiu F, Gong M. Anti-Migraine Effect of the Herbal Combination of Chuanxiong Rhizoma and Cyperi Rhizoma and UPLC-MS/MS Method for the Simultaneous Quantification of the Active Constituents in Rat Serum and Cerebral Cortex. Molecules. 2019; 24(12):2230. https://doi.org/10.3390/molecules24122230
Chicago/Turabian StyleWu, Sha, Li Guo, Feng Qiu, and Muxin Gong. 2019. "Anti-Migraine Effect of the Herbal Combination of Chuanxiong Rhizoma and Cyperi Rhizoma and UPLC-MS/MS Method for the Simultaneous Quantification of the Active Constituents in Rat Serum and Cerebral Cortex" Molecules 24, no. 12: 2230. https://doi.org/10.3390/molecules24122230
APA StyleWu, S., Guo, L., Qiu, F., & Gong, M. (2019). Anti-Migraine Effect of the Herbal Combination of Chuanxiong Rhizoma and Cyperi Rhizoma and UPLC-MS/MS Method for the Simultaneous Quantification of the Active Constituents in Rat Serum and Cerebral Cortex. Molecules, 24(12), 2230. https://doi.org/10.3390/molecules24122230