Rapid Identification of Rainbow Trout Adulteration in Atlantic Salmon by Raman Spectroscopy Combined with Machine Learning
Abstract
:1. Introduction
2. Results
2.1. Raman Spectral Analyses
2.2. Preprocessing Analysis
2.3. Important Spectral Band Selection
2.4. Results of the Cubist Model
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Raman Spectral Data Measurements
4.3. Spectral Pretreatment
4.4. Analytical Methods
4.4.1. Spectral Band Selection Methods
4.4.2. Modeling Methods
4.5. Model Evaluation
4.6. Software
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ali, M.E.; Hashim, U.; Mustafa, S.; Man, Y.C.; Dhahi, T.S.; Kashif, M.; Uddin, M.K.; Hamid, S.A. Analysis of pork adulteration in commercial meatballs targeting porcine-specific mitochondrial cytochrome b gene by TaqMan probe real-time polymerase chain reaction. Meat Sci. 2012, 91, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Haider, N.; Nabulsi, I.; Al-Safadi, B. Identification of meat species by PCR-RFLP of the mitochondrial COI gene. Meat Sci. 2012, 90, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Mane, B.G.; Mendiratta, S.K.; Tiwari, A.K. Beef specific polymerase chain reaction assay for authentication of meat and meat products. Food Control 2012, 28, 246–249. [Google Scholar] [CrossRef]
- Sakaridis, I.; Ganopoulos, I.; Argiriou, A.; Tsaftaris, A. A fast and accurate method for controlling the correct labeling of products containing buffalo meat using High Resolution Melting (HRM) analysis. Meat Sci. 2013, 94, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Amaral, J.S.; Oliveira, M.B.P.; Mafra, I. A SYBR Green real-time PCR assay to detect and quantify pork meat in processed poultry meat products. Meat Sci. 2013, 94, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C. Semi-nested multiplex PCR enhanced method sensitivity of species detection in further-processed meats. Food Control 2013, 31, 326–330. [Google Scholar] [CrossRef]
- Mamani-Linares, L.W.; Gallo, C.; Alomar, D. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy. Meat Sci. 2012, 90, 378–385. [Google Scholar] [CrossRef]
- Kim, G.; Seo, J.; Yum, H.; Jeong, J.; Yang, H. Protein markers for discrimination of meat species in raw beef, pork and poultry and their mixtures. Food Chem. 2017, 217, 163–170. [Google Scholar] [CrossRef]
- Alamprese, C.; Casale, M.; Sinelli, N.; Lanteri, S.; Casiraghi, E. Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT-Food Sci. Technol. 2013, 53, 225–232. [Google Scholar] [CrossRef]
- Ropodi, A.I.; Pavlidis, D.E.; Mohareb, F.; Panagou, E.Z.; Nychas, G. Multispectral image analysis approach to detect adulteration of beef and pork in raw meats. Food Res. Int. 2015, 67, 12–18. [Google Scholar] [CrossRef]
- Marquardt, B.J.; Wold, J.P. Raman analysis of fish: A potential method for rapid quality screening. LWT-Food Sci. Technol. 2004, 37, 1–8. [Google Scholar] [CrossRef]
- Wong, H.; Choi, S.; Phillips, D.L.; Ma, C. Raman spectroscopic study of deamidated food proteins. Food Chem. 2009, 113, 363–370. [Google Scholar] [CrossRef]
- Prieto, N.; Lopez-Campos, O.; Aalhus, J.L.; Dugan, M.; Juarez, M.; Uttaro, B. Use of near infrared spectroscopy for estimating meat chemical composition, quality traits and fatty acid content from cattle fed sunflower or flaxseed. Meat Sci. 2014, 98, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Lobón, S.; Joy, M. Use of visible and near infrared reflectance spectra to predict lipid peroxidation of light lamb meat and discriminate dam’s feeding systems. Meat Sci. 2018, 143, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Moran, L.; Andres, S.; Allen, P.; Moloney, A.P. Visible and near infrared spectroscopy as an authentication tool: Preliminary investigation of the prediction of the ageing time of beef steaks. Meat Sci. 2018, 142, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. J. Food Eng. 2016, 170, 8–15. [Google Scholar] [CrossRef]
- Alamprese, C.; Amigo, J.M.; Casiraghi, E.; Engelsen, S.B. Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Sci. 2016, 121, 175–181. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.; Allen, P. Application of NIR hyperspectral imaging for discrimination of lamb muscles. J. Food Eng. 2011, 104, 332–340. [Google Scholar] [CrossRef]
- Wang, W.; Peng, Y.; Sun, H.; Zheng, X.; Wei, W. Spectral detection techniques for non-destructively monitoring the quality, safety, and classification of fresh red meat. Food Anal. Method 2018, 11, 2707–2730. [Google Scholar] [CrossRef]
- Dixit, Y.; Casado Gavalda, M.P.; Cama Moncunill, R.; Cama Moncunill, X.; Markiewicz Keszycka, M.; Cullen, P.J.; Sullivan, C. Developments and challenges in online NIR spectroscopy for meat processing. Compr Rev. Food Sci. Food Saf. 2017, 16, 1172–1187. [Google Scholar] [CrossRef]
- Boyacı, I.H.; Temiz, H.T.; Uysal, R.S.; Velioğlu, H.M.; Yadegari, R.J.; Rishkan, M.M. A novel method for discrimination of beef and horsemeat using Raman spectroscopy. Food Chem. 2014, 148, 37–41. [Google Scholar] [CrossRef]
- Zając, A.; Hanuza, J.; Dymińska, L. Raman spectroscopy in determination of horse meat content in the mixture with other meats. Food Chem. 2014, 156, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Velioğlu, H.M.; Temiz, H.T.; Boyaci, I.H. Differentiation of fresh and frozen-thawed fish samples using Raman spectroscopy coupled with chemometric analysis. Food Chem. 2015, 172, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Downey, G.; O Donnell, C.P. Dispersive Raman spectroscopy and multivariate data analysis to detect offal adulteration of thawed beefburgers. J. Agric. Food Chem. 2015, 63, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Yaling, Z. Rapid discrimination of minced beef adulterated with chicken using Raman spectroscopy. Meat Res. 2018, 32, 26–29. [Google Scholar]
- Devos, O.; Downey, G.; Duponchel, L. Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils. Food Chem. 2014, 148, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Jović, O. Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins. Food Chem. 2016, 213, 791–798. [Google Scholar] [CrossRef]
- Li, Y.; Fang, T.; Zhu, S.; Huang, F.; Chen, Z.; Wang, Y. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. Spectrochim. Acta Part A 2018, 189, 37–43. [Google Scholar] [CrossRef]
- Fowler, S.M.; Schmidt, H.; van de Ven, R.; Hopkins, D.L. Preliminary investigation of the use of Raman spectroscopy to predict meat and eating quality traits of beef loins. Meat Sci. 2018, 138, 53–58. [Google Scholar] [CrossRef]
- Fowler, S.M.; Schmidt, H.; Scheier, R.; Hopkins, D.L. Raman spectroscopy for predicting meat quality traits. In Advanced Technologies for Meat Processing, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 83–112. [Google Scholar]
- Nian, Y.; Zhao, M.; O’Donnell, C.P.; Downey, G.; Kerry, J.P.; Allen, P. Assessment of physico-chemical traits related to eating quality of young dairy bull beef at different ageing times using Raman spectroscopy and chemometrics. Food Res. Int. 2017, 99, 778–789. [Google Scholar] [CrossRef]
- Bauer, A.; Scheier, R.; Eberle, T.; Schmidt, H. Assessment of tenderness of aged bovine gluteus medius muscles using Raman spectroscopy. Meat Sci. 2016, 115, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Nian, Y.; Allen, P.; Downey, G.; Kerry, J.P.; O’Donnell, C.P. Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef. Food Res. Int. 2018, 107, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Nian, Y.; Allen, P.; Downey, G.; Kerry, J.P.; O Donnell, C.P. Performances of full cross-validation partial least squares regression models developed using Raman spectral data for the prediction of bull beef sensory attributes. Data Brief 2018, 19, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, T.; Sun, D.; Cheng, J. Raman imaging for food quality and safety evaluation: Fundamentals and applications. Trends Food Sci. Technol. 2017, 62, 177–189. [Google Scholar] [CrossRef]
- Rohman, A.; Che Man, Y.B.; Hashim, P.; Ismail, A. FTIR spectroscopy combined with chemometrics for analysis of lard adulteration in some vegetable oils. Cyta-J. Food 2011, 9, 96–101. [Google Scholar] [CrossRef]
- Jaswir, I.; Mirghani, M.E.S.; Hassan, T.H.; Said, M.Z.M. Determination of lard in mixture of body fats of mutton and cow by Fourier transform infrared spectroscopy. J. Oleo Sci. 2003, 52, 633–638. [Google Scholar] [CrossRef]
- Tomasevic, I.; Nedeljković, A.; Stanišić, N.; Pudja, P. Authenticity assessment of cooked emulsified sausages using Raman spectroscopy and chemometrics. J. Meat Prod. Meat Process. 2016, 3, 70–73. [Google Scholar]
- De Biasio, M.; Stampfer, P.; Leitner, R.; Huck, C.W.; Wiedemair, V.; Balthasar, D. Micro-Raman spectroscopy for meat type detection. In Next-Generation Spectroscopic Technologies VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; p. 94821J. [Google Scholar]
- Beattie, J.R.; Bell, S.E.; Moss, B.W. A critical evaluation of Raman spectroscopy for the analysis of lipids: Fatty acid methyl esters. Lipids 2004, 39, 407–419. [Google Scholar] [CrossRef]
- Mahesar, S.A.; Sherazi, S.; Khaskheli, A.R.; Kandhro, A.A. Analytical approaches for the assessment of free fatty acids in oils and fats. Anal. Method 2014, 6, 4956–4963. [Google Scholar] [CrossRef]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Muik, B.; Lendl, B.; Molina-Díaz, A.; Ayora-Cañada, M.J. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem. Phys. Lipids 2005, 134, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, 16–18 November 1992; pp. 343–348. [Google Scholar]
- Rinnan, Å.; Van Den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Vidal, M.; Amigo, J.M. Pre-processing of hyperspectral images. Essential steps before image analysis. Chemom. Intell. Lab. Syst. 2012, 117, 138–148. [Google Scholar] [CrossRef]
- Burger, J.; Gowen, A. Data handling in hyperspectral image analysis. Chemom. Intell. Lab. Syst. 2011, 108, 13–22. [Google Scholar] [CrossRef]
- Agrawal, R.; Gehrke, J.; Gunopulos, D.; Raghavan, P. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications; ACM: New York, NY, USA, 1998; Volume 27. [Google Scholar]
- Mirkin, B. Concept learning and feature selection based on square-error clustering. Mach. Learn. 1999, 35, 25–39. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Bohachevsky, I.O.; Johnson, M.E.; Stein, M.L. Generalized simulated annealing for function optimization. Technometrics 1986, 28, 209–217. [Google Scholar] [CrossRef]
- Ienco, D.; Meo, R. Exploration and reduction of the feature space by hierarchical clustering. In Proceedings of the 2008 SIAM International Conference on Data Mining, Atlanta, GA, USA, 24–26 April 2008; pp. 577–587. [Google Scholar]
- Witten, D.M.; Tibshirani, R. A framework for feature selection in clustering. J. Am. Stat. Assoc. 2010, 105, 713–726. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Zhang, S. Feature selection using hierarchical feature clustering. In Proceedings of the 20th ACM International Conference on Information and Knowledge Management, Glasgow, UK, 24–28 October 2011; pp. 979–984. [Google Scholar]
- Rady, A.; Adedeji, A. Assessing different processed meats for adulterants using visible-near-infrared spectroscopy. Meat Sci. 2018, 136, 59–67. [Google Scholar] [CrossRef]
- Tripathy, S.; Reddy, M.S.; Vanjari, S.R.K.; Jana, S.; Singh, S.G. A step towards miniaturized milk adulteration detection system: Smartphone-based accurate pH sensing using electrospun halochromic nanofibers. Food Anal. Method 2019, 12, 612–624. [Google Scholar] [CrossRef]
- Large, J.; Kemsley, E.K.; Wellner, N.; Goodall, I.; Bagnall, A. Detecting Forged Alcohol Non-invasively Through Vibrational Spectroscopy and Machine Learning. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining 2018, Melbourne, Australia, 3–6 June 2018; Springer: Cham, Switzerland, 2018; pp. 298–309. [Google Scholar] [Green Version]
- Hofner, B.; Mayr, A.; Robinzonov, N.; Schmid, M. Model-based boosting in R: A hands-on tutorial using the R package mboost. Comput. Stat. 2014, 29, 3–35. [Google Scholar] [CrossRef]
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Soft 2011, 39, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chadeau-Hyam, M.; Hoggart, C.J.; O’Reilly, P.F.; Whittaker, J.C.; De Iorio, M.; Balding, D.J. Simulation of realistic sequence-level data in populations and ascertained samples. BMC Bioinform. 2008, 9, 364. [Google Scholar] [CrossRef] [PubMed]
- Koenker, R.; Mizera, I. Convex optimization in R. J. Stat. Soft 2014, 60, 1–23. [Google Scholar] [CrossRef]
- Xiao, N.; Qing-Song, X. Multi-step adaptive elastic-net: Reducing false positives in high-dimensional variable selection. J. Stat. Comput. Simul. 2015, 85, 3755–3765. [Google Scholar] [CrossRef]
- Meinshausen, N. Quantile regression forests. J. Mach. Learn. Res. 2006, 7, 983–999. [Google Scholar]
- Scholkopf, B.; Smola, A.; Williamson, R.C.; Bartlett, P. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hechenbichler, K.; Schliep, K.P. Weighted k-Nearest-Neighbor Techniques and Ordinal Classification; Discussion Paper; Ludwig-Maximilians University Munich: Munich, Germany, 2004; pp. 86–399. [Google Scholar]
- Leathwick, J.R.; Rowe, D.; Richardson, J.; Elith, J.; Hastie, T. Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshw. Biol. 2005, 50, 2034–2052. [Google Scholar] [CrossRef]
- Strobl, C.; Malley, J.; Tutz, G. An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 2009, 14, 323–348. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774. [Google Scholar]
- Wang, Y.; Witten, I. Inducing model trees for continuous classes. In Proceedings of the Ninth European Conference on Machine Learning, Prague, Czech Republic, 23–25 April 1997; pp. 128–137. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Band/cm−1 | Vibration Mode | Functional Groups | Intensity |
---|---|---|---|
1748 | ν(C=O) | Ester (RC=OOR) | Weak |
1659 | ν(C=C) | Unsaturated band (cis RHC=CHR) | Strong |
1441 | δγ(C–H) | Methylene (CH2) | Strong |
1303 | δτ(C–H) | Methylene (CH2) | Medium |
1268 | δIP(=C–H) | Non-conjugated cis (RHC=CHR) | Medium |
1079 | ν(C–C) | –(CH2)n– | Medium |
974 | δ(=C–H) | Trans RHC=CHR | Medium |
872 | ν(C–C) | –(CH2)n– | Medium |
Pretreatment Methods | Ncomp | Calibration Sets | Test Sets | |||
---|---|---|---|---|---|---|
RMSE (%) | R2 | RMSEP (%) | R2P | MAE | ||
NONE | 10 | 14.79 | 0.79 | 17.27 | 0.70 | 13.19 |
FD | 10 | 21.38 | 0.58 | 23.10 | 0.48 | 18.18 |
SD | 10 | 29.26 | 0.19 | 30.15 | 0.12 | 25.11 |
SNV | 10 | 13.66 | 0.82 | 13.28 | 0.81 | 10.49 |
MSC | 9 | 13.68 | 0.82 | 13.32 | 0.81 | 10.57 |
Dimension Reduction Methods | Number of Wavelengths | Calibration Sets | Test Sets | |||
---|---|---|---|---|---|---|
RMSE (%) | R2 | RMSEP (%) | R2P | MAE | ||
NONE | 882 | 13.68 | 0.82 | 13.32 | 0.81 | 10.57 |
RFE–KM | 75 | 14.47 | 0.79 | 14.93 | 0.77 | 12.24 |
GA–KM | 431 | 14.36 | 0.80 | 13.34 | 0.81 | 10.69 |
SA–KM | 322 | 14.55 | 0.79 | 13.84 | 0.80 | 11.11 |
Models | RMSE (%) | R2 | MAE | |||
---|---|---|---|---|---|---|
Calibration Sets | Test Sets | Calibration Sets | Test Sets | Calibration Sets | Test Sets | |
PLS | 14.36 | 13.34 | 0.80 | 0.81 | 11.18 | 10.69 |
Ridge | 17.09 | 14.84 | 0.74 | 0.78 | 13.39 | 11.81 |
Enet | 15.23 | 14.38 | 0.77 | 0.78 | 12.11 | 11.60 |
Rqlasso | 15.72 | 14.92 | 0.76 | 0.77 | 12.46 | 11.94 |
Earth | 16.30 | 16.84 | 0.74 | 0.71 | 12.93 | 13.14 |
Kknn | 16.44 | 16.02 | 0.75 | 0.74 | 12.79 | 12.38 |
ParRF | 15.91 | 14.87 | 0.77 | 0.79 | 12.92 | 11.91 |
Qrf | 15.66 | 14.81 | 0.76 | 0.77 | 11.99 | 10.99 |
Rf | 15.92 | 14.99 | 0.77 | 0.78 | 12.95 | 11.98 |
Ctree | 21.74 | 22.71 | 0.55 | 0.48 | 17.09 | 16.95 |
Cubist | 12.67 | 10.93 | 0.84 | 0.87 | 9.78 | 8.37 |
Glmboost | 15.20 | 14.38 | 0.77 | 0.78 | 12.17 | 11.57 |
XgbTree | 29.67 | 29.22 | 0.33 | 0.30 | 22.70 | 22.86 |
Msaene | 15.33 | 14.39 | 0.77 | 0.78 | 12.37 | 11.69 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Wu, T.; Xiang, C.; Xu, X.; Tian, X. Rapid Identification of Rainbow Trout Adulteration in Atlantic Salmon by Raman Spectroscopy Combined with Machine Learning. Molecules 2019, 24, 2851. https://doi.org/10.3390/molecules24152851
Chen Z, Wu T, Xiang C, Xu X, Tian X. Rapid Identification of Rainbow Trout Adulteration in Atlantic Salmon by Raman Spectroscopy Combined with Machine Learning. Molecules. 2019; 24(15):2851. https://doi.org/10.3390/molecules24152851
Chicago/Turabian StyleChen, Zeling, Ting Wu, Cheng Xiang, Xiaoyan Xu, and Xingguo Tian. 2019. "Rapid Identification of Rainbow Trout Adulteration in Atlantic Salmon by Raman Spectroscopy Combined with Machine Learning" Molecules 24, no. 15: 2851. https://doi.org/10.3390/molecules24152851
APA StyleChen, Z., Wu, T., Xiang, C., Xu, X., & Tian, X. (2019). Rapid Identification of Rainbow Trout Adulteration in Atlantic Salmon by Raman Spectroscopy Combined with Machine Learning. Molecules, 24(15), 2851. https://doi.org/10.3390/molecules24152851