A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C82(OH)22
Abstract
:1. Introduction
2. Gd@C82(OH)22 as a Novel Anti-Tumor Drug Candidate
2.1. Physicochemical Characteristics of Gd@C82(OH)22
2.2. Anti-Tumor Activity with High Efficiency and Low Toxicity
2.3. A Novel Anti-Tumor Mechanism by Gd@C82(OH)22: Encaging Tumors
2.4. Molecular Mechanism of Tumor Encaging: MMP Inactivation and Collagen Stabilization
3. An Inspiration for Novel Drug Design: The Advantages of Nanomedicine
3.1. Exploitation of Tumor Imprisonment: The Development of MMP Inhibitors
3.2. Failure of Broad-Spectrum MMP Inhibitors: The Dilemma of Classical Drug Design
3.3. Action Mode of Gd@C82(OH)22 Towards Key Biomolecules: The Advantages of Nanomedicine
4. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Jemal, A.; Grey, N.; Ferlay, J.; Forman, D. Global cancer transitions according to the human development index (2008-2030): A population-based study. Lancet Oncol. 2012, 13, 790–801. [Google Scholar] [CrossRef]
- Hannun, Y.A. Apoptosis and the dilemma of cancer chemotherapy. Blood 1997, 89, 1845–1853. [Google Scholar]
- Coates, A.; Abraham, S.; Kaye, S.B.; Sowerbutts, T.; Frewin, C.; Fox, R.M.; Tattersall, M.H.N. On the receiving end—patient perception of the side-effects of cancer chemotherapy. Eur. J. Cancer Clin. Oncol. 1983, 19, 203–208. [Google Scholar] [CrossRef]
- Shaffer, B.C.; Gillet, J.-P.; Patel, C.; Baer, M.R.; Bates, S.E.; Gottesman, M.M. Drug resistance: Still a daunting challenge to the successful treatment of AML. Drug Resist. Updat. 2012, 15, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Hou, Y.; Sun, W.; Yu, J.; Liu, X.; Niu, Y.; Lu, J.-J.; Chen, X. Natural products to prevent drug resistance in cancer chemotherapy: A review. Ann. N Y Acad. Sci. 2017, 1401, 19–27. [Google Scholar] [CrossRef]
- Ren, F.; Shen, J.; Shi, H.; Hornicek, F.J.; Kan, Q.; Duan, Z. Novel mechanisms and approaches to overcome multidrug resistance in the treatment of ovarian cancer. Biochim. Biophys. Acta 2016, 1866, 266–275. [Google Scholar] [CrossRef]
- Ren, Z.; Sun, J.; Sun, X.; Hou, H.; Li, K.; Ge, Q. Efficacy and safety of different molecular targeted agents based on chemotherapy for gastric cancer patients treatment: A network meta-analysis. Oncotarget 2017, 8, 48253–48262. [Google Scholar] [CrossRef]
- Shah, C.P.; Moreb, J.S. Cardiotoxicity due to targeted anticancer agents: A growing challenge. Ther. Adv. Cardiovasc. Dis. 2019, 13, 1753944719843435. [Google Scholar] [CrossRef]
- Zottel, A.; Videtic Paska, A.; Jovcevska, I. Nanotechnology meets oncology: Nanomaterials in brain cancer research, diagnosis and therapy. Materials (Basel) 2019, 12, 1588. [Google Scholar] [CrossRef]
- Jia, L.; Zhao, Y.L.; Liang, X.J. Fast evolving nanotechnology and relevant programs and entities in China. Nano Today 2011, 6, 6–11. [Google Scholar] [CrossRef]
- Minchin, R. Nanomedicine: Sizing up targets with nanoparticles. Nat nanotechnol 2008, 3, 12–13. [Google Scholar] [CrossRef]
- Kawasaki, E.S.; Player, A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 2005, 1, 101–109. [Google Scholar] [CrossRef]
- Wang, B.; He, X.; Zhang, Z.; Zhao, Y.; Feng, W. Metabolism of nanomaterials in vivo: Blood circulation and organ clearance. Acc. Chem. Res. 2012, 46, 761–769. [Google Scholar] [CrossRef]
- Ghosh, S.; Ghosh, S.; Sil, P.C. Role of nanostructures in improvising oral medicine. Toxicol. Rep. 2019, 6, 358–368. [Google Scholar] [CrossRef]
- Han, S.; Liu, Y.; Nie, X.; Xu, Q.; Jiao, F.; Li, W.; Zhao, Y.; Wu, Y.; Chen, C. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. Small 2012, 8, 1596–1606. [Google Scholar] [CrossRef]
- Miao, Q.H.; Xu, D.X.; Wang, Z.; Xu, L.; Wang, T.W.; Wu, Y.; Lovejoy, D.B.; Kalinowski, D.S.; Richardson, D.R.; Nie, G.J.; et al. Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents. Biomaterials 2010, 31, 7364–7375. [Google Scholar] [CrossRef]
- Maeda, H.; Bharate, G.Y.; Daruwalla, J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur. J. Pharm. Biopharm. 2009, 71, 409–419. [Google Scholar] [CrossRef]
- Tang, W.; Fan, W.; Lau, J.; Deng, L.; Shen, Z.; Chen, X. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 2019, 48, 2967–3014. [Google Scholar] [CrossRef]
- Ma, X.W.; Zhao, Y.L.; Liang, X.J. Nanodiamond delivery circumvents tumor resistance to doxorubicin. Acta Pharmacol. Sin. 2011, 32, 543–544. [Google Scholar] [CrossRef]
- Naz, S.; Shamoon, M.; Wang, R.; Zhang, L.; Zhou, J.; Chen, J. Advances in therapeutic implications of inorganic drug delivery nano-platforms for cancer. Int. J. Mol. Sci. 2019, 20, 965. [Google Scholar] [CrossRef]
- Ma, X.W.; Zhao, Y.L.; Liang, X.J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res. 2011, 44, 1114–1122. [Google Scholar] [CrossRef]
- Li, J.X. Nanotechnology-based platform for early diagnosis of cancer. Sci. Bull. 2015, 60, 488–490. [Google Scholar] [CrossRef]
- Wang, T.; Wang, C. Functional metallofullerene materials and their applications in nanomedicine, magnetics, and electronics. Small 2019, e1901522. [Google Scholar] [CrossRef]
- Chen, C.; Xing, G.; Wang, J.; Zhao, Y.; Li, B.; Tang, J.; Jia, G.; Wang, T.; Sun, J.; Xing, L.; et al. Multihydroxylated [Gd@C82(OH)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity. Nano Lett. 2005, 5, 2050–2057. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Li, B.; Yu, H.; Zhao, Y.; Sun, J.; Li, Y.; Xing, G.; Yuan, H.; Tang, J.; et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem. Pharmacol. 2006, 71, 872–881. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Ma, H.; Bai, H.; Liu, L.; Shu, C.; Li, H.; Wang, S.; Wang, C. Designing an Amino-Fullerene Derivative C70-(EDA)8 to Fight Superbacteria. ACS Appl. Mater. Interfaces 2019, 11, 14597–14607. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhen, M.; Ma, H.; Li, J.; Shu, C.; Wang, C. Inhalable gadofullerenol/[70] fullerenol as high-efficiency ROS scavengers for pulmonary fibrosis therapy. Nanomedicine 2018, 14, 1361–1369. [Google Scholar] [CrossRef]
- Li, R.; Zhen, M.; Guan, M.; Chen, D.; Zhang, G.; Ge, J.; Gong, P.; Wang, C.; Shu, C. A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C60-carboxyfullerenes. Biosens. Bioelectron. 2013, 47, 502–507. [Google Scholar] [CrossRef]
- Guan, M.; Zhou, Y.; Liu, S.; Chen, D.; Ge, J.; Deng, R.; Li, X.; Yu, T.; Xu, H.; Sun, D.; et al. Photo-triggered gadofullerene: Enhanced cancer therapy by combining tumor vascular disruption and stimulation of anti-tumor immune responses. Biomaterials 2019, 213, 119218. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Deng, R.; Zhen, M.; Li, J.; Guan, M.; Jia, W.; Li, X.; Zhang, Y.; Yu, T.; Zou, T.; et al. Amino acid functionalized gadofullerene nanoparticles with superior antitumor activity via destruction of tumor vasculature in vivo. Biomaterials 2017, 133, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Cain, H.; Macpherson, I.R.; Beresford, M.; Pinder, S.E.; Pong, J.; Dixon, J.M. Neoadjuvant Therapy in Early Breast Cancer: Treatment Considerations and Common Debates in Practice. Clin. Oncol. (R. Coll. Radiol.) 2017, 29, 642–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmink B1, W.J. Neoadjuvant therapy for melanoma: Is it ready for prime time? Lancet Oncol. 2019, 19, 30377–30378. [Google Scholar] [CrossRef]
- Assi, T.; El Rassy, E.; Farhat, F.; Kattan, J. Overview on the role of preoperative therapy in the management of kidney cancer. Clin. Transl. Oncol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, K.M.; Xing, G.M.; Yuan, H.; Jing, L.; Zhao, Y.L. Study of multihydroxylated processes of Gd@C82 by ICP-MASS. J. Radioanal. Nucl. Ch. 2007, 272, 537–540. [Google Scholar] [CrossRef]
- Tang, J.; Xing, G.M.; Zhao, Y.L.; Jing, L.; Gao, X.F.; Cheng, Y.; Yuan, H.; Zhao, F.; Chen, Z.; Meng, H.; et al. Periodical variation of electronic properties in polyhydroxylated metallofullerene materials. Adv. Mater. 2006, 18, 1458–1462. [Google Scholar] [CrossRef]
- Meng, J.; Liang, X.; Chen, X.; Zhao, Y. Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy. Integr. Biol. 2013, 5, 43–47. [Google Scholar] [CrossRef]
- Jiao, F.; Qu, Y.; Zhou, G.Q.; Liu, Y.; Li, W.; Ge, C.C.; Li, Y.F.; Hu, W.; Li, B.; Gao, Y.X.; et al. Modulation of oxidative stress by functionalized fullerene materials in the lung tissues of female C57/BL mice with a metastatic lewis lung carcinoma. J. Nanosci. Nanotechnol. 2010, 10, 8632–8637. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Y.; Nie, G. Antineoplastic activities of Gd@C82(OH)22 nanoparticles: Tumor microenvironment regulation. Sci. Chin. Life Sci. 2012, 55, 884–890. [Google Scholar] [CrossRef]
- Zhang, W.D.; Sun, B.Y.; Zhang, L.Z.; Zhao, B.L.; Nie, G.J.; Zhao, Y.L. Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans. Nanoscale 2011, 3, 2636–2641. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Xing, G.M.; Sun, B.Y.; Zhao, F.; Lei, H.; Li, W.; Song, Y.; Chen, Z.; Yuan, H.; Wang, X.X.; et al. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 2010, 4, 2773–2783. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Xing, G.M.; Blanco, E.; Song, Y.; Zhao, L.; Sun, B.; Li, X.; Wang, P.C.; Korotcov, A.; Li, W.; et al. Gadolinium metallofullerenol nanoparticles inhibit cancer metastasis through matrix metalloproteinase inhibition: Imprisoning instead of poisoning cancer cells. Nanomedicine 2012, 8, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiao, F.; Qiu, Y.; Li, W.; Lao, F.; Zhou, G.Q.; Sun, B.Y.; Xing, G.M.; Dong, J.Q.; Zhao, Y.L.; et al. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity. Biomaterials 2009, 30, 3934–3945. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Chen, Z.; Sun, B.; Dong, J.; Liu, J.; Zhou, H.; Wang, L.; Bai, R.; Miao, Q.; Zhao, Y.; et al. Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. Nanomedicine 2016, 12, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.-J.; Lao, F.; Meng, J.; Fu, P.P.; Zhao, Y.L.; Xing, G.M.; Gao, X.Y.; Sun, B.Y.; Wang, P.C.; Chen, C.Y.; et al. Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol. Pharmacol. 2008, 74, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Guo, M.; Wang, P.; Liu, J.; Xiao, Y.; Cheng, W.; Gao, J.; Hu, W.; Miao, Q.R. Gd-metallofullerenol nanoparticles cause intracellular accumulation of PDGFR-α and morphology alteration of fibroblasts. Nanoscale 2019, 11, 4743–4750. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xing, X.; Sun, B.; Zhao, Y.; Wu, Z. Metallofullerenol inhibits cellular iron uptake by inducing transferrin tetramerization. Chem. Asian J. 2017, 12, 2646–2651. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.; Qian, P.; Lu, X.; Sun, B.; Zhang, X.; Wang, L.; Gao, X.; Li, H.; Chen, Z.; et al. Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nat. Commun. 2015, 6, 5988. [Google Scholar] [CrossRef]
- Kang, S.G.; Zhou, G.; Yang, P.; Liu, Y.; Sun, B.; Huynh, T.; Meng, H.; Zhao, L.; Xing, G.; Chen, C.; et al. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine. Proc. Natl. Acad. Sci. USA 2012, 109, 15431–15436. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, H.; Wang, J.; Zhou, L.; Liu, S. Collagen stiffness promoted non-muscle-invasive bladder cancer progression to muscle-invasive bladder cancer. Oncol. Targets Ther. 2019, 12, 3441–3457. [Google Scholar] [CrossRef] [PubMed]
- Egeblad, M.; Rasch, M.G.; Weaver, V.M. Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell. Biol. 2010, 22, 697–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Zhao, L.; Kang, S.-G.; Pan, J.; Song, Y.; Zhang, M.; Xing, G.; Wang, F.; Li, J.; Zhou, R.; et al. Impacts of fullerene derivatives to regulate the structure and assembly of collagen molecules. Nanoscale 2013, 5, 7341–7348. [Google Scholar] [CrossRef] [PubMed]
- Eble, J.A.; Niland, S. The extracellular matrix in tumor progression and metastasis. Clin. Exp. Metastas 2019, 36, 171–198. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lee, B.; Jiang, Y. Cell-ECM interactions in tumor invasion. Adv. Exp. Med. Biol. 2016, 936, 73–91. [Google Scholar] [PubMed]
- Yamada, K.M. Cell biology: Tumour jailbreak. Nature 2003, 424, 889–890. [Google Scholar] [CrossRef]
- Merchant, N.; Nagaraju, G.P.; Rajitha, B.; Lammata, S.; Jella, K.K.; Buchwald, Z.S.; Lakka, S.S.; Ali, A.N. Matrix metalloproteinases: Their functional role in lung cancer. Carcinogenesis 2017, 38, 766–780. [Google Scholar] [CrossRef] [PubMed]
- Conlon, G.A.; Murray, G.I. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. J. Pathol. 2019, 247, 629–640. [Google Scholar] [CrossRef]
- Deryugina, E.I.; Quigley, J.P. Matrix metalloproteinases and tumor metastasis. Cancer Metast. Rev. 2006, 25, 9–34. [Google Scholar] [CrossRef]
- Puerta, D.T.; Lewis, J.A.; Cohen, S.M. New beginnings for matrix metalloproteinase inhibitors: Identification of high-affinity zinc-binding groups. J. Am. Chem. Soc. 2004, 126, 8388–8389. [Google Scholar] [CrossRef]
- Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer—trials and tribulations. Science 2002, 295, 2387–2392. [Google Scholar] [CrossRef] [PubMed]
- Tlatli, R.; El Ayeb, M. MMP inhibitors and cancer treatment trials, limitations and hopes for the future. Arch. Inst. Pasteur. Tunis. 2013, 90, 3–21. [Google Scholar] [PubMed]
- John, A.; Tuszynski, G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res. 2001, 7, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, L.A.; Nehring, L.C.; Harding, E.; Bolanowski, M.; Welgus, H.G.; Kobayashi, D.K.; Pierce, R.A.; Shapiro, S.D. Matrix metalloproteinases generate angiostatin: Effects on neovascularization. J. Immunol. 1998, 161, 6845–6852. [Google Scholar] [PubMed]
- Behr, J.-P.; Anslyn E, V. The lock and key principle. The state of the art--100 years on. Angew. Chem. Eng. Edi. 1995, 34, 2293. [Google Scholar]
- Congreve, M.; Langmead, C.J.; Mason, J.S.; Marshall, F.H. Progress in structure based drug design for G protein-coupled receptors. J. Med. Chem. 2011, 54, 4283–4311. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wu, M.-B.; Lin, J.-P.; Yang, L.-R. Quantitative structure-activity relationship: Promising advances in drug discovery platforms. Expert Opin. Drug Discov. 2015, 10, 1283–1300. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Xing, G.; Yuan, H.; Cao, W.B.; Jing, L.; Gao, X.F.; Qu, L.; Cheng, Y.; Ye, C.; Zhao, Y.; et al. Tuning electronic properties of metallic atom in bondage to a nanospace. J. Phys. Chem. B 2005, 109, 8779–8785. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Xing, G.; Zhao, F.; Yuan, H.; Zhao, Y. Modulation of structural and electronic properties of fullerene and metallofullerenes by surface chemical modifications. J. Nanosci. Nanotechnol. 2007, 7, 1085–1101. [Google Scholar] [CrossRef]
- Kang, S.; Huynh, T.; Zhou, R. Non-destructive inhibition of metallofullerenol Gd@C82 (OH)22 on WW domain: Implication on signal transduction pathway. Sci. Rep. 2012, 2, 957. [Google Scholar] [CrossRef]
- Kang, S.; Huynh, T.; Zhou, R. Metallofullerenol Gd@C82(OH)22 distracts the proline-rich-motif from putative binding on the SH3 domain. Nanoscale 2013, 5, 2703–2712. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ying, X.; Li, Y.; Yang, H.; Hao, W.; Yu, M. Identification differential behavior of Gd@C82(OH)22 upon interaction with serum albumin using spectroscopic analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 203, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Kang, S.-G.; Luo, J.; Zhou, R. Charging nanoparticles: Increased binding of Gd@C82(OH)22 derivatives to human MMP-9. Nanoscale 2018, 10, 5667–5677. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.; Huang, Q.; Wei, G.; Zhou, R.; Fang, H. Plugging into proteins: Poisoning protein function by a hydrophobic nanoparticle. ACS Nano 2010, 4, 7508–7514. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.G.; Araya-Secchi, R.; Wang, D.Q.; Wang, B.; Huynh, T.; Zhou, R.H. Dual Inhibitory Pathways of Metallofullerenol Gd@C82(OH)22 on Matrix Metalloproteinase-2: Molecular insight into drug-like nanomedicine. Sci. Rep. 2014, 4, 4775. [Google Scholar] [CrossRef]
- Ge, C.; Meng, L.; Xu, L.; Bai, R.; Du, J.; Zhang, L.; Li, Y.; Chang, Y.; Zhao, Y.; Chen, C. Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to single-wall carbon nanotubes. Nanotoxicology 2012, 6, 526–542. [Google Scholar] [CrossRef]
- Chen, H.; Wang, B.; Gao, D.; Guan, M.; Zheng, L.; Ouyang, H.; Chai, Z.; Zhao, Y.; Feng, W. Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 2013, 9, 2735–2746. [Google Scholar] [CrossRef]
- Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 2005, 39, 1378–1383. [Google Scholar] [CrossRef]
- Jiao, F.; Liu, Y.; Qu, Y.; Li, W.; Zhou, G.; Ge, C.C.; Li, Y.F.; Sun, B.Y.; Chen, C. Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 2010, 48, 2231–2243. [Google Scholar] [CrossRef]
- Gross, J.; Lapiere, C.M. Collagenolytic activity in amphibian tissues: A tissue culture assay. Proc. Natl. Acad. Sci. USA 1962, 48, 1014–1022. [Google Scholar] [CrossRef]
- Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2002, 2, 161–174. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chen, L.; Yan, L.; Gu, Z.; Chen, Z.; Zhang, A.; Zhao, F. A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C82(OH)22. Molecules 2019, 24, 2387. https://doi.org/10.3390/molecules24132387
Li J, Chen L, Yan L, Gu Z, Chen Z, Zhang A, Zhao F. A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C82(OH)22. Molecules. 2019; 24(13):2387. https://doi.org/10.3390/molecules24132387
Chicago/Turabian StyleLi, Jinxia, Linlin Chen, Liang Yan, Zhanjun Gu, Zhaofang Chen, Aiping Zhang, and Feng Zhao. 2019. "A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C82(OH)22" Molecules 24, no. 13: 2387. https://doi.org/10.3390/molecules24132387
APA StyleLi, J., Chen, L., Yan, L., Gu, Z., Chen, Z., Zhang, A., & Zhao, F. (2019). A Novel Drug Design Strategy: An Inspiration from Encaging Tumor by Metallofullerenol Gd@C82(OH)22. Molecules, 24(13), 2387. https://doi.org/10.3390/molecules24132387