Metabolomics for Age Discrimination of Ginseng Using a Multiplex Approach to HR-MAS NMR Spectroscopy, UPLC–QTOF/MS, and GC × GC–TOF/MS
Abstract
:1. Introduction
2. Results
2.1. HR-MAS NMR-Based Metabolomics Analysis to Discriminate the Age of Ginseng
2.2. UPLC–QTOF/MS-Based Metabolomics to Discriminate the Age of Ginseng
2.3. GC × GC–TOF/MS-Based Metabolomics to Discriminate the Age of Ginseng
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Sample Preparation
4.3. NMR Experiments and Data Analysis
4.4. Reagents and the Extraction of Ginseng for UPLC–QTOF/MS Analysis
4.5. UPLC–QTOF/MS Experiments and Data Analysis
4.6. Metabolite Extraction and Chemical Derivatization of Ginseng Samples for GC × GC–TOF/MS Analysis
4.7. GC × GC–TOF/MS Experiments and Data Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ESI | Electrospray ionization |
MS | Mass spectrometry |
RT | Retention time |
References
- Yun, T.K. Brief Introduction of Panax ginseng C.A. Meyer. J. Korean Med Sci. 2001, 16, S3–S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.Y.; Cho, J.-G.; Bang, M.-H.; Han, M.-W.; Lee, M.-H.; Yang, D.-C.; Baek, N.-I. Discrimination of Korean ginseng (Panax ginseng) roots using rapid resolution LC-QTOF/MS combined by multivariate statistical analysis. Food Sci. Biotechnol. 2011, 20, 1119–1124. [Google Scholar] [CrossRef]
- Lin, W.-N.; Lu, H.-Y.; Lee, M.-S.; Yang, S.-Y.; Chen, H.-J.; Chang, Y.-S.; Chang, W.-T. Evaluation of the cultivation age of dried ginseng radix and its commercial products by using 1H-NMR fingerprint analysis. Am. J. Chin. Med. 2010, 38, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.C.; Harkey, M.R.; Henderson, G.L.; Gershwin, M.E.; Stern, J.S.; Hackman, R.M. Quantitative determination of ginsenosides by high-performance liquid chromatography-tandem mass spectrometry. Phytochem. Anal. 2001, 12, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.W.; Han, S.B.; Park, I.H.; Kim, J.M.; Park, M.K.; Park, J.H. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J. Chromatogr. A 2001, 921, 335–339. [Google Scholar] [CrossRef]
- Yoon, D.; Choi, H.; Noh, H.; Ok, Y.J.; Oh, S.; Ma, S.; Kim, S. Toxicological Assessment of Microcystin-LR to Zebrafish (Danio rerio) Using Metabolomics. Bull. Korean Chem. Soc. 2017, 38, 459–465. [Google Scholar] [CrossRef]
- Shin, Y.-S.; Bang, K.-H.; In, D.-S.; Kim, O.-T.; Hyun, D.-Y.; Ahn, I.-O.; Ku, B.C.; Kim, S.-W.; Seong, N.-S.; Cha, S.-W.; et al. Fingerprinting Analysis of Fresh Ginseng Roots of Different Ages Using 1H-NMR Spectroscopy and Principal Components Analysis. Arch. Pharmacal Res. 2007, 30, 1625–1628. [Google Scholar] [CrossRef]
- Kim, N.; Kim, K.; Choi, B.Y.; Lee, D.H.; Shin, Y.-S.; Bang, K.-H.; Cha, S.-W.; Lee, J.W.; Choi, H.-K.; Jang, D.S.; et al. Metabolomic Approach for Age Discrimination of Panax ginseng Using UPLC–Q-Tof MS. J. Agric. Food. Chem. 2011, 59, 10435–10441. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-O.; Shin, Y.-S.; Hyun, S.-H.; Cho, S.; Bang, K.-H.; Lee, D.; Choi, S.P.; Choi, H.-K. NMR-based metabolic profiling and differentiation of ginseng roots according to cultivation ages. J. Pharm. Biomed. Anal. 2012, 58, 19–26. [Google Scholar] [CrossRef]
- Kim, N.; Kim, K.; Lee, D.H.; Shin, Y.-S.; Bang, K.-H.; Cha, S.-W.; Lee, J.W.; Choi, H.-K.; Hwang, B.Y.; Lee, D. Nontargeted Metabolomics Approach for Age Differentiation and Structure Interpretation of Age-Dependent Key Constituents in Hairy Roots of Panax ginseng. J. Nat. Prod. 2012, 75, 1777–1784. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Wang, Y.; Abozeid, A.; Zu, Y.-G.; Zhang, X.-N.; Tang, Z.-H. GC-MS Metabolomic Analysis to Reveal the Metabolites and Biological Pathways Involved in the Developmental Stages and Tissue Response of Panax ginseng. Molecules 2017, 22, 496. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, H.; Tan, J.; Wang, C.; Wang, H.; Wu, F.; Dong, Q.; Liu, Y.; Li, P.; Liu, J. UPLC–QTOF/MS-Based Nontargeted Metabolomic Analysis of Mountain-and Garden-Cultivated Ginseng of Different Ages in Northeast China. Molecules 2019, 24, 33. [Google Scholar] [CrossRef] [PubMed]
- Kruger, N.J.; Ratcliffe, G.; Krishnan, P. Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 2004, 56, 255–265. [Google Scholar] [Green Version]
- Hasani, A.; Kariminik, A.; Issazadeh, K. Streptomycetes: characteristics and their antimicrobial activities. Int. J. Adv. Biol. Biomed. Res. 2014, 2, 63–75. [Google Scholar]
- Rajnochová Svobodová, A.; Ryšavá, A.; Psotová, M.; Kosina, P.; Zálešák, B.; Ulrichová, J.; Vostálová, J. The phototoxic potential of the flavonoids, taxifolin and quercetin. Photochem. Photobiol. 2017, 93, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Happyana, N.; Muntendam, R.; Kayser, O. Metabolomics as a Bioanalytical Tool for Characterization of Medicinal Plants and Their Phytomedical Preparations. Pharm. Biochem. 2012, 527–552. [Google Scholar]
- Choi, K.-T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacol. Sin. 2008, 29, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-M.; Qu, S.-C.; Sui, D.-Y.; Yu, X.-F.; Lv, Z.-Z. [Effects of ginsenoside-Rb on blood lipid metabolism and anti-oxidation in hyperlipidemia rats]. China J. Chin. Mater. Medica 2004, 29, 1085–1088. [Google Scholar]
- Wheelock, Å.M.; Wheelock, C.E. Trials and tribulations of ‘omics data analysis: assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Mol. BioSyst. 2013, 9, 2589. [Google Scholar] [CrossRef]
- Lee, J.W.; Choi, B.-R.; Kim, Y.-C.; Choi, D.J.; Lee, Y.-S.; Kim, G.-S.; Baek, N.-I.; Kim, S.-Y.; Lee, D.Y. Comprehensive profiling and quantification of ginsenosides in the root, stem, leaf, and berry of Panax ginseng by UPLC–QTOF/MS. Molecules 2017, 22, 2147. [Google Scholar] [CrossRef]
- Wiklund, S.; Johansson, E.; Sjöström, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 80, 115–122. [Google Scholar] [CrossRef]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Suzuki, I.; Nakamura, T.; Bernier, F.; Aoshima, K.; Oda, Y. Identification of a new plasma biomarker of Alzheimer’s disease using metabolomics technology. J. Lipid Res. 2012, 53, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Broadhurst, D.I.; Wilson, M.; Wishart, D.S. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 2013, 9, 280–299. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Wu, C.-L.; Cory, D.; González, R.G.; Bielecki, A.; Cheng, L.L. High-resolution magic angle spinning proton NMR analysis of human prostate tissue with slow spinning rates. Magn. Reson. Med. 2003, 50, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, O.; Mannina, L.; Sobolev, A.P.; Segre, A.; Luisi, P. Multilamellar Liposomes Formed by Phosphatidyl Nucleosides: An NMR−HR-MAS Characterization. Langmuir 2004, 20, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Fukusaki, E.; Jumtee, K.; Bamba, T.; Yamaji, T.; Kobayashi, A. Metabolic Fingerprinting and Profiling of Arabidopsis thaliana Leaf and its Cultured Cells T87 by GC/MS. Zeitschrift für Naturforschung C 2006, 61, 267–272. [Google Scholar] [CrossRef]
- González-Domínguez, R.; García-Barrera, T.; Gómez-Ariza, J.L. Using direct infusion mass spectrometry for serum metabolomics in Alzheimer’s disease. Anal. Bioanal. Chem. 2014, 406, 7137–7148. [Google Scholar] [CrossRef]
- Kim, J.K.; Choi, S.R.; Lee, J.; Park, S.-Y.; Song, S.Y.; Na, J.; Kim, S.W.; Kim, S.-J.; Nou, I.-S.; Lee, Y.H. Metabolic differentiation of diamondback moth (Plutella xylostella (L.)) resistance in cabbage (Brassica oleracea L. ssp. capitata). J. Agric. Food. Chem. 2013, 61, 11222–11230. [Google Scholar] [CrossRef] [PubMed]
- Mun, J.-H.; Lee, H.; Yoon, D.; Kim, B.-S.; Kim, M.-B.; Kim, S. Discrimination of basal cell carcinoma from normal skin tissue using high-resolution magic angle spinning 1H NMR spectroscopy. PLOS ONE 2016, 11, e0150328. [Google Scholar] [CrossRef]
- Raja, G.; Kim, S.; Yoon, D.; Yoon, C.; Kim, S. 1H-NMR-based Metabolomics Studies of the Toxicity of Mesoporous Carbon Nanoparticles in Zebrafish (Danio rerio). Bull. Korean Chem. Soc. 2017, 38, 271–277. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.-Y.; Lee, S.M.; Lim, S.-H.; Kim, H.J.; Oh, S.-D.; Yeo, Y.; Cho, H.S.; Ha, S.-H. Unintended polar metabolite profiling of carotenoid-biofortified transgenic rice reveals substantial equivalence to its non-transgenic counterpart. Plant Biotechnol. Rep. 2013, 7, 121–128. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.-Y.; Yeo, Y.; Cho, H.S.; Kim, Y.B.; Bae, H.; Park, C.H.; Lee, J.-H.; Park, S.U. Metabolic profiling of millet (Panicum miliaceum) using gas chromatography time of flight mass spectrometry (GC–TOFMS) for quality assessmentt. Plant Omics J. 2013, 6, 73–78. [Google Scholar]
(5 Years Old)/(4 Years Old) | (6 Years Old)/(5 Years Old) | ||
---|---|---|---|
Fumarate ** | 0.7182 | Glucose ** | 0.4695 |
Valine * | 0.8432 | Glycerophosphocholine | 0.7069 |
4-Aminobutyrate * | 0.8604 | Malate ** | 0.7503 |
Sucrose | 0.8878 | Aspartate ** | 0.8079 |
Isoleucine | 0.8908 | Glutamate | 0.8772 |
Leucine * | 0.9161 | Proline | 0.9321 |
Glutamine | 0.9200 | Inositol | 0.9888 |
Phenylalanine | 0.9269 | Leucine | 1.0034 |
Choline | 0.9316 | Threonine | 1.0220 |
Arginine | 0.9591 | Isoleucine | 1.0240 |
Alanine | 0.9794 | Phosphocholine | 1.0241 |
Proline | 0.9832 | Ethanolamine | 1.0373 |
Ethanolamine | 0.9927 | Phenylalanine | 1.0429 |
Phosphocholine | 1.0485 | Arginine | 1.0586 |
Malate | 1.0586 | Asparagine | 1.0754 |
Threonine | 1.0891 | Glutamine | 1.0774 |
Tyrosine | 1.0971 | Fumarate | 1.0892 |
Aspartate * | 1.1649 | Sucrose | 1.1080 |
Glycerophosphocholine | 1.2048 | Valine * | 1.1175 |
Inositol | 1.2074 | Tyrosine * | 1.1258 |
Glutamate * | 1.2757 | Alanine | 1.1412 |
Asparagine ** | 1.3251 | 4-Aminobutyrate | 1.1817 |
Glucose | 1.4969 | Choline ** | 1.3195 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, D.; Choi, B.-R.; Ma, S.; Lee, J.W.; Jo, I.-H.; Lee, Y.-S.; Kim, G.-S.; Kim, S.; Lee, D.Y. Metabolomics for Age Discrimination of Ginseng Using a Multiplex Approach to HR-MAS NMR Spectroscopy, UPLC–QTOF/MS, and GC × GC–TOF/MS. Molecules 2019, 24, 2381. https://doi.org/10.3390/molecules24132381
Yoon D, Choi B-R, Ma S, Lee JW, Jo I-H, Lee Y-S, Kim G-S, Kim S, Lee DY. Metabolomics for Age Discrimination of Ginseng Using a Multiplex Approach to HR-MAS NMR Spectroscopy, UPLC–QTOF/MS, and GC × GC–TOF/MS. Molecules. 2019; 24(13):2381. https://doi.org/10.3390/molecules24132381
Chicago/Turabian StyleYoon, Dahye, Bo-Ram Choi, Seohee Ma, Jae Won Lee, Ick-Hyun Jo, Young-Seob Lee, Geum-Soog Kim, Suhkmann Kim, and Dae Young Lee. 2019. "Metabolomics for Age Discrimination of Ginseng Using a Multiplex Approach to HR-MAS NMR Spectroscopy, UPLC–QTOF/MS, and GC × GC–TOF/MS" Molecules 24, no. 13: 2381. https://doi.org/10.3390/molecules24132381
APA StyleYoon, D., Choi, B.-R., Ma, S., Lee, J. W., Jo, I.-H., Lee, Y.-S., Kim, G.-S., Kim, S., & Lee, D. Y. (2019). Metabolomics for Age Discrimination of Ginseng Using a Multiplex Approach to HR-MAS NMR Spectroscopy, UPLC–QTOF/MS, and GC × GC–TOF/MS. Molecules, 24(13), 2381. https://doi.org/10.3390/molecules24132381