Theoretical Analysis of Efficiency of Multi-Layer Core-Shell Stationary Phases in the High Performance Liquid Chromatography of Large Biomolecules
Abstract
:1. Introduction
2. Theory
2.1. Structure of Multi-Layer Core-Shell Particles
- A non-porous core with a radius :
- A porous inner layer with a thickness "
- A porous outer layer with a tickness :Depending on the manufacturer, this layer may or may not have different porosity () and surface chemistry than the inner porous layer.
2.2. General Rate Model for Multi-Layer Core-Shell Particles
2.3. Height Equivalent to a Theoretical Plate of Chromatographic Columns
3. Methods
4. Results and Discussions
4.1. General Solution of the GR Model
4.2. Separation Efficiency of Bi-Layer Fully Porous Particles
4.3. Separation Efficiency of Bi-Layer Core-Shell Particles
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
HPLC | High pressure liquid chromatography |
HETP | Height equivalent to a theoretical plate |
GRM | General rate model |
SPP | Superficially porous particle |
TPP | Totally porous particle |
particle radius | |
core radius | |
radius of the outer surface of the inner porous layer | |
factor of proportonality between the and | |
factor of proportonality between and | |
thickness of the inner porous layer | |
thickness of the outer porous layer | |
total porosity of the porous shells | |
porosity of the inner porous layer | |
porosity of the outer porous layer | |
external porosity of the column | |
total porosity of the column | |
interstitial velocity of the eluent | |
F | phase ratio |
axial dispersion coefficient | |
concentration of the solute in the interstitial volume | |
concentration of the solute within the pores at the outer perimeter of the particle | |
q | concentration of solute adsorbed on the surface of stationary phase |
q averaged over the entire particle | |
external mass transfer coefficient | |
concentration of the solute in the stagnant mobile phase of pores in the inner layer | |
concentration of the solute in the stagnant mobile phase of pores in the outer layer | |
pore diffusion coefficient of solute in the inner layer | |
pore diffusion coefficient of solute in the outer layer | |
Henry coefficient of the solute in the inner layer | |
Henry coefficient of the solute in the outer layer | |
first normalized moment of the peak | |
second centralized moment of the peak | |
L | column length |
Laplace transform of the elution profile at the outlet of the column | |
column diameter | |
particle diameter | |
contribution of axial dispersion to the variance of peak eluted | |
contribution of external film mass transfer to the variance of peak eluted | |
contribution of intra-particle diffusion to the variance of peak eluted | |
contribution of axial dispersion to the HETP | |
contribution of external film mass transfer to the HETP | |
contribution of intra-particle diffusion to the HETP | |
zone retention coefficient of the inner layer | |
zone retention coefficient of the outer layer | |
zone retention coefficient, sum of and | |
retention parameter of the outer layer | |
retention parmeter of the outer layer | |
k | apparent retention factor |
retention time | |
hold-up time of the column | |
z | spatial variable |
s | Laplace variable |
r | radial variable |
t | time |
References
- Fekete, S.; Oláh, E.; Fekete, J. Fast liquid chromatography: The domination of core-shell and very fine particles. J. Chromatogr. A 2012, 1228, 57–71. [Google Scholar] [CrossRef]
- Hayes, R.; Ahmed, A.; Edge, T.; Zhang, H. Core-shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A 2014, 1357, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Žuvela, P.; Skoczylas, M.; Jay Liu, J.; Baçzek, T.; Kaliszan, R.; Wong, M.W.; Buszewski, B. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem. Rev. 2019, 119, 3674–3729. [Google Scholar] [CrossRef]
- Kirkland, J.; Langlois, T.; DeStefano, J. Fused core particles for HPLC columns. Am. Labor. 2007, 39, 18–21. [Google Scholar]
- DeStefano, J.J.; Langlois, T.J.; Kirkland, J.J. Characteristics of superficially-porous silica particles for fast HPLC: Some performance comparisons with sub-2-mu m particles. J. Chromatogr. Sci. 2008, 46, 254. [Google Scholar] [CrossRef] [PubMed]
- DeStefano, J.; Boyes, B.; Schuster, S.; Miles, W.; Kirkland, J. Are sub-2μm particles best for separating small molecules? An alternative. J. Chromatogr. A 2014, 1368, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Fekete, S.; Fekete, J.; Ganzler, K. Characterization of new types of stationary phases for fast liquid chromatographic applications. J. Pharm. Biomed. Anal. 2009, 50, 703–709. [Google Scholar] [CrossRef]
- Knox, J.H.; Saleem, M. Kinetic conditions for optimum speed and resolution in column chromatography. J. Chromatogr. Sci. 1969, 7, 614–622. [Google Scholar] [CrossRef]
- Horváth, K.; Horváth, S.; Lukács, D. Effect of axial temperature gradient on chromatographic efficiency under adiabatic conditions. J. Chromatogr. A 2017, 1483, 80–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gritti, F.; Guiochon, G. Measurement of the axial and radial temperature profiles of a chromatographic column. Influence of thermal insulation on column efficiency. J. Chromatogr. A 2007, 1138, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Gritti, F.; Guiochon, G. Complete temperature profiles in ultra-high-pressure liquid chromatography columns. Anal. Chem. 2008, 80, 5009–5020. [Google Scholar] [CrossRef] [PubMed]
- Horváth, C.G.; Preiss, B.A.; Lipsky, S.L. Fast liquid chromatography. Investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers. Anal. Chem. 1967, 39, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- Horváth, C.G.; Lipsky, S.L. Column Design in High Pressure Liquid Chromatography. J. Chromatogr. Sci. 1969, 7, 109–116. [Google Scholar] [CrossRef]
- Fekete, S.; Guillarme, D.; Dong, M.W. Superficially Porous Particles: Perspectives, Practices, and Trends. LC GC 2014, 32, 420–433. [Google Scholar]
- Guiochon, G.; Gritti, F. Shell particles, trials, tribulations and triumphs. J. Chromatogr. A 2011, 1218, 1915–1938. [Google Scholar] [CrossRef]
- Cabooter, D.; Fanigliulo, A.; Bellazzi, G.; Allieri, B.; Desmet, G. Relationship between the particle size distribution of commercial fully porous and superficially porous high-performance liquid chromatography column packings and their chromatographic performance. J. Chromatogr. A 2010, 1217, 7074–7081. [Google Scholar] [CrossRef] [PubMed]
- González-Ruiz, V.; Olives, A.I.; Martín, M.A. Core-shell particles lead the way to renewing high-performance liquid chromatography. Trends Anal. Chem. 2015, 64, 17–28. [Google Scholar] [CrossRef]
- Deridder, S.; Catani, M.; Cavazzini, A.; Desmet, G. A theoretical study on the advantage of core-shell particles with radially-oriented mesopores. J. Chromatogr. A 2016, 1456, 137–144. [Google Scholar] [CrossRef]
- Pirok, B.W.; Breuer, P.; Hoppe, S.J.; Chitty, M.; Welch, E.; Farkas, T.; van der Wal, S.; Peters, R.; Schoenmakers, P.J. Size-exclusion chromatography using core-shell particles. J. Chromatogr. A 2017, 1486, 96–102. [Google Scholar] [CrossRef]
- Horváth, K.; Gritti, F.; Fairchild, J.N.; Guiochon, G. On the optimization of the shell thickness of superficially porous particles. J. Chromatogr. A 2010, 1217, 6373–6381. [Google Scholar] [CrossRef]
- Gritti, F.; Horváth, K.; Guiochon, G. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography. J. Chromatogr. A 2012, 1263, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Ohmacht, R.; Kiss, I. Application of a New Non-Porous Stationary Phase (Kovasil-H) for the Fast Separation of Peptides by HPLC. Chromatographia 1996, 42, 595–598. [Google Scholar] [CrossRef]
- Kulsing, C.; Yang, Y.; Munera, C.; Tse, C.; Matyska, M.T.; Pesek, J.J.; Boysen, R.I.; Hearn, M.T. Correlations between the zeta potentials of silica hydride-based stationary phases, analyte retention behaviour and their ionic interaction descriptors. Anal. Chim. Acta 2014, 817, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Forssén, P.; Multia, E.; Samuelsson, J.; Andersson, M.; Aastrup, T.; Altun, S.; Wallinder, D.; Wallbing, L.; Liangsupree, T.; Riekkola, M.L.; et al. Reliable Strategy for Analysis of Complex Biosensor Data. Anal. Chem. 2018, 90, 5366–5374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaczmarski, K.; Guiochon, G. Modeling of the Mass-Transfer Kinetics in Chromatographic Columns Packed with Shell and Pellicular Particles. Anal. Chem. 2007, 79, 4648–4656. [Google Scholar] [CrossRef] [PubMed]
- Guiochon, G.; Felinger, A.; Shirazi, D.G.; Katti, A.M. Fundamentals of Preparative and Nonlinear Chromatography; Academic Press: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kučera, E. Contribution to the theory of chromatography: Linear non-equilibrium elution chromatography. J. Chromatogr. A 1965, 19, 237–248. [Google Scholar] [CrossRef]
- Cavazzini, A.; Gritti, F.; Kaczmarski, K.; Marchetti, N.; Guiochon, G. Mass-transfer kinetics in a shell packing material for chromatography. Anal. Chem. 2007, 79, 5972. [Google Scholar] [CrossRef] [PubMed]
- Fekete, S.; Berky, R.; Fekete, J.; Veuthey, J.L.; Guillarme, D. Evaluation of a new wide pore core-shell material (AerisTM WIDEPORE) and comparison with other existing stationary phases for the analysis of intact proteins. J. Chromatogr. A 2012, 1236, 177–188. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Python codes used for the calculations are available from the authors. |
Parameter | Value |
---|---|
Column length (L) | 10 cm |
Column diameter () | 0.3 cm |
Particle diameter () | 2.7 m |
External porosity () | 0.4 |
Interstitial mobile phase velocity () | 5 |
No. | ||||
---|---|---|---|---|
1 | 1.2 | 3 | ||
2 | 1.2 | 3 | ||
3 | 1.2 | 3 | ||
4 | 1.2 | 3 | ||
5 | 1.2 | 1.2 | ||
6 | 1.2 | 1.2 | ||
7 | 3 | 3 | ||
8 | 3 | 3 | ||
9 | 3 | 1.2 | ||
10 | 3 | 1.2 | ||
11 | 3 | 1.2 | ||
12 | 3 | 1.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horváth, S.; Gritti, F.; Kormány, R.; Horváth, K. Theoretical Analysis of Efficiency of Multi-Layer Core-Shell Stationary Phases in the High Performance Liquid Chromatography of Large Biomolecules. Molecules 2019, 24, 2849. https://doi.org/10.3390/molecules24152849
Horváth S, Gritti F, Kormány R, Horváth K. Theoretical Analysis of Efficiency of Multi-Layer Core-Shell Stationary Phases in the High Performance Liquid Chromatography of Large Biomolecules. Molecules. 2019; 24(15):2849. https://doi.org/10.3390/molecules24152849
Chicago/Turabian StyleHorváth, Szabolcs, Fabrice Gritti, Róbert Kormány, and Krisztián Horváth. 2019. "Theoretical Analysis of Efficiency of Multi-Layer Core-Shell Stationary Phases in the High Performance Liquid Chromatography of Large Biomolecules" Molecules 24, no. 15: 2849. https://doi.org/10.3390/molecules24152849
APA StyleHorváth, S., Gritti, F., Kormány, R., & Horváth, K. (2019). Theoretical Analysis of Efficiency of Multi-Layer Core-Shell Stationary Phases in the High Performance Liquid Chromatography of Large Biomolecules. Molecules, 24(15), 2849. https://doi.org/10.3390/molecules24152849