Purification and Characterization of Ornithine Decarboxylase from Aspergillus terreus; Kinetics of Inhibition by Various Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening for the Potent ODC Producing Fungi
2.2. Molecular Confirmation of the Identity of the Potent ODC Producing Fungi
2.3. Nutritional Optimization of A. terreus for ODC Production
2.4. Purification, Molecular Mass and Subunit Structure of ODC from A. terreus
2.5. Biochemical Properties of A. terreus ODC
2.5.1. Reaction Temperature, Thermal Stability, Reaction pH and pH Stability
2.5.2. Substrate Specificity and Kinetic Parameters
2.6. Effect of Inhibitors on Activity of Purified A. terreus ODC
3. Materials and Methods
3.1. Materials
3.2. Screening for the Potent ODC Producing Fungal Isolates
3.3. ODC Activity and Concentration
3.4. Morphological and Molecular Identification of the Potent Fungal Isolates
3.5. Purification, Homogeneity and Molecular Subunit Structure of Aspergillus terreus ODC
3.6. Biochemical Properties of the Purified A. terreus ODC
3.7. Effect of Various Inhibitors on ODC Activity
3.8. Deposition of the Fungal Isolates
3.9. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pegg, A.E. Regulation of ornithine decarboxylase. J. Biol. Chem. 2006, 281, 14529–14532. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Santiago, L.; Ruiz-Herrera, J. Stress and polyamine metabolism in fungi. Front. Chem. 2013, 1, 42. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Dey, A.; Gupta, B. Plant polyamines in abiotic stress responses. Acta Physiol. Plant. 2013, 35, 2015–2036. [Google Scholar] [CrossRef]
- Valdés-Santiago, L.; Guzmán-de-Peña, D.; Ruiz-Herrera, J. Life without putrescine: Disruption of the gene-encoding polyamine oxidase in Ustilago maydis odc mutants. FEMS Yeast Res. 2010, 10, 928–940. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, K.W.; Dunkle, L.D.; Van Etten, J.L. Absence of spermine in filamentous fungi. J. Bacterial. 1977, 129, 173–176. [Google Scholar] [Green Version]
- Suh, S.-O.; Blackwell, M.; Kurtzman, C.P.; Lachance, M.-A. Phylogenetics of Saccharomycetales, the ascomycete yeasts. Mycologia 2006, 98, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Pegg, A.E.; Michael, A.J. Spermine synthase. Cell. Mol. Life Sci. 2010, 67, 113–121. [Google Scholar] [CrossRef]
- Fuell, C.; Elliott, K.A.; Hanfrey, C.C.; Franceschetti, M.; Michael, A.J. Polyamine biosynthetic diversity in plants and algae. Plant Physiol. Biochem. 2010, 48, 513–520. [Google Scholar] [CrossRef]
- Takano, A.; Kakehi, J.-I.; Takahashi, T. Thermospermine is Not a Minor Polyamine in the Plant Kingdom. Plant Cell Physiol. 2012, 53, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Barnett, G.R.; Seyfzadeh, M.; Davis, R.H. Putrescine and spermidine control degradation and synthesis of ornithine decarboxylase in Neurospora crassa. J. Biol. Chem. 1998, 263, 10005–10008. [Google Scholar]
- Toth, C.; Coffino, P. Regulated degradation of yeast ornithine decarboxylase. J. Biol. Chem. 1999, 274, 25921–25926. [Google Scholar] [CrossRef]
- Ivanov, I.P.; Atkins, J.F. Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: Close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res. 2007, 35, 1842–1858. [Google Scholar] [CrossRef]
- Hayashi, S.; Murakami, Y.; Matsufuji, S. Ornithine decarboxylase antizyme: A novel type of regulatory protein. Trends Biochem. Sci. 1996, 21, 27–30. [Google Scholar] [CrossRef]
- Zhang, M.; Pickart, C.M.; Coffino, P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J. 2003, 22, 1488–1496. [Google Scholar] [CrossRef] [Green Version]
- Gandre, S.; Kahana, C. Degradation of ornithine decarboxylase in Saccharomyces cerevisiae is ubiquitin independent. Biochem. Biophys. Res. Commun. 2002, 293, 139–144. [Google Scholar] [CrossRef]
- Coffino, P. Antizyme, a mediator of ubiquitin-independent proteasomal degradation. Biochimie 2001, 83, 319–323. [Google Scholar] [CrossRef]
- Kurian, L.; Palanimurugan, R.; Gödderz, D.; Dohmen, R.J. Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature 2011, 477, 490–494. [Google Scholar] [CrossRef]
- Williams, L.J.; Barnett, G.R.; Ristow, J.L.; Pitkin, J.; Perriere, M.; Davis, R.H. Ornithine decarboxylase gene of Neurospora crassa: Isolation, sequence, and polyamine-mediated regulation of its mRNA. Mol. Cell. Biol. 1992, 12, 347–359. [Google Scholar] [CrossRef]
- Gerner, E.W.; Meyskens, F.L. Polyamines and cancer: Old molecules, new understanding. Nature Rev. Cancer 2004, 4, 781–792. [Google Scholar] [CrossRef]
- Auvinen, M.; Paasinen, A.; Andersson, L.C.; Hölttä, E. Ornithine decarboxylase activity is critical for cell transformation. Nature 1992, 360, 355–358. [Google Scholar] [CrossRef]
- O’Brien, T.G.; Megosh, L.C.; Gilliard, G.; Soler, A.P. Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res. 1997, 57, 2630–2637. [Google Scholar]
- Pegg, A.E.; Shantz, L.M.; Coleman, C.S. Ornithine decarboxylase: Structure, function and translational regulation. Biochem. Soc. Trans. 1994, 22, 846–852. [Google Scholar] [CrossRef]
- Mangold, U.; Leberer, E. Regulation of all members of the antizyme family by antizyme inhibitor. Biochem. J. 2005, 385, 21–28. [Google Scholar] [CrossRef]
- Asher, G.; Bercovich, Z.; Tsvetkov, P.; Shaul, Y.; Kahana, C. 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1. Mol. Cell 2005, 17, 645–655. [Google Scholar] [CrossRef]
- Wu, D.; Yi, H.; Kaan, K.; Zheng, X.; Tang, X.; He, Y.; Tan, Q.V.; Zhang, N.; Song, H. Structural basis of Ornithine Decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1. Sci. Rep. 2015, 14738. [Google Scholar] [CrossRef]
- Koomoa, D.L.T.; Yco, L.P.; Borsics, T.; Wallick, C.J.; Bachmann, A.S. Ornithine decarboxylase inhibition by α-difluoromethylornithine activates opposing signaling pathways via phosphorylation of both Akt/protein kinase B and p27Kip1in neuroblastoma. Cancer Res. 2008, 68, 9825–9831. [Google Scholar] [CrossRef]
- Murray, A.E.; Grzymski, J.J. Diversity and genomics of Antarctic marine micro-organisms. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2007, 362, 2259–2271. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.S.; Khalaf, S.A.; Aziz, H.A. Characterization of homocysteine γ-lyase from submerged and solid cultures of Aspergillus fumigatus ASH (JX006238). J. Microbiol. Biotechnol. 2013, 23, 499–510. [Google Scholar] [CrossRef]
- El-Sayed, A.S.; Khalaf, S.A.; Abdel-Hamid, G.; El-Batrik, M.I. Screening, Morphological and Molecular characterization of fungi producing cyStathionine γ-lyaSe. Acta Biol. Hung. 2015, 661, 119–132. [Google Scholar] [CrossRef]
- Khalaf, S.A.; El-Sayed, A.S.A. L-Methioninase Production by Filamentous Fungi: I-Screening and Optimization Under Submerged Conditions. Curr. Microbiol. 2009, 58, 219–226. [Google Scholar] [CrossRef]
- Pathan, E.K.; Ghormade, V.; Deshpande, M.V. Selection of reference genes for quantitative real-time RT-PCR assays in different morphological forms of dimorphic zygomycetous fungus Benjaminiella poitrasii. PLoS ONE 2017, 12, e0179454. [Google Scholar] [CrossRef]
- Nevarez, L.; Vasseur, V.; Le Drean, G.; Tanguy, A.; Guisle-Marsollier, I.; Houlgatte, R.; Barbier, G. Isolation and analysis of differentially expressed genes in Penicillium glabrum subjected to thermal stress. Microbiology 2008, 154, 3752–3765. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A. Purification and characterization of a new L-methioninase from solid cultures of Aspergillus flavipes. J. Microbiol. 2011, 49, 130–140. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Hassan, A.E.; Yassin, M.A.; Hassan, A.M.F. Characterization of glutathione-homocystine transhydrogenase as a novel isoform of glutathione s-transferase from Aspergillus flavipes. Pharm. Chem. J. 2015, 49, 373–383. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Hassan, M.N.; Nada, H.M.S. Purification, immobilization, and biochemical characterization of l-arginine deiminase from thermophilic Aspergillus fumigatus KJ434941: Anticancer activity in vitro. Biotechnol. Prog. 2015, 31, 396–405. [Google Scholar] [CrossRef]
- López, M.C.; García, S.; Ruiz-Herrera, J.; Domínguez, A. The ornithine decarboxylase gene from Candida albicans. Sequence analysis and expression during dimorphism. Curr. Genet. 1997, 32, 108–114. [Google Scholar] [CrossRef]
- Fonzi, W.A. Biochemical and genetic characterization of the structure of yeast ornithine decarboxylase. Biochem. Biophys. Res. Commun. 1989, 162, 1409–1416. [Google Scholar] [CrossRef]
- El-Sayed, A.S. Microbial l-methioninase: Production, molecular characterization, and therapeutic applications. Appl. Microbiol. Biotechnol. 2010, 86, 445–467. [Google Scholar] [CrossRef]
- El-Sayed, A.S.; Shouman, S.A.; Nassrat, H.M. Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes l-methioninase. Enzym. Microb. Technol. 2012, 51, 200–210. [Google Scholar] [CrossRef]
- Liu, S.; Pritchard, G.G.; Hardman, M.J.; Pilone, G.J. Occurrence of arginine deiminase pathway enzymes in arginine catabolism by wine lactic Acid bacteria. Appl. Environ. Microbiol. 1995, 61, 310–316. [Google Scholar] [Green Version]
- Luqman, S.; Masood, N.; Sirvastava, S.; Dubye, V. A Modified Spectrophotometric and Methodical Approach to Find Novel Inhibitors of Ornithine Decarboxylase Enzyme: A Path through the Maze. Protoc. Exch. 2013. [Google Scholar] [CrossRef]
- Lee, Y.S.; Cho, Y.D. Identification of essential active-site residues in ornithine decarboxylase of Nicotiana glutinosa decarboxylating both L-ornithine and L-lysine. Biochem. J. 2001, 360, 657–665. [Google Scholar] [CrossRef]
- Murray-Stewart, T.; Casero, R. Regulation of Polyamine Metabolism by Curcumin for Cancer Prevention and Therapy. Med. Sci. 2017, 5, 38. [Google Scholar] [CrossRef]
- Casero, R.A.; Marton, L.J. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nature Rev. Drug Discov. 2007, 6, 373–390. [Google Scholar] [CrossRef]
- Metcalf, B.W.; Bey, P.; Danzin, C.; Jung, M.J.; Casara, P.; Vevert, J.P. Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogs. J. Am. Chem. Soc. 1978, 100, 2551–2553. [Google Scholar] [CrossRef]
- McCann, P.P.; Pegg, A.E. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol. Ther. 1992, 54, 195–215. [Google Scholar] [CrossRef]
- Thomas, T.; Thomas, T.J. Polyamines in cell growth and cell death: Molecular mechanisms and therapeutic applications. Cell. Mol. Life Sci. 2001, 58, 244–258. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Ruff, L.E.; Ghany, S.E.A.; Ali, G.S.; Esener, S. Molecular and Spectroscopic Characterization of Aspergillus flavipes and Pseudomonas putida L-Methionine γ-Lyase in Vitro. Appl. Biochem. Biotechnol. 2017, 181, 1513–1532. [Google Scholar] [CrossRef]
- Nakayama, T.; Esaki, N.; Tanaka, H.; Soda, K. Agricultural and Biological Chemistry Chemical Modification of Cysteine Residues of l- Methionine γ-Lyase Chemical Modification of Cysteine Residues of L-Methionine y-Lyase t. Agric. Biol. Chem. Agric Bioi Chern 1988, 52, 177–183. [Google Scholar]
- Kudou, D.; Misaki, S.; Yamashita, M.; Tamura, T.; Takakura, T.; Yoshioka, T.; Yagi, S.; Takimoto, A.; Esaki, N.; Inagaki, K. Structure of the Antitumour Enzyme L-Methionine γ-Lyase from Pseudomonas putida at 1.8 A Resolution. J. Biochem. 2007, 141, 535–544. [Google Scholar] [CrossRef]
- Sato, D.; Karaki, T.; Shimizu, A.; Kamei, K.; Harada, S.; Nozaki, T. Crystallization and preliminary X-ray analysis of L-methionine gamma-lyase 1 from Entamoeba histolytica. Acta Cryst. Sect. F Struct. Biol. Cryst. Commu. 2008, 64, 697–699. [Google Scholar] [CrossRef]
- Dias, B.; Weimer, B. Purification and characterization of L-methionine gamma-lyase from brevibacterium linens BL2. Appl. Environ. Microbiol. 1998, 64, 3327–3331. [Google Scholar]
- Lockwood, B.C.; Coombs, G.H. Purification and characterization of methionine gamma-lyase from Trichomonas vaginalis. Biochem. J. 1991, 279, 675–682. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Shindia, A.A.; AbouZaid, A.A.; Yassin, A.M.; Ali, G.S.; Sitohy, M.Z. Biochemical characterization of peptidylarginine deiminase-like orthologs from thermotolerant Emericella dentata and Aspergillus nidulans. Enzym. Microb. Technol. 2019, 124, 41–53. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Safan, S.; Mohamed, N.Z.; Shaban, L.; Ail, G.S.; Sitohy, M.Z. Induction of Taxol biosynthesis by Aspergillus terreus, endophyte of Podocarpus gracilior Pilger, upon intimate interaction with the plant endogenous microbes. Process Biochem. 2018, 71, 31–40. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A. L-methioninase production by Aspergillus flavipes under solid-state fermentation. J. Basic Microbiol. 2009, 49, 331–341. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Abdel-Azim, S.; Ibrahim, H.; Yassin, M.A.; Abdel-Ghany, S.; Esener SAli, G.S. Biochemical stability and molecular dynamic characterization of Aspergillus fumigatus cystathionine -Lyase in response to various reaction effectors. Enzym. Microbial. Technol. 2015, 81, 31–46. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Raper, K.B.; Fennell, D.I. The Genus Aspergillus; Williams and Wilkins: Philadelphia, PA, USA, 1965. [Google Scholar]
- Pitt, J.I. The Genus Penicillium and Its Teleomorphic States Eupenicillium and Talaromyces; Academic Press: London, UK; New York, NY, USA, 1979. [Google Scholar]
- Booth, C. The Genus Fusarium—C. Booth—Google Books. In Commonwealth Agricultural Bureaux [for the] Commonwealth Mycological Institute; Kew: Surrey, UK, 1971; ISBN 10:0851980465. [Google Scholar]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. Am. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Velegraki, A.; Kambouris, M.; Kostourou, A.; Chalevelakis, G.; Legakis, N.J. Rapid extraction of fungal DNA from clinical samples for PCR amplification. Med. Mycol. 1999, 37, 69–73. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- El-Sayed, A.S.; Shindia, A.A. Characterization and immobilization of purified Aspergillus flavipes l-methioninase: Continuous production of methanethiol. J. Appl. Microbiol. 2011, 111, 54–69. [Google Scholar] [CrossRef]
- El-Sayed, A.S.A.; Yassin, M.A.; Khalaf, S.A.; El-Batrik, M.; Ali, G.S.; Esener, S. Biochemical and Pharmacokinetic Properties of PEGylated Cystathionine γ-Lyase from Aspergillus carneus KF723837. J. Mol. Microbiol. Biotechnol. 2015, 25, 301–310. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
No. | Fungal Isolates | Specific Activity (µmol/mg/min) | |
---|---|---|---|
Saprophytic fungi | 1 | Fusarium sp | 0.053 |
2 | Aspergillus fumigatus | 0.053 | |
3 | Aspergillus flavus | 0.067 | |
4 | Aspergillus parasiticus | 0.079 | |
5 | Fusarium fujikuori | 0.199 | |
6 | Aspergillus terreus MS3 | 0.286 | |
7 | Aspergillus oryzae | 0.130 | |
8 | Penicillium crustosum | 0.229 | |
9 | Aspergillus sp1 | 0.074 | |
10 | Aspergillus sp2 | 0.078 | |
Endophytic fungi | 11 | Aspergillus terreus PC | 0.126 |
12 | Aspergillus flavus PS1 | 0.059 | |
13 | Aspergillus versicolor | 0.049 | |
14 | Aspergillus flavus PS2 | 0.049 | |
15 | Fusarium proliferatum | 0.064 | |
16 | Fusarium PL1 | 0.043 | |
17 | Penicillium chermesinum | 0.048 | |
18 | Penicillium chrysogenum | 0.043 | |
19 | Fusarium PL2 | 0.047 | |
20 | Aspergillus terreus PS | 0.042 |
Step | Total Activity (µmol) | Total Protein (mg) | Specific Activity (µmol/mg/min) | Purification Fold | Yield (%) |
---|---|---|---|---|---|
Crude enzyme | 11757 | 51100 | 0.23 | 1 | 100 |
After 20 kDa cut-off dialyzer | 8895.6 | 8640 | 1.17 | 5 | 75.6 |
Ion-exchange chromatography | 7366.2 | 5709.4 | 1.6 | 7 | 62.8 |
Gel-filtration chromatography | 5836.8 | 2778.8 | 2.1 | 9 | 50 |
Nessler’s Assay | Diacetyl Monoxime Assay | TNBS Assay | ||||
---|---|---|---|---|---|---|
Activity (µmol/mg/min) | Relative Activity (%) | Activity (µmol/mg/min) | Relative Activity (%) | Activity (µmol/mg/min) | Relative Activity (%) | |
l-Ornithine | 1.87 | 100 | 0.0035 | 100 | 2.1 | 100 |
l-Arginine | 0.35 | 19 | 0.0068 | 194 | 0.34 | 16.2 |
l-Lysine | 0 | 0 | 0.0045 | 128 | 0.44 | 20.9 |
Substrate | Km (mM) | Vmax (µmol/mg/min) | Kcat (s−1) | Kcat/Km (mM−1·s−1) |
---|---|---|---|---|
l-Ornithine | 0.95 | 4.8 | 4.3 × 10−5 | 4.61 × 10−5 |
l-Lysine | 1.34 | 4.18 | 3.8 × 10−5 | 2.83 × 10−5 |
l-Arginine | 1.4 | 3.8 | 3.4 × 10−5 | 2.46 × 10−5 |
Concentration (µg/mL) | Relative Activity (%) | IC50 (µg/mL) | |
---|---|---|---|
Control | 0 | 100 | - |
Propargylgycine | 5 | 89 | 20.9 |
40 | 30 | ||
200 | 17 | ||
400 | 6 | ||
Guanidine thiocyanate | 5 | 90 | 210.9 |
40 | 60 | ||
200 | 30 | ||
400 | 37 | ||
Hydroxylamine | 5 | 45 | 32.9 |
40 | 13 | ||
200 | 0 | ||
400 | 0 | ||
Iodoacetamide | 5 | 37 | 69.5 |
40 | 19 | ||
200 | 10 | ||
400 | 0 | ||
5-5′-Dithiobis-(2-nitro-benzoic acid) | 5 | 39 | 83.6 |
40 | 27 | ||
200 | 14 | ||
400 | 5.8 | ||
3-Methyl-2-benzo-thiazolinone hydrazone | 5 | 41 | 83.1 |
40 | 29 | ||
200 | 12 | ||
400 | 0 | ||
Curcumin | 5 | 11 | 0.04 |
40 | 0 | ||
200 | 0 | ||
400 | 0 | ||
DFMO | 5 | 8 | 0.02 |
40 | 0.1 | ||
200 | 0 | ||
400 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, A.S.A.; George, N.M.; Yassin, M.A.; Alaidaroos, B.A.; Bolbol, A.A.; Mohamed, M.S.; Rady, A.M.; Aziz, S.W.; Zayed, R.A.; Sitohy, M.Z. Purification and Characterization of Ornithine Decarboxylase from Aspergillus terreus; Kinetics of Inhibition by Various Inhibitors. Molecules 2019, 24, 2756. https://doi.org/10.3390/molecules24152756
El-Sayed ASA, George NM, Yassin MA, Alaidaroos BA, Bolbol AA, Mohamed MS, Rady AM, Aziz SW, Zayed RA, Sitohy MZ. Purification and Characterization of Ornithine Decarboxylase from Aspergillus terreus; Kinetics of Inhibition by Various Inhibitors. Molecules. 2019; 24(15):2756. https://doi.org/10.3390/molecules24152756
Chicago/Turabian StyleEl-Sayed, Ashraf S.A., Nelly M. George, Marwa A. Yassin, Bothaina A. Alaidaroos, Ahmed A. Bolbol, Marwa S. Mohamed, Amgad M. Rady, Safa W. Aziz, Rawia A. Zayed, and Mahmoud Z. Sitohy. 2019. "Purification and Characterization of Ornithine Decarboxylase from Aspergillus terreus; Kinetics of Inhibition by Various Inhibitors" Molecules 24, no. 15: 2756. https://doi.org/10.3390/molecules24152756
APA StyleEl-Sayed, A. S. A., George, N. M., Yassin, M. A., Alaidaroos, B. A., Bolbol, A. A., Mohamed, M. S., Rady, A. M., Aziz, S. W., Zayed, R. A., & Sitohy, M. Z. (2019). Purification and Characterization of Ornithine Decarboxylase from Aspergillus terreus; Kinetics of Inhibition by Various Inhibitors. Molecules, 24(15), 2756. https://doi.org/10.3390/molecules24152756