Quantitative Analysis of Polysaccharide Composition in Polyporus umbellatus by HPLC–ESI–TOF–MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Monosaccharides Comprising Polysaccharide
2.1.1. HPLC Separation
2.1.2. ESI–IT–TOF–MS analysis
2.2. Optimization of Hydrolysis Conditions
2.3. Method Validation
2.3.1. Calibration curves and limit of detection
2.3.2. Precision, Reproducibility, and Stability
2.3.3. Recovery
2.4. Sample Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample Preparation
3.3. Optimization of Hydrolysis Conditions
3.4. Hydrolysis of Polysaccharide
3.5. Derivatization of Hydrolyzed Polysaccharide
3.6. HPLC–MS Conditions
3.6.1. HPLC Conditions
3.6.2. ESI–IT–TOF–MS Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guo, W.J.; Xing, Y.M.; Chen, J.; Guo, S.X. Growth promoting effects of water extract of armillaria mellea rhizomorph on mycelia of Polyporus umbellatus. Cryptogamie Myco. 2011, 32, 171–176. [Google Scholar] [CrossRef]
- Choi, K.D.; Lee, K.T.; Shim, J.O.; Lee, Y.S.; Lee, T.S.; Lee, S.S.; Guo, S.X.; Lee, M.W. A new method for cultivation of sclerotium of Grifola umbellata. Mycobiology 2003, 31, 105–112. [Google Scholar] [CrossRef]
- Xu, J. Chinese Medicinal Fungus, 1st ed.; China Medical University and Peking Union Medical College Joint Press: Beijing, China, 1997; pp. 300–303. [Google Scholar]
- Pharmacopoeia Commission of PRC. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2015; Volume 1, pp. 318–319. [Google Scholar]
- Li, X.Q.; Xu, W.; Chen, J. Polysaccharide purified from Polyporus umbellatus (Per) Fr induces the activation and maturation of murine bone-derived dendritic cells via toll-like receptor 4. Cell. Immunol. 2010, 265, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.F.; Wu, G.L. Protective effect of Polyporus umbellatus polysaccharides on toxic hepatitis in mice. Acta. Pharmacologica. Sinica. 1988, 9, 345–348. [Google Scholar] [PubMed]
- Peng, K.; Lan, L.S.; Yan, W.X.; Jie, S.L.; Wu, Y.J.; Hua, Z.Y.; Chen, J.S. Polyporus umbellatus polysaccharides ameliorates carbon tetrachloride-induced hepatic injury in mice. Afr. J. Pharm. Pharmacol. 2012, 6, 2686–2691. [Google Scholar]
- Ueno, Y.; Abe, M.; Yamauchi, R.; Kato, K. Structural analysis of the alkali-soluble polysaccharide from the sclerotia of Grifora umbellata (Fr.) Pilat. Carbohydr. Res. 1980, 87, 257–264. [Google Scholar] [CrossRef]
- Wu, H.C.; Cheng, Y.J.; Liang, J.A.; Huang, H.F.; Wu, K.Y.; Chiang, S.Y. Radio- and chemoprotective effects of Zhu-Ling Mushroom (Polyporus umbellatus) in human cultured cells and in mice. Toxicol. Lett. 2011, 205, S37. [Google Scholar] [CrossRef]
- Zhang, G.W.; Zeng, X.; Li, C.X.; Li, J.J.; Huang, Y.; Han, L.; Wei, J.A.; Huang, H.D. Inhibition of urinary bladder carcinogenesis by aqueous extract of sclerotia of Polyporus umbellatus fries and polyporus polysaccharide. Am. J. Chin. Med. 2011, 39, 135–144. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, S.W.; Cheung, P.C.K.; Wang, Q. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci. Tech. 2007, 18, 4–19. [Google Scholar] [CrossRef]
- Wang, X.B.; Zhao, Y.; Wang, Q.W.; Wang, H.F.; Mei, Q.B. Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography. Anal. Sci. 2005, 21, 1177–1180. [Google Scholar]
- Bischel, M.D.; Austin, J.H.; Kemeny, M.D.; Hubble, C.M.; Lear, R.K. Separation and identification of acid polysaccharides by thin-layer chromatography. J. Chromatogr. A 1966, 21, 40–45. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, M.Y.; Wang, Y.X.; Nie, S.P.; Li, C. Analysis of the monosaccharide composition of purified polysaccharides in Ganoderma atrum by capillary gas chromatography. Phytochem. Anal. 2009, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Gomis, D.B.; Tamayo, D.M.; Alonso, J.M. Determination of monosaccharides in cider by reversed-phase liquid chromatography. Anal. Chim. Acta. 2001, 436, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Kakita, H.; Kamishima, H.; Komiya, K.; Kato, Y. Simultaneous analysis of monosaccharides and oligosaccharides by high-performance liquid chromatography with postcolumn fluorescence derivatization. J. Chromatogr. A 2002, 961, 77–82. [Google Scholar] [CrossRef]
- Ikegami, T.; Horie, K.; Saad, N.; Hosoya, K.; Fiehn, O.; Tanaka, N. Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC. Anal. Bioanal. Chem. 2008, 391, 2533–2542. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, X.B.; Zhao, Y.; Ruan, Y.; Yang, Y.; Wang, Z.Z. Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chem. 2009, 112, 742–746. [Google Scholar] [CrossRef]
- Dai, J.; Wu, Y.; Chen, S.W.; Zhu, S.; Yin, H.P.; Wang, M.; Tang, J. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydr. Polym. 2010, 82, 629–635. [Google Scholar] [CrossRef]
- Guttman, A. Analysis of monosaccharide composition by capillary electrophoresis. J. Chromatogr. A 1997, 763, 271–277. [Google Scholar] [CrossRef]
- Xia, Y.G.; Wang, Q.H.; Liang, J.; Yang, B.Y.; Li, G.Y.; Kuang, H.X. Development and application of a rapid and efficient CZE method coupled with correction factors for determination of monosaccharide composition of acidic hetero-polysaccharides from Ephedra sinica. Phytochem. Anal. 2011, 22, 103–111. [Google Scholar] [CrossRef]
- Chen, J.Y.; Yang, F.F.; Guo, H.Z.; Wu, F.; Wang, X.H. Optimized hydrolysis and analysis of Radix Asparagi polysaccharide monosaccharide composition by capillary zone electrophoresis. J. Sep. Sci. 2015, 38, 2327–2331. [Google Scholar] [CrossRef]
- Kenne, L.; Stromberg, S. A method for the microanalysis of hexoses in glycoproteins. Carbohydr. Res. 1990, 198, 173–179. [Google Scholar] [CrossRef]
- Guadalupe, Z.; Martínez-Pinilla, O.; Garrido, Á.; Carrillo, J.; Ayestarán, B. Quantitative determination of wine polysaccharides by gas chromatography–mass spectrometry (GC–MS) and size exclusion chromatography (SEC). Food Chem. 2012, 131, 367–374. [Google Scholar] [CrossRef]
- Dye, C.; Yttri, K. Determination of monosaccharide anhydrides in atmospheric aerosols by use of high-performance liquid chromatography combined with high-resolution mass spectrometry. Anal. Chem. 2005, 77, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Hammad, L.A.; Derryberry, D.Z.; Jmeian, Y.R.; Mechref, Y. Quantification of monosaccharides through multiple-reaction monitoring liquid chromatography/mass spectrometry using an aminopropyl column. Rapid Commun. Mass Spe. 2010, 24, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.D.; Jiang, W.; Lu, J.J.; Yu, Y.; Wu, B. Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry. Food Chem. 2014, 145, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Huie, C.W.; Di, X. Chromatographic and electrophoretic methods for Lingzhi pharmacologically active components. J. Chromatogr. B 2004, 812, 241–257. [Google Scholar] [CrossRef]
- Wang, Q.C.; Zhao, X.; Pu, J.H.; Luan, X.H. Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides. Carbohydr. Polym. 2016, 143, 296–300. [Google Scholar] [CrossRef]
- Wang, Q.J.; Fang, Y.Z. Analysis of sugars in traditional Chinese drugs. J. Chromatogr. B 2004, 812, 309–324. [Google Scholar] [CrossRef]
- Fu, X.F.; Huang, L.; Zhai, M.L.; Li, W.; Liu, H.W. Analysis of natural carbohydrate biopolymer-high molecular chitosan and carboxymethyl chitosan by capillary zone electrophoresis. Carbohydr. Polym. 2007, 68, 511–516. [Google Scholar] [CrossRef]
- Honda, S.; Iwase, S.; Makino, A.; Fujiwara, S. Simultaneous determination of reducing monosaccharides by capillary zone electrophoresis as the borate complexes of N-2-pyridylglycamines. Anal. Biochem. 1989, 176, 72–77. [Google Scholar] [CrossRef]
- Fu, D.T.; Oneill, R.A. Monosaccharide composition analysis of oligosaccharides and glycoproteins by high-performance liquid chromatography. Anal. Biochem. 1995, 227, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.T.; Zopf, D. Analysis of sialyllactoses in blood and urine by high-performance liquid chromatography. Anal. Biochem. 1999, 269. [Google Scholar] [CrossRef] [PubMed]
- Strydom, D.J. Chromatographic separation of 1-phenyl-3-methyl-5-pyrazolone-derivatized neutral, acidic and basic aldoses. J. Chromatogr. A 1994, 678, 17–23. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Xu, J.; Zhang, L.H.; Zhang, W.B.; Zhang, Y.K. Determination of 1-phenyl-3-methyl-5-pyrazolone-labeled carbohydrates by liquid chromatography and micellar electrokinetic chromatography. J. Chromatogr. B 2003, 793, 159–165. [Google Scholar] [CrossRef]
- Shen, X.D.; Perreault, H.L. Characterization of carbohydrates using a combination of derivatization, high-performance liquid chromatography and mass spectrometry. J. Chromatogr. A 1998, 811, 47–59. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, X.Y. Purification, initial characterization and immune activities of polysaccharides from the fungus, Polyporus umbellatus. Food Sci. Human Wellness. 2014, 3, 73–78. [Google Scholar] [CrossRef]
- He, P.F.; Zhang, A.Q.; Zhang, F.M.; Linhardt, R.J.; Sun, P.L. Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotia. Carbohydr. Polym. 2016, 152, 222–230. [Google Scholar] [CrossRef] [PubMed]
- He, P.F.; Zhang, A.Q.; Wang, X.L.; Qu, L.; Li, G.L.; Li, Y.P.; Sun, P.L. Structure elucidation and antioxidant activity of a novel polysaccharide from Polyporus umbellatus sclerotia. Int. J. Biol. Macromol. 2016, 82, 411–417. [Google Scholar] [CrossRef] [PubMed]
- He, P.F.; He, L.; Zhang, A.Q.; Wang, X.L.; Qu, L.; Sun, P.L. Structure and chain conformation of a neutral polysaccharide from sclerotia of Polyporus umbellatus. Carbohydr. Polym. 2017, 155, 61–67. [Google Scholar] [CrossRef]
- Dai, H.; Han, X.Q.; Gong, F.Y.; Dong, H.L.; Tu, P.F.; Gao, X.M. Structure elucidation and immunological function analysis of a novel beta-glucan from the fruit bodies of Polyporus umbellatus (Pers.) Fries. Glycobiology. 2012, 22, 1673–1683. [Google Scholar] [CrossRef]
- Li, X.Q.; Xu, W. TLR4-mediated activation of macrophages by the polysaccharide fraction from Polyporus umbellatus(pers.) Fries. J. Ethnopharmacol. 2011, 135, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yeeprae, W.; Kawakami, S.; Yamashita, F.; Hashida, M. Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages. J. Control. Release. 2006, 114, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.D.; Lee, S.J.; Nussenzweig, M.C.; Harmsen, A.G. Absence of the macrophage mannose receptor in mice does not increase susceptibility to pneumocystis carinii infection in vivo. Infect. Immun. 2003, 71, 6213–6221. [Google Scholar] [CrossRef] [PubMed]
- Magnusson, S.; Berg, T. Extremely rapid endocytosis mediated by the mannose receptor of sinusoidal endothelial rat liver cells. Biochem. J. 1989, 257. [Google Scholar] [CrossRef] [PubMed]
- Largent, B.L.; Walton, K.M.; Hoppe, C.A.; Lee, Y.C.; Schnaar, R.L. Carbohydrate-specific adhesion of alveolar macrophages to mannose-derivatized surfaces. J. Biol. Chem. 1984, 259, 1764–1769. [Google Scholar]
- Burgdorf, S.; Lukacs-Kornek, V.; Kurts, C. The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J. Immunology. 2006, 176, 6770–6776. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Enomoto, A.; Todoh, H.; Ametani, A.; Kaminogawa, S. Activation of murine macrophages by polysaccharide fractions from marine algae (Porphyra yezoensis). Biosci. Biotech. Biochem. 1993, 157, 1862–1866. [Google Scholar] [CrossRef]
- Wang, Z.J.; Luo, D.H. Antioxidant activities of different fractions of polysaccharide purified from Gynostemma pentaphyllum Makino. Carbohydr. Polym. 2007, 68, 54–58. [Google Scholar] [CrossRef]
- Zhu, X.F.; Lin, B.C.; Jakob, A.; Epperlein, U.; Kppenhoefer, B. Optimization and parameter study for chiral Separation by capillary electrophoresis. J. High Resol. Chromatogr. 1999, 22, 449–453. [Google Scholar] [CrossRef]
- Chang, Y.L.; Liu, B.; Shen, B. Orthogonal array design for the optimization of supercritical fluid extraction of baicalin from roots of Scutellaria baicalensis Georgi. J. Sep. Sci. 2007, 30, 1568–1574. [Google Scholar] [CrossRef]
- Li, T.L.; Zhang, Z.M.; Zhang, L.; Huang, X.J.; Lin, J.W.; Chen, G.A. An improved facile method for extraction and determination of steroidal saponins in Tribulus terrestris by focused microwave-assisted extraction coupled with GC-MS. J. Sep. Sci. 2009, 32, 4167–4175. [Google Scholar] [CrossRef] [PubMed]
- Åman, P.; McNeil, M.; Franzén, L.E.; Darvill, A.G.; Albersheim, P. Structural elucidation, using h.p.l.c.-m.s. and g.l.c.-m.s., of the acidic polysaccharide secreted by rhizobium meliloti strain 1021. Carbohydr. Res. 1981, 95, 263–282. [Google Scholar] [CrossRef]
- Doležalová, M.; Čápová, H.; Jobánek, R. Determination of the purity of phenoxymethylpenicillin by micellar electrokinetic chromatography and reversed phase liquid chromatography on a monolithic silica column. J. Sep. Sci. 2003, 26, 701–708. [Google Scholar] [CrossRef]
- Zitka, O.; Heger, Z.; Kominkova, M.; Skalickova, S.; Krizkova, S.; Adam, V.; Kizek, R. Preconcentration based on paramagnetic microparticles for the separation of sarcosine using hydrophilic interaction liquid chromatography coupled with coulometric detection. J. Sep. Sci. 2014, 37, 465–575. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.N.; Wang, X.P.; Huang, X.W.; Mao, Z.J.; Zhang, Y.; Yu, Y.; Shou, D. Monosaccharide composition analysis of immunomodulatory polysaccharides by on-line hollow fiber microextraction with high-performance liquid chromatography. J. Sep. Sci. 2016, 39, 818–826. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors upon request. |
tR (min) | Compound | [M + H]+ (Error in ppm) | Characteristic MS2 Fragments Ions of: [M + H]+ | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[M + H − H2O]+ | C3-C4 Cleavage and −H2O | C2-C3 Cleavage and −H2O | [M + H − PMP]+ | [M + H − PMP − H2O]+ | [M + H − PMP − 2H2O]+ | [M + H – PMP − 3H2O]+ | C5-C6 Cleavage and − 2H2O | C4-C5 Cleavage and − 2H2O | C2-C3 Cleavage | C1-C2 Cleavage | [PMP + H]+ | |||
33.830 | Mannose (1) | 511.2201 (+2.74) | 493.2283 | 403.1312 | 373.1751 | 337.1331 | 319.1064 | 301.1157 | 283.1149 | 271.1069 | 241.1037 | 217.1045 | 187.086 | 175.0904 |
36.548 | Glucosamine (2) | 510.2350 (+0.59) | 492.2207 | 402.1679 | 372.1868 | 336.1679 | 319.1589a) | 301.0892b) | 283.1082c) | 271.1083d) | 241.0959e) | 216.1313 | 187.0923f) | 175.0904 |
40.298 | Lyxose (3) | 481.2061 (−4.36) | 463.2209 | - | 373.1593 | 307.1321 | 289.1476 | 271.1193 | 253.1302 | - | 241.1071 | 217.1093 | 187.0893 | 175.0873 |
47.701 | Rhamnose (4) | 495.2243 (+1.01) | - | - | 373.1729 | 321.1649 | 303.1136 | 285.1227 | 267.1122 | - | 241.0933 | 217.0929 | 187.0924 | 175.0902 |
48.832 | Ribose (5) | 481.2073 (−1.87) | 463.2216 | - | 373.1750 | 307.1325 | 289.1153 | 271.1021 | 253.1001 | - | 241.0979 | 217.1053 | 187.0901 | 175.0919 |
64.678 | Erythrose (6) | 451.1977 (+0.22) | 433.1797 | - | 373.1749 | 277.1583 | 259.1082 | 241.0970 | - | - | - | 217.0938 | 187.0943 | 175.0861 |
94.865 | Glucuronic acid (7) | 525.1972 (−1.52) | 507.1776 | - | 373.1567 | - | - | - | 297.0914 | 271.0983 | 241.0941 | 217.1039 | 187.0796 | 175.0838 |
107.503 | Galacuronic acid (8) | 525.2005 (+4.76) | 507.1841 | - | 373.1733 | - | - | - | 297.0766 | 271.0983 | 241.1252 | 217.1018 | 187.0809 | 175.0875 |
115.318 | Glucose (9) | 511.2187 (+0) | 493.1923 | 403.1419 | 373.1652 | 337.1408 | 319.1341 | 301.1345 | 283.1135 | 271.1116 | 241.0986 | 217.0986 | 187.0884 | 175.0860 |
130.080 | Galactose (10) | 511.2187 (+0) | 493.2219 | 403.1561 | 373.1693 | 337.1036 | 319.1108 | 301.1322 | 283.1110 | 271.1120 | 241.1001 | 217.0951 | 187.0804 | 175.0872 |
145.282 | Xylose (11) | 481.2072 (−2.08) | 463.1764 | - | 373.1680 | - | 289.1448 | 271.1019 | 253.0949 | - | 241.1188 | 217.0712 | 187.0896 | 175.1019 |
166.837 | Fucose (12) | 495.2259 (+4.24) | 477.2073 | 403.1800 | 373.1626 | 321.1555 | - | 285.1205 | 267.1102 | - | 241.1030 | 217.1096 | 187.0925 | 175.0906 |
No. | Analyte | Calibration Curve | R2 | Linear Range (μmol/L) | LOD (μmol/L) | LOQ (μmol/L) |
---|---|---|---|---|---|---|
1 | Mannose | y = 3.0804 × 104x + 6.3221 × 104 | 0.9998 | 20.20–202.04 | 0.19 | 0.63 |
2 | Glucosamine | y = 7.2843 × 103x − 7.3839 × 103 | 0.9999 | 8.40–151.26 | 0.83 | 2.76 |
3 | Lyxose | y = 2.1137 × 104x + 1.9181 × 103 | 0.9999 | 4.26–42.63 | 0.22 | 0.73 |
6 | Erythrose | y = 5.3561 × 103x +1.3761 × 104 | 0.9998 | 12.14–133.54 | 0.54 | 1.80 |
7 | Glucuronic acid | y = 2.5459 × 104x − 4.0005 × 104 | 0.9995 | 8.14–81.38 | 1.15 | 3.83 |
8 | Galacuronic acid | y = 3.1860 × 104x + 1.2310 × 104 | 0.9999 | 3.96–39.61 | 0.37 | 1.23 |
9 | Glucose | y = 2.3516 × 104x + 1.5884 × 105 | 0.9999 | 199.82–3596.80 | 0.29 | 0.97 |
10 | Galactose | y = 2.7091 × 104x + 7.5494 × 103 | 0.9998 | 41.33–413.33 | 0.74 | 2.47 |
11 | Xylose | y = 1.7797 × 104x + 5.0060 × 104 | 0.9996 | 16.95–152.51 | 0.57 | 1.90 |
12 | Fucose | y = 1.6309 × 104x + 5.7003 × 104 | 0.9991 | 8.07–80.67 | 0.78 | 2.60 |
No. | Analyte | RSD (%) | ||
---|---|---|---|---|
Precision | Repeatability | Stability | ||
1 | Mannose | 0.39 | 0.49 | 0.67 |
2 | Glucosamine | 1.03 | 1.09 | 1.23 |
3 | Lyxose | 1.13 | 1.22 | 1.30 |
6 | Erythrose | 0.62 | 0.69 | 0.64 |
7 | Glucuronic acid | 1.14 | 1.13 | 1.05 |
8 | Galacuronic acid | 0.53 | 0.71 | 0.75 |
9 | Glucose | 0.48 | 0.70 | 0.73 |
10 | Galactose | 0.94 | 1.40 | 1.02 |
11 | Xylose | 1.10 | 1.22 | 1.15 |
12 | Fucose | 0.84 | 0.88 | 1.10 |
No. | Analyte | Content (nmol/mg) | Spiked (nmol/mg) | Mean Found (nmol/mg) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|---|
1 | Mannose | 234.88 | 230 | 470.88 | 102.61 | 1.79 |
2 | Glucosamine | 111.70 | 110 | 217.41 | 96.10 | 2.01 |
3 | Lyxose | 291.81 | 291 | 576.87 | 97.96 | 1.25 |
6 | Erythrose | 271.27 | 271 | 545.06 | 101.03 | 2.36 |
7 | Glucuronic acid | 72.81 | 72 | 143.73 | 98.50 | 1.56 |
8 | Galacuronic acid | 46.14 | 46 | 90.90 | 97.30 | 1.37 |
9 | Glucose | 3079.52 | 3000 | 6091.52 | 100.40 | 0.96 |
10 | Galactose | 484.26 | 485 | 977.36 | 101.67 | 1.01 |
11 | Xylose | 220.69 | 220 | 439.59 | 99.50 | 1.16 |
12 | Fucose | 289.87 | 290 | 590.60 | 103.70 | 1.43 |
Sample | Origin | Contents (nmol/mg, n = 3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mannose | Glucosamine | Lyxose | Erythrose | Glucuronic Acid | Galacuronic Acid | Glucose | Galactose | Xylose | Fucose | ||
S1 | Shaanxi | 234.88 | 111.70 | 291.81 | 271.27 | 72.81 | 46.14 | 3079.52 | 484.26 | 220.69 | 289.87 |
S2 | Shanxi | 145.22 | 61.86 | 302.68 | 460.78 | 37.15 | 29.94 | 2769.76 | 351.48 | 342.07 | 363.18 |
S3 | Shanxi | 107.39 | 99.07 | 217.79 | 331.03 | 31.02 | 27.53 | 1473.43 | 239.13 | 282.08 | 289.29 |
S4 | Yunnan | 153.97 | 106.59 | 182.08 | 520.85 | 52.42 | 55.43 | 3279.84 | 268.36 | 479.31 | 390.09 |
S5 | Yunnan | 175.84 | 102.97 | 221.64 | 439.15 | 47.16 | 38.33 | 2761.47 | 437.67 | 306.93 | 403.57 |
S6 | Shaanxi | 136.04 | 80.02 | 94.31 | 373.67 | 77.96 | 80.28 | 3329.49 | 516.64 | 284.02 | 291.84 |
S7 | Shaanxi | 160.08 | 75.85 | 129.04 | 355.81 | 41.13 | 35.81 | 2814.63 | 444.62 | 289.06 | 296.59 |
S8 | Henan | 82.81 | 63.42 | 115.88 | 153.51 | 26.26 | 16.21 | 1222.47 | 266.39 | 101.85 | 169.37 |
S9 | Hebei | 55.98 | 69.50 | 77.42 | 157.88 | 20.88 | 15.67 | 1284.87 | 126.54 | 110.60 | 117.21 |
S10 | Sichuan | 69.01 | 60.01 | 136.19 | 150.25 | 23.89 | 17.32 | 1379.81 | 253.40 | 129.34 | 169.23 |
S11 | Jilin | 76.03 | 64.66 | 50.73 | 146.89 | 34.02 | 32.02 | 1094.02 | 222.16 | 117.18 | 130.78 |
S12 | Gansu | 174.9 | 153.11 | 68.71 | 321.26 | 70.45 | 70.53 | 3474.96 | 308.13 | 261.42 | 224.71 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, N.; Bai, Z.; Jia, W.; Sun, J.; Wang, W.; Chen, S.; Wang, H. Quantitative Analysis of Polysaccharide Composition in Polyporus umbellatus by HPLC–ESI–TOF–MS. Molecules 2019, 24, 2526. https://doi.org/10.3390/molecules24142526
Guo N, Bai Z, Jia W, Sun J, Wang W, Chen S, Wang H. Quantitative Analysis of Polysaccharide Composition in Polyporus umbellatus by HPLC–ESI–TOF–MS. Molecules. 2019; 24(14):2526. https://doi.org/10.3390/molecules24142526
Chicago/Turabian StyleGuo, Ning, Zongli Bai, Weijuan Jia, Jianhua Sun, Wanwan Wang, Shizhong Chen, and Hong Wang. 2019. "Quantitative Analysis of Polysaccharide Composition in Polyporus umbellatus by HPLC–ESI–TOF–MS" Molecules 24, no. 14: 2526. https://doi.org/10.3390/molecules24142526
APA StyleGuo, N., Bai, Z., Jia, W., Sun, J., Wang, W., Chen, S., & Wang, H. (2019). Quantitative Analysis of Polysaccharide Composition in Polyporus umbellatus by HPLC–ESI–TOF–MS. Molecules, 24(14), 2526. https://doi.org/10.3390/molecules24142526