2-Ketogluconate Kinase from Cupriavidus necator H16: Purification, Characterization, and Exploration of Its Substrate Specificity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cloning, Overexpression, Purification, and Characterization of KGUK from C. necator
2.2. Enzyme Activity
2.3. Substrate Specificity
2.4. Synthesis of 2-ketogluconate-6-phosphate
3. Materials and Methods
3.1. General Remarks
3.2. Methods
3.2.1. Cloning
3.2.2. Expression and Purification
3.2.3. Enzyme Activity Assays and Kinetic Studies
3.2.4. Phosphorylation of 2-keto-d-gluconate.
Reaction Progress Monitoring
Preparative Scale Synthesis and Purification of 2-ketogluconate-6-phosphate
3.2.5. Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wen, L.; Huang, K.; Wei, M.; Meisner, J.; Liu, Y.; Garner, K.; Zang, L.; Wang, X.; Li, X.; Fang, J.; et al. Facile enzymatic synthesis of ketoses. Angew. Chem. Int. Ed. Engl. 2015, 54, 12654–12658. [Google Scholar] [CrossRef] [PubMed]
- Wohlgemuth, R.; Liese, A.; Streit, W. Biocatalytic phosphorylations of metabolites: Past, present, and future. Trends Biotechnol. 2017, 35, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Vergne-Vaxelaire, C.; Mariage, A.; Petit, J.-L.; Fossey-Jouenne, A.; Guérard-Hélaine, C.; Darii, E.; Debard, A.; Nepert, S.; Pellouin, V.; Lemaire, M.; et al. Characterization of a thermotolerant ROK-type mannofructokinase from Streptococcus mitis: Application to the synthesis of phosphorylated sugars. Appl. Microbiol. Biotechnol. 2018, 102, 5569–5583. [Google Scholar] [CrossRef] [PubMed]
- Fessner, W.-D.; Walter, C. “Artificial metabolisms” for the asymmetric one-pot synthesis of branched-chain saccharides. Angew. Chem. Int. Ed. Engl. 1992, 31, 614–616. [Google Scholar] [CrossRef]
- Zimmermann, F.T.; Schneider, A.; Schörken, U.; Sprenger, G.A.; Fessner, W.-D. Efficient multi-enzymatic synthesis of d-xylulose 5-phosphate. Tetrahedron Asymmetry 1999, 10, 1643–1646. [Google Scholar] [CrossRef]
- Ricca, E.; Brucher, B.; Schrittwieser, J.H. Multi-enzymatic cascade reactions: Overview and perspectives. Adv. Synth. Catal. 2011, 353, 2239–2262. [Google Scholar] [CrossRef]
- Sánchez-Moreno, I.; Hélaine, V.; Poupard, N.; Charmantray, F.; Légeret, B.; Hecquet, L.; García-Junceda, E.; Wohlgemuth, R.; Guérard-Hélaine, C.; Lemaire, M. One-pot cascade reactions using fructose-6-phosphate aldolase: Efficient synthesis of D-arabinose 5-phosphate, D-fructose 6-phosphate and analogues. Adv. Synth. Catal. 2012, 354, 1725–1730. [Google Scholar] [CrossRef]
- Guérard-Hélaine, C.; Debacker, M.; Clapés, P.; Szekrenyi, A.; Hélaine, V.; Lemaire, M. Efficient biocatalytic processes for highly valuable terminally phosphorylated C5 to C9 d -ketoses. Green Chem. 2014, 16, 1109–1113. [Google Scholar] [CrossRef]
- Hélaine, V.; Mahdi, R.; Sudhir Babu, G.V.; De Berardinis, V.; Wohlgemuth, R.; Lemaire, M.; Guérard-Hélaine, C. Straightforward synthesis of terminally phosphorylated l-sugars via multienzymatic cascade reactions. Adv. Synth. Catal. 2015, 357, 1703–1708. [Google Scholar] [CrossRef]
- Samland, A.K.; Rale, M.; Sprenger, G.A.; Fessner, W.-D. The transaldolase family: New synthetic opportunities from an ancient enzyme scaffold. ChemBioChem 2011, 12, 1454–1474. [Google Scholar] [CrossRef]
- Schörken, U.; Sprenger, G.A. Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 1998, 1385, 229–243. [Google Scholar] [CrossRef]
- Guérard, C.; Alphand, V.; Archelas, A.; Demuynck, C.; Hecquet, L.; Furstoss, R.; Bolte, J. Transketolase-mediated synthesis of 4-deoxy-d-fructose 6-phosphate by epoxide hydrolase-catalysed resolution of 1,1-diethoxy-3,4-epoxybutane. Eur. J. Org. Chem. 1999, 1999, 3399–3402. [Google Scholar] [CrossRef]
- Shaeri, J.; Wright, I.; Rathbone, E.B.; Wohlgemuth, R.; Woodley, J.M. Characterization of enzymatic D-xylulose 5-phosphate synthesis. Biotechnol. Bioeng. 2008, 101, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Shaeri, J.; Wohlgemuth, R.; Woodley, J.M. Semiquantitative process screening for the biocatalytic synthesis of d-xylulose-5-phosphate. Org. Process. Res. Dev. 2006, 10, 605–610. [Google Scholar] [CrossRef]
- Solovjeva, O.N.; Kochetov, G.A. Enzymatic synthesis of d-xylulose 5-phosphate from hydroxypyruvate and d-glyceraldehyde-3-phosphate. J. Mol. Catal. B Enzym. 2008, 54, 90–92. [Google Scholar] [CrossRef]
- Charmantray, F.; Hélaine, V.; Legeret, B.; Hecquet, L. Preparative scale enzymatic synthesis of d-sedoheptulose-7-phosphate from β-hydroxypyruvate and d-ribose-5-phosphate. J. Mol. Catal. B Enzym. 2009, 57, 6–9. [Google Scholar] [CrossRef]
- Guérard-Hélaine, C.; De Sousa Lopes Moreira, M.; Touisni, N.; Hecquet, L.; Lemaire, M.; Hélaine, V. Transketolase-aldolase symbiosis for the stereoselective preparation of aldoses and ketoses of biological interest. Adv. Synth. Catal. 2017, 359, 2061–2065. [Google Scholar] [CrossRef]
- Trigalo, F.; Szabó, L. The synthesis of D-arabino-hexulosonic acid 6-phosphate and its stability in acid and alkaline medium. Eur. J. Biochem. 1972, 25, 336–340. [Google Scholar] [CrossRef]
- Ciferri, O.; Blakley, E.R.; Simpson, F.J. Purification and properties of the 2-ketogluconokinase of Leuconostoc mesenteroides. Can. J. Microbiol. 1959, 5, 277–291. [Google Scholar] [CrossRef]
- Swanson, B.L.; Hager, P.; Phibbs, P.; Ochsner, U.; Vasil, M.L.; Hamood, A.N. Characterization of the 2-ketogluconate utilization operon in Pseudomonas aeruginosa PAO1. Mol. Microbiol. 2000, 37, 561–573. [Google Scholar] [CrossRef]
- Simons, J.A.; Teixeira de Mattos, M.J.; Neijssel, O.M. Aerobic 2-ketogluconate metabolism of Klebsiella pneumoniae NCTC 418 grown in chemostat culture. J. Gen. Microbiol. 1991, 137, 1479–1483. [Google Scholar] [CrossRef] [PubMed]
- Yum, D.Y.; Lee, B.Y.; Hahm, D.H.; Pan, J.G. The yiaE gene, located at 80.1 minutes on the Escherichia coli chromosome, encodes a 2-ketoaldonate reductase. J. Bacteriol. 1998, 180, 5984–5988. [Google Scholar] [PubMed]
- De Ley, J. Phospho-2-keto-D-gluconate, an intermediate in the carbohydrate metabolism of Aerobacter cloacae. Biochim. Biophys. Acta 1954, 13, 302. [Google Scholar] [CrossRef]
- Narrod, S.A.; Wood, W.A. Carbohydrate oxidation by Pseudomonas fluorescens. V. Evidence for gluconokinase and 2-ketogluconokinase. J. Biol. Chem. 1956, 220, 45–55. [Google Scholar] [PubMed]
- Frampton, E.W.; Wood, W.A. Purification and properties of 2-ketogluconokinase from Aerobacter aerogenes. J. Biol. Chem. 1961, 236, 2578–2580. [Google Scholar] [PubMed]
- Vicente, M.; Cánovas, J.L. Glucolysis in Pseudomonas putida: Physiological role of alternative routes from the analysis of defective mutants. J. Bacteriol. 1973, 116, 908–914. [Google Scholar]
- De Ley, J.; Vandamme, J. The metabolism of sodium 2-keto-d-gluconate by micro-organisms. Microbiology 1955, 12, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.K.; Midgley, M.; Dawes, E.A. The metabolism of 2-oxogluconate by Pseudomonas aeruginosa. J. Gen. Microbiol. 1973, 78, 319–329. [Google Scholar] [CrossRef]
- Lessie, T.G.; Phibbs, P.V. Alternative pathways of carbohydrate utilization in pseudomonads. Annu. Rev. Microbiol. 1984, 38, 359–388. [Google Scholar] [CrossRef]
- del Castillo, T.; Ramos, J.L.; Rodríguez-Herva, J.J.; Fuhrer, T.; Sauer, U.; Duque, E. Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: Genomic and flux analysis. J. Bacteriol. 2007, 189, 5142–5152. [Google Scholar] [CrossRef]
- Nikel, P.I.; Chavarría, M.; Fuhrer, T.; Sauer, U.; de Lorenzo, V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the entner-doudoroff, embden-meyerhof-parnas, and pentose phosphate pathways. J. Biol. Chem. 2015, 290, 25920–25932. [Google Scholar] [CrossRef] [PubMed]
- De Ley, J. The phosphorylation of some carbohydrates, connected with the direct oxidation, by Aerobacter cloacae. Enzymologia 1953, 16, 99–104. [Google Scholar] [PubMed]
- Nandadasa, H.G.; Andreesen, M.; Schlegel, H.G. The utilization of 2-ketogluconate by Hydrogenomonas eutropha H 16. Arch. Microbiol. 1974, 99, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Pohlmann, A.; Fricke, W.F.; Reinecke, F.; Kusian, B.; Liesegang, H.; Cramm, R.; Eitinger, T.; Ewering, C.; Pötter, M.; Schwartz, E.; et al. Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat. Biotechnol. 2006, 24, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, N.; Inagaki, E.; Yasuike, K.; Takio, K.; Tahirov, T.H. Structure of Thermus thermophilus 2-Keto-3-deoxygluconate kinase: Evidence for recognition of an open chain substrate. J. Mol. Biol. 2004, 340, 477–489. [Google Scholar] [CrossRef]
- Ohshima, T.; Kawakami, R.; Kanai, Y.; Goda, S.; Sakuraba, H. Gene expression and characterization of 2-keto-3-deoxygluconate kinase, a key enzyme in the modified Entner-Doudoroff pathway of the aerobic and acidophilic hyperthermophile Sulfolobus tokodaii. Protein Expr. Purif. 2007, 54, 73–78. [Google Scholar] [CrossRef]
- Berardinis, V.; De Guérard-Hélaine, C.; Darii, E.; Bastard, K.; Hélaine, V.; Mariage, A.; Petit, J.-L.; Poupard, N.; Sánchez-Moreno, I.; Stam, M.; et al. Expanding the reaction space of aldolases using hydroxypyruvate as a nucleophilic substrate. Green Chem. 2017, 19, 519–526. [Google Scholar] [CrossRef]
- Lamble, H.J.; Danson, M.J.; Hough, D.W.; Bull, S.D. Engineering stereocontrol into an aldolase-catalysed reaction. Chem. Commun. 2005, 1, 124–126. [Google Scholar] [CrossRef]
- Garland, P.B.; Randle, P.J. A Rapid enzymatic assay for glycerol. Nature 1962, 196, 987. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Sample | Activity (U) | Protein (mg/mL) | Volume (mL) | Activity (U/mg) | Fold Purification | Recovery (%) | |
---|---|---|---|---|---|---|---|
1 | CFE | 96.0 | 13.02 | 20 | 0.38 | — | 100 |
2 | IMAC | 40.4 | 0.47 | 10 | 8.70 | 22.8 | 42 |
Entry | Substrate | Vmax (U/mg) | kcat (s−1) | KM (mM) | kcat/KM (s−1M−1) |
---|---|---|---|---|---|
1 | ATP | 10.2 ± 0.1 | 5.71 ± 0.05 | 0.073 ± 0.002 | 78,220 ± 2500 |
2 | KG1 | 10.4 ± 0.4 | 5.8 ± 0.2 | 0.35 ± 0.03 | 16,770 ± 1300 |
3 | KGul | 1.9 ± 0.2 | 1.1 ± 0.1 | 4 ± 1 | 246 ± 70 |
4 | KDG | 18.2 ± 0.9 | 10.2 ± 0.5 | 1.4 ± 0.2 | 7370 ± 970 |
5 | KDGul | 3.7 ± 0.4 | 2.1 ± 0.2 | 25 ± 4 | 83 ± 20 |
6 | KGal* | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Moreno, I.; Trachtmann, N.; Ilhan, S.; Hélaine, V.; Lemaire, M.; Guérard-Hélaine, C.; Sprenger, G.A. 2-Ketogluconate Kinase from Cupriavidus necator H16: Purification, Characterization, and Exploration of Its Substrate Specificity. Molecules 2019, 24, 2393. https://doi.org/10.3390/molecules24132393
Sánchez-Moreno I, Trachtmann N, Ilhan S, Hélaine V, Lemaire M, Guérard-Hélaine C, Sprenger GA. 2-Ketogluconate Kinase from Cupriavidus necator H16: Purification, Characterization, and Exploration of Its Substrate Specificity. Molecules. 2019; 24(13):2393. https://doi.org/10.3390/molecules24132393
Chicago/Turabian StyleSánchez-Moreno, Israel, Natalia Trachtmann, Sibel Ilhan, Virgil Hélaine, Marielle Lemaire, Christine Guérard-Hélaine, and Georg A. Sprenger. 2019. "2-Ketogluconate Kinase from Cupriavidus necator H16: Purification, Characterization, and Exploration of Its Substrate Specificity" Molecules 24, no. 13: 2393. https://doi.org/10.3390/molecules24132393
APA StyleSánchez-Moreno, I., Trachtmann, N., Ilhan, S., Hélaine, V., Lemaire, M., Guérard-Hélaine, C., & Sprenger, G. A. (2019). 2-Ketogluconate Kinase from Cupriavidus necator H16: Purification, Characterization, and Exploration of Its Substrate Specificity. Molecules, 24(13), 2393. https://doi.org/10.3390/molecules24132393