Downscaling of Industrial Turbo-Distillation to Laboratory Turbo-Clevenger for Extraction of Essential Oils. Application of Concepts of Green Analytical Chemistry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Kinetics
2.2. Composition of Essential Oils
2.3. Green Process Assessment
3. Materials and Methods
3.1. Plant Material
3.2. Turbo-Clevenger (TC) Apparatus and Procedure
3.3. Hydrodistillation (HD) Apparatus and Procedure
3.4. Gas Chromatography Analysis and Compound Identification
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tyskiewicz, K.; Gieysztor, R.; Konkol, M.; Szalas, J.; Roj, E. Essential oils from Humulus Lupulus scCO2 Extract by Hydrodistillation and Microwave Assisted Hydrodistillation. Molecules 2018, 23, 2866. [Google Scholar] [CrossRef] [PubMed]
- Banozic, M.; Banjari, I.; Jakovljevic, M.; Subaric, D.; Tomas, S.; Babic, J.; Jokic, S. Optimization of Ultrasound-Assisted Extraction of Some Bioactive Compounds from Tobacco Waste. Molecules 2019, 24, 1611. [Google Scholar] [CrossRef] [PubMed]
- Martel, J.P. Device for High Speed Production of Aromatic Essential Oils from Perfume-Generating Plants or Parts Thereof. U.S. Patent 4,406,745, 27 September 1983. [Google Scholar]
- Périno-Issartier, S.; Ginies, C.; Cravotto, G.; Chemat, F. A comparison of essential oils obtained from lavandin via different extraction processes: Ultrasound, microwave, turbohydrodistillation, steam and hydrodistillation. J. Chromatogr. A 2013, 1305, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Périno, S.; Pierson, J.T.; Ruiz, K.; Cravotto, G.; Chemat, F. Laboratory to pilot scale: Microwave extraction for polyphenols lettuce. Food Chem. 2016, 204, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Filly, A.; Fernandez, X.; Minuti, M.; Visinoni, F.; Cravotto, G.; Chemat, F. Solvent free microwave extraction of essential oil from aromatic herbs: From laboratory to pilot and industrial sclae. Food Chem. 2014, 150, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. Trends Anal. Chem. 2013, 50, 78–84. [Google Scholar] [CrossRef]
- Ramos, L.; Ramos, J.J.; Brinkman, U.A. Miniaturization in sample treatment for environmental analysis. Anal. Bioanal. Chem. 2005, 381, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Périno-Issartier, S.; Petitcolas, E. “In situ” extraction of essential oils by use of Dean-Stark glassware and a Vigreux column inside a microwave oven: A procedure for teaching green analytical chemistry. Anal. Bioanal. Chem. 2012, 404, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Al Bittar, S.; Périno-Issartier, S.; Dangles, O.; Chemat, F. An innovative grape juice enriched in polyphenols by microwave-assisted extraction. Food Chem. 2013, 141, 3268–3272. [Google Scholar] [CrossRef] [PubMed]
- Périno-Issartier, S.; Huma, Z.; Abert-Vian, M.; Chemat, F. Solvent Free Microwave-Assisted Extraction of Antioxidants from Sea Buckthorn (Hippophae rhamnoides) Food By-Products. Food Bioprocess Technol. 2011, 4, 1020–1028. [Google Scholar] [CrossRef]
- Abert-Vian, M.; Fernandez, X.; Visinoni, F.; Chemat, F. Microwave Hydrodiffusion and gravity, a new technique for extraction of essential oil. J. Chromatogr. A 2008, 1190, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Bendaoud, H.; Romdhane, M.; Souchard, J.P.; Cazaux, S.; Bouajila, J. Chemical composition and anticancer and antioxidant activities of Schinus molle L. and Schinus terebinthifolius Raddi berries essential oils. J. Food Sci. 2010, 75, C466–C472. [Google Scholar] [CrossRef] [PubMed]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. An original solvent free microwave extraction of essential oils from spices. Flavour Fragr. J. 2004, 19, 134–138. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
N°. | Compounds a | RI b | Brazilian Pepper | Cinnamon | Chinese Star Anise | |||
---|---|---|---|---|---|---|---|---|
HP5MS | HD (%) | TC (%) | HD (%) | TC (%) | HD (%) | TC (%) | ||
Monoterpenes | 86.25 ± 0.05 | 87.06 ± 0.05 | 0.36 ± 0.01 | 0.99 ± 0.02 | 2.2 ± 0.04 | 4 ± 0.02 | ||
1 | α-pinene | 928 | 7.83 ± 0.11 | 8.67 ± 0.12 | 0.12 ± 0.01 | 0.41 ± 0.02 | 0.10 ± 0.08 | 0.30 ± 0.05 |
2 | Sabinene | 966 | 1.33 ± 0.01 | 1.39 ± 0.01 | - | - | tr. | 0.10 ± 0.01 |
3 | β-pinene | 970 | 0.57 ± 0.01 | 0.73 ± 0.01 | 0.11 ± 0.01 | 0.32 ± 0.01 | tr. | 0.10 ± 0.01 |
4 | β-myrcene | 987 | 4.24 ± 0.02 | 4.50 ± 0.02 | tr. | tr. | 0.10 ± 0.01 | 0.20 ± 0.01 |
5 | α-phellandrene | 1005 | 54.0 ± 0.24 | 54.25 ± 0.19 | - | - | 0.10 ± 0.03 | 0.10 ± 0.01 |
6 | p-cymene | 1020 | 1.65 ± 0.01 | 1.59 ± 0.01 | tr. | tr. | 0.10 ± 0.06 | tr. |
7 | Limonene + β-phellandrene | 1024 | 15.48 ± 0.04 | 14.87 ± 0.02 | 0.13 ± 0.02 | 0.26 ± 0.02 | 1.80 ± 0.01 | 3.10 ± 0.02 |
8 | α-terpinolene | 1080 | 1.15 ± 0.01 | 1.06 ± 0.01 | - | - | tr. | 0.10 ± 0.01 |
Oxygenated monoterpenes | 0.68 ± 0.01 | 0.28 ± 0.01 | 6.02 ± 0.02 | 8.11 ± 0.03 | 1.1 ± 0.01 | 0.8 ± 0.01 | ||
9 | Eucalyptol | 1026 | - | - | 0.85 ± 0.01 | 1.19 ± 0.03 | 0.20 ± 0.01 | 0.10 ± 0.01 |
10 | Linalool | 1099 | 0.47±0.01 | 0.18±0.01 | 0.25 ± 0.01 | 0.3 ± 0.01 | 0.70 ± 0.02 | 0.60 ± 0.03 |
11 | 4-terpineol | 1173 | 0.21±0.01 | 0.10±0.01 | 0.40 ± 0.01 | 0.37 ± 0.01 | 0.20 ± 0.01 | 0.10 ± 0.01 |
12 | α-terpineol | 1190 | tr. | tr. | 0.58 ± 0.01 | 0.52 ± 0.01 | - | - |
13 | Bornyl acetate | 1276 | tr. | tr. | 0.37 ± 0.04 | 0.79 ± 0.06 | - | - |
14 | Cinnamyl acetate | 1445 | - | - | 3.57 ± 0.02 | 4.94 ± 0.03 | - | - |
Sesquiterpenes | 5.6 ± 0.03 | 6.13 ± 0.02 | - | - | - | 0.5 ± 0.02 | ||
15 | trans β-caryophyllene | 1405 | 1.50 ± 0.02 | 1.69 ± 0.01 | - | - | - | - |
16 | δ-elemene | 1326 | 0.15 ± 0.01 | 0.15 ± 0.01 | - | - | - | - |
17 | (E)-α-bergamoten | 1424 | 0.13 ± 0.01 | 0.11 ± 0.01 | - | - | tr. | 0.50 ± 0.02 |
18 | Germacrene D | 1467 | 2.27 ± 0.07 | 2.30 ± 0.06 | - | - | - | - |
19 | δ-cadinene | 1507 | 0.68 ± 0.02 | 1.08 ± 0.03 | tr. | tr. | - | - |
20 | γ-elemene | 1541 | 0.87 ± 0.06 | 0.80 ± 0.01 | - | - | - | - |
Other oxygenated compounds | 2.81 ± 0.06 | 2.52±0.03 | 93.15 ± 0.06 | 89.37 ± 0.02 | 94.9 ± 0.07 | 89.7 ± 0.08 | ||
21 | Benzaldehyde | 960 | - | - | 0.11 ± 0.01 | 0.34 ± 0.02 | - | - |
22 | 3-phenylpropanal | 1160 | - | - | 0.48 ± 0.03 | 0.36 ± 0.02 | - | - |
23 | Estragole | 1194 | - | - | - | - | 5.30 ± 0.03 | 4.10 ± 0.06 |
24 | Cis-cinnamaldehyde | 1214 | - | - | 0.5 ± 0.02 | 0.5 ± 0.02 | - | - |
25 | Anisaldehyde | 1247 | - | - | - | - | 2.60 ± 0.04 | 0.20 ± 0.01 |
26 | trans-cinnamaldehyde | 1266 | - | - | 91.44 ± 0.25 | 87.56 ± 0.20 | - | - |
27 | Isoestragole | 1288 | - | - | - | - | 87.00 ± 0.15 | 85.40 ± 0.18 |
28 | 2H-1-benzopyranone | 1432 | - | - | 0.62 ± 0.01 | 0.61 ± 0.01 | - | - |
29 | Elemol | 1540 | 0.66 ± 0.05 | 0.52 ± 0.07 | - | - | - | - |
30 | Spathulenol | 1564 | 0.56 ± 0.02 | 0.57 ± 0.02 | - | - | - | - |
31 | γ-eudesmol | 1620 | 0.34 ± 0.11 | 0.27 ± 0.01 | - | - | - | - |
32 | β-eudesmol | 1644 | 1.25 ± 0.07 | 1.16 ± 0.04 | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Périno, S.; Chemat-Djenni, Z.; Petitcolas, E.; Giniès, C.; Chemat, F. Downscaling of Industrial Turbo-Distillation to Laboratory Turbo-Clevenger for Extraction of Essential Oils. Application of Concepts of Green Analytical Chemistry. Molecules 2019, 24, 2734. https://doi.org/10.3390/molecules24152734
Périno S, Chemat-Djenni Z, Petitcolas E, Giniès C, Chemat F. Downscaling of Industrial Turbo-Distillation to Laboratory Turbo-Clevenger for Extraction of Essential Oils. Application of Concepts of Green Analytical Chemistry. Molecules. 2019; 24(15):2734. https://doi.org/10.3390/molecules24152734
Chicago/Turabian StylePérino, Sandrine, Zoubida Chemat-Djenni, Emmanuel Petitcolas, Christian Giniès, and Farid Chemat. 2019. "Downscaling of Industrial Turbo-Distillation to Laboratory Turbo-Clevenger for Extraction of Essential Oils. Application of Concepts of Green Analytical Chemistry" Molecules 24, no. 15: 2734. https://doi.org/10.3390/molecules24152734
APA StylePérino, S., Chemat-Djenni, Z., Petitcolas, E., Giniès, C., & Chemat, F. (2019). Downscaling of Industrial Turbo-Distillation to Laboratory Turbo-Clevenger for Extraction of Essential Oils. Application of Concepts of Green Analytical Chemistry. Molecules, 24(15), 2734. https://doi.org/10.3390/molecules24152734