Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Samples
Reagents and Standards
2.2. Methods
2.2.1. Analysis of Physicochemical Properties
2.2.2. Analysis of Antioxidant Properties
2.2.3. Analysis of Profile of Polyphenolic Compounds
2.2.4. Analysis of Tocopherols
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Antioxidant Properties and Polyphenol Content
3.3. Profile and Content of Phenolics
3.4. Profile and Content of Tocopherol
3.5. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S.N. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Fernández-Ballart, J.; Ros, E.; Martínez-González, M.A.; Fitó, M.; Estruch, R. Effect of a mediterranean diet supplemented with nuts on metabolic syndrome status: One-year results of the PREDIMED randomized trial. J. Am. Med. Assoc. 2005, 168, 2449–2458. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Amadora, R.; Salvadora, M.D.; Gómez-Alonsob, S.; Fregapanea, G. Characterization of virgin walnut oils and their residual cakes produced from different varieties. Food Res. Int. 2018, 108, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Sabaté, J.; Fraser, G.E.; Burke, K.; Knutsen, S.F.; Bennett, H.; Lindsted, K.D. Effects of walnuts on serum lipid levels and blood pressure in normal men. N. Engl. J. Med. 1993, 328, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, I.B.; Tlili, N.; Martinez-Force, E.; Preze-Rubio, A.G.; Perez-Camino, M.C.; Albouchu, A.; Boukhchina, S. Content of carotenoids, tocopherols, sterols, triterpenic and aliphatic alcohols, and volatile compounds in six walnuts (Juglans regia L.) varieties. Food Chem. 2015, 173, 972–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ros, E.; Tapsell, L.C.; Sabaté, J. Nuts and berries for heart health. Curr. Atheroscler. Rep. 2010, 12, 397–406. [Google Scholar] [CrossRef]
- Chen, C.Y.; Blumberg, J.B. Phytochemical composition of nuts. Asia Pac. J. Clin. Nutr. 2008, 17, 329–332. [Google Scholar]
- Alasalvar, C.; Shahidi, F. Tree nuts: Composition, Phytochemicals, and Health Effects; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Chang, S.K.; Alasalvar, C.; Bolling, B.W.; Shahidi, F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits–A comprehensive review. J. Funct. Food. 2016, 26, 88–122. [Google Scholar] [CrossRef]
- Persic, M.; Mikulic-Petkovsek, M.; Slatnar, A.; Solar, A.; Veberic, R. Changes in phenolic profiles of red-colored pellicle walnut and hazelnut kernel during ripening. Food Chem. 2018, 252, 349–355. [Google Scholar] [CrossRef]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Letícia, E.M. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2008, 46, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Alasalvar, C.; Liyana-Pathirana, C.M. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food. Chem. 2007, 55, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.; Sousa, A.; Ferreira, I.C.F.R.; Bento, A.; Estevinho, L.; Pereira, J.A. Total phenols, antioxidant potential and antimicrobial activity of walnut (Juglans regia L.) green husky. Food Chem. Toxicol. 2008, 46, 2326–2331. [Google Scholar]
- Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Moldovan, C.; Popa, D.-S.; Tomuta, I.; Vlase, L. Process optimization for improved phenolic compounds recovery from walnut (Juglans regia L.) septum: Phytochemical profile and biological activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef] [PubMed]
- Castrejón, A.D.R.; Eichholz, I.; Rohn, S.; Kroh, L.W.; Huyskens-Keil, S. Phenolic profile and activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem. 2008, 109, 564–572. [Google Scholar]
- Rusu, M.E.; Gheldiu, A.M.; Mocan, A.; Vlase, L.; Popa, D.S. Anti-aging potential of tree nuts with a focus on the phytochemical composition, molecular mechanisms and thermal stability of major bioactive compounds. Food Funct. 2018, 9, 2554–2575. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Arlington, VA, USA; Vol. II, pp. 1–3.
- Pycia, K.; Kapusta, I.; Jaworska, G.; Jankowska, A. Antioxidant properties, profile of polyphenolic compounds and tocopherol content in various walnut (Juglans regia L.) varieties. Eur. Food Res. Technol. 2019, 245, 607–616. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H. Antioxidant activity of various tea extracts in relation to 434 their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a 436 measure of antioxidant power: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppson, N.; Lars Bjork, A.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, I.; Cebulak, T.; Oszmiański, J. Characterization of polish wines produced from the interspecific hybrid grapes grown in south-east Poland. Eur. Food Res. Technol. 2018, 244, 441–455. [Google Scholar] [CrossRef]
- Ballistreri, G.; Arena, E.; Fallico, B. Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L. Molecules 2009, 14, 4358–4369. [Google Scholar] [CrossRef] [PubMed]
- Savage, G.P. Chemical composition of walnuts (Juglans regia L.) grown in New Zealand. Plant Foods Hum. Nutri. 2001, 56, 75–82. [Google Scholar] [CrossRef]
- Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap–Orbitrap mass spectrometry. Food Chem. 2014, 152, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Amaral, J.S.; Alves, M.; Seabra, R.; Oliveira, B. Vitamin E composition of walnuts (Juglans regia L.): A 3-year comparative study of different cultivars. J. Agric. Food Chem. 2005, 53, 5467–5472. [Google Scholar] [CrossRef] [PubMed]
- Kornsteiner, M.; Karl-Heinz, W.; Ibrahim, E. Tocopherols and phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Stampar, F.; Solar, A.; Hudina, M.; Veberic, R.; Colaric, M. Traditional walnut liqueur–cocktail of phenolics. Food Chem. 2006, 95, 627–631. [Google Scholar] [CrossRef]
- Bolling, B.W.; Chen, C.Y.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef]
- Cerit, I.; Saricam, A.; Demirkol, O.; Unver, H.; Sakar, E.; Cosansu, S. Comparative study of functional properties of eight walnut (Juglans regia L.) genotypes. Food Sci. Technol. 2017, 37, 472–477. [Google Scholar] [CrossRef]
- Fukuda, T.; Ito, H.; Yoshida, T. Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochemistry 2003, 63, 795–801. [Google Scholar] [CrossRef]
- Larrosa, M.; Garcia-Conesa, M.; Espin, J.C.; Tomas-Barberan, F.A. Ellagitannins, ellagic acid and vascular health. Mol. Asp. Med. 2010, 31, 513–539. [Google Scholar] [CrossRef] [PubMed]
- Ismail, T.; Calcabrini, C.; Diaz, A.R.; Fimognari, C.; Turrini, E.; Catanzaro, E.; Akhtar, S.; Sestili, P. Ellagitannins in cancer chemoprevention and therapy. Toxins 2016, 8, 151. [Google Scholar] [CrossRef] [PubMed]
- Cerda, B.; Thomas-Barberan, F.A.; Espin, J.C. Metabolism of antioxidant and chemopreventive ellagitanins from strawberries, raspebbies, walnuts and oak-aged wine in humans: Identification of biomarkers and individual variability. J. Agric. Food Chem. 2004, 53, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.H.; Warlick, C.W.; Neff, S.A.; Lila, M.A. Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS. Food Chem. 2014, 158, 229–238. [Google Scholar] [CrossRef]
- Maguire, L.S.; O’Sullivan, S.M.; Galvin, K.; O’Connor, T.P.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nutr. 2004, 55, 171–178. [Google Scholar] [CrossRef]
- Delgado-Zamarreño, M.; Fernández-Prieto, M.M.C.; Bustamante-Rangel, M.; Pérez-Martín, L. Determination of tocopherols and sitosterols in seeds and nuts by QuEChERS-liquid chromatography. Food Chem. 2016, 192, 825–830. [Google Scholar] [CrossRef]
- Li, D.; Saldeen, T.; Romeo, F.; Mehta, J.L. Relative effects of alpha- and gamma-tocopherol on low-density lipoprotein oxidation and superoxide dismutase and nitric oxide synthase activity and protein expression in rats. J. Cardiovasc. Pharmacol. Ther. 1999, 4, 219–226. [Google Scholar]
Sample Availability: Samples of the walnuts are available from the authors. |
Cultivar | Dry Mass Content [%] | Fat Content [g/100g d.m.] | Ash Content [mg/100g d.m.] |
---|---|---|---|
July | |||
Apollo | 24.28b ± 0.78 | 5.23a ± 0.48 | 5.92ef ± 0.58 |
Leopold | 23.52b ± 0.38 | 5.99ab ± 0.23 | 5.46de ± 0.28 |
Resovia | 20.86a ± 0.67 | 6.78b ± 0.76 | 6.45f ± 0.34 |
August | |||
Apollo | 33.54d ± 0.79 | 11.18c ± 0.54 | 4.71c ± 0.14 |
Leopold | 31.63c ± 1.12 | 13.23d ± 1.19 | 4.39bc ± 0.29 |
Resovia | 30.54c ± 1.12 | 13.39d ± 0.63 | 5.33d ± 0.30 |
September | |||
Apollo | 64.64f ± 0.83 | 23.47f ± 0.82 | 3.76a ± 0.13 |
Leopold | 61.93e ± 0.81 | 20.21e ± 0.93 | 3.83ab ± 0.33 |
Resovia | 67.95g ± 0.50 | 24.25f ± 0.59 | 3.86ab ± 0.24 |
Two-factor ANOVA-p | |||
Factor 1 | <0.001 | <0.001 | <0.001 |
Factor 2 | <0.001 | <0.001 | <0.001 |
Factor 1 × factor 2 | <0.001 | <0.001 | 0.123 |
Cultivar | ABTS | DPPH | FRAP | TotalPolyphenols | |
---|---|---|---|---|---|
[mmol TE/100g d.m.] | [mg GAE/100g d.m.] | ||||
July | |||||
Apollo | 52.75e ± 4.22 | 47.14f ± 5.23 | 96.75f ± 1.20 | 1066.38f ± 25.40 | |
Leopold | 82.75f ± 2.09 | 73.54h ± 0.34 | 107.55g ± 0.90 | 2149.08g ± 31.52 | |
Resovia | 11.63b ± 0.91 | 28.82bc ± 0.77 | 85.95c ± 1.20 | 715.86c ± 15.69 | |
August | |||||
Apollo | 54.90e ± 0.52 | 40.49de ± 2.18 | 93.15e ± 1.20 | 937.24e ± 33.86 | |
Leopold | 41.70d ± 1.56 | 57.07g ± 5.24 | 82.35c ± 1.20 | 772.27d ± 18.79 | |
Resovia | 3.37a ± 0.64 | 25.87ab ± 4.02 | 103.95h ± 2.51 | 568.57b ± 20.77 | |
September | |||||
Apollo | 2.68a ± 0.75 | 38.53de ± 1.86 | 89.55d ± 1.20 | 964.12e ± 42.59 | |
Leopold | 16.83c ± 1.84 | 36.67cd ± 1.29 | 78.75b ± 1.20 | 688.42c ± 35.51 | |
Resovia | 1.91a ± 1.22 | 19.49a ± 0.76 | 50.35a ± 5.23 | 498.12a ± 8.05 | |
Two-factor ANOVA-p | |||||
Factor 1 | <0.001 | <0.001 | <0.001 | <0.001 | |
Factor 2 | <0.001 | <0.001 | <0.001 | <0.001 | |
Factor 1 × factor 2 | <0.001 | <0.001 | <0.001 | <0.001 |
Compound | Rt | [M − H] m/z | ||
---|---|---|---|---|
min | MS | MS/MS | ||
1 | Quinic acid | 1.11 | 191 | 85, 111 |
2 | Gallic acid | 1.39 | 169 | 125 |
3 | Pedunculagin/casuariin isomer (bis-HHDP-glucose) | 1.86 | 783 | 481, 301 |
4 | Praecoxin A/platycariin isomer (trigalloyl-HHDP-glucose) | 2.30 | 951 | 907, 783, 481, 301 |
5 | Procyanidin tetramer | 2.68 | 576[M − H] 2- | 865, 576, 289 |
6 | Pedunculagin/casuarrin isomer (bis-HHDP-glucose) | 2.68 | 783 | 481, 300, 275 |
7 | Coumarylquinic acid | 2.81 | 337 | 163, 119 |
8 | Casuarinin/casuarictin isomer | 3.16 | 935 | 783, 481, 301 |
9 | Reginin A/reginin D isomer | 3.35 | 935 | 783, 481, 301 |
10 | Glansirin C isomer | 3.52 | 933 | 631, 481, 301 |
11 | Ellagic acid hexoside | 3.53 | 463 | 301 |
12 | Glansirin C isomer | 3.54 | 933 | 631, 451, 301 |
13 | Casuarinin/casuarictin isomer | 3.67 | 935 | 783, 481, 301 |
14 | Casuarinin/casuarictin isomer | 3.77 | 935 | 783, 481, 301 |
15 | Glansirin D/degalloyl rugosin F isomer | 3.77 | 859[M − H] 2- | 1095, 935, 633, 301 |
16 | Casuarinin/casuarictin isomer | 4.12 | 935 | 783, 481, 301 |
17 | Praecoxin A methyl ester | 4.22 | 965 | 783, 481, 301 |
18 | Tetragalloyl-glucose | 4.54 | 787 | 635, 465, 169 |
19 | Eucalbanin A/cornusiin B isomer | 4.69 | 1085 | 783, 633, 301 |
20 | 2,7-dimethyl-2,4-diene-deca-α.ω-diacid-8-O-glucoside | 4.89 | 403 | 223, 161 |
21 | Glansirin D/degalloyl rugosin F isomer | 5.10 | 859[M − H] 2- | 1095, 935, 633, 301 |
22 | Glansirin C isomer | 5.17 | 933 | 631, 481, 301 |
23 | Heterophylliin D | 5.35 | 934[M − H] 2- | 1085, 783, 633, 301 |
24 | Strictinin/isostrictinin isomer (galloyl-HHDP-glucose) | 6.01 | 633 | 463, 301 |
25 | Glansirin B isomer | 6.29 | 905 | 763, 481, 301 |
26 | Eucalbanin A/cornusiin B isomer | 6.79 | 1085 | 783, 633, 451, 301 |
Compound | Rt | [M − H] m/z | Cultivar | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
min | MS | Apollo | Leopold | Resovia | Apollo | Leopold | Resovia | Apollo | Leopold | Resovia | ||
July | August | September | ||||||||||
1 | Quinic acid | 1.11 | 191 | 7.34 | 10.40 | 5.04 | 8.89 | 7.32 | 5.21 | 13.95 | 4.94 | 5.29 |
2 | Gallic acid | 1.39 | 169 | 31.29 | 33.78 | 11.17 | 35.32 | 17.84 | 16.33 | 32.18 | 11.97 | 10.33 |
3 | Pedunculagin/casuariin isomer (bis-HHDP-glucose) | 1.86 | 783 | 18.04 | 28.11 | 3.30 | 13.78 | 10.54 | 3.42 | 15.53 | 3.47 | 4.84 |
4 | Praecoxin A/platycariin isomer (trigalloyl-HHDP-glucose) | 2.30 | 951 | 64.98 | 62.45 | 58.07 | 45.83 | 54.93 | 32.58 | 41.78 | 26.30 | 22.85 |
5 | Procyanidin tetramer | 2.68 | 576[M − H] 2- | 3.25 | 18.63 | 2.22 | 3.19 | 2.27 | 2.92 | 5.37 | 2.30 | 2.82 |
6 | Pedunculagin/casuarrin isomer (bis-HHDP-glucose) | 2.68 | 783 | 2.33 | 8.52 | 2.06 | 4.39 | 1.44 | 1.58 | 4.71 | 1.84 | 2.22 |
7 | Coumarylquinic acid | 2.81 | 337 | 33.40 | 121.59 | 13.73 | 36.28 | 16.95 | 9.48 | 49.46 | 22.58 | 11.20 |
8 | Casuarinin/casuarictin isomer | 3.16 | 935 | 4.67 | 14.14 | 3.43 | 6.45 | 3.71 | 2.78 | 9.29 | 3.05 | 2.93 |
9 | Reginin A/reginin D isomer | 3.35 | 935 | 8.29 | 16.60 | 4.77 | 4.74 | 6.30 | 2.81 | 7.28 | 3.94 | 2.95 |
10 | Glansirin C isomer | 3.52 | 933 | 7.49 | 36.40 | 2.19 | 4.46 | 1.66 | 2.85 | 6.18 | 2.34 | 3.21 |
11 | Ellagic acid hexoside | 3.53 | 463 | 10.56 | 23.69 | 8.17 | 13.49 | 10.16 | 7.76 | 14.16 | 7.74 | 5.65 |
12 | Glansirin C isomer | 3.54 | 933 | 3.19 | 3.81 | 1.39 | 3.13 | 1.47 | 2.05 | 3.54 | 1.84 | 1.99 |
13 | Casuarinin/casuarictin isomer | 3.67 | 935 | 6.94 | 39.07 | 3.24 | 4.46 | 2.60 | 3.09 | 3.63 | 2.47 | 2.96 |
14 | Casuarinin/casuarictin isomer | 3.77 | 935 | 4.88 | 13.40 | 2.95 | 11.58 | 5.41 | 4.39 | 10.90 | 5.00 | 3.41 |
15 | Glansirin D/degalloyl rugosin F isomer | 3.77 | 859[M − H] 2- | 4.27 | 8.22 | 2.75 | 4.81 | 2.67 | 5.27 | 6.16 | 5.08 | 6.41 |
16 | Casuarinin/casuarictin isomer | 4.12 | 935 | 2.62 | 2.43 | 1.57 | 4.43 | 1.43 | 1.15 | 46.28 | 1.60 | 1.11 |
17 | Praecoxin A methyl ester | 4.22 | 965 | 3.51 | 7.98 | 3.25 | 5.85 | 1.38 | 3.09 | 5.36 | 4.36 | 2.55 |
18 | Tetragalloyl-glucose | 4.54 | 787 | 14.15 | 27.56 | 14.33 | 22.90 | 14.29 | 8.93 | 20.74 | 9.14 | 5.64 |
19 | Eucalbanin A/cornusiin B isomer | 4.69 | 1085 | 14.90 | 16.42 | 7.29 | 13.88 | 7.84 | 4.09 | 15.73 | 4.69 | 4.54 |
20 | 2,7-dimethyl-2,4-diene-deca-α.ω-diacid-8-O-glucoside | 4.89 | 403 | 3.76 | 11.95 | 10.13 | 5.13 | 4.46 | 9.14 | 4.29 | 3.23 | 2.02 |
21 | Glansirin D/degalloyl rugosin F isomer | 5.10 | 859[M − H] 2- | 2.93 | 14.98 | 1.71 | 5.48 | 3.38 | 1.47 | 4.36 | 2.65 | 1.60 |
22 | Glansirin C isomer | 5.17 | 933 | 2.32 | 4.21 | 2.32 | 2.87 | 2.20 | 1.96 | 3.08 | 1.68 | 1.72 |
23 | Heterophylliin D | 5.35 | 934[M − H] 2- | 4.23 | 8.62 | 1.30 | 4.45 | 6.95 | 1.24 | 3.67 | 1.53 | 1.16 |
24 | Strictinin/isostrictinin isomer (galloyl-HHDP-glucose) | 6.01 | 633 | 2.93 | 2.43 | 1.57 | 1.06 | 1.56 | 1.40 | 1.78 | 1.44 | 1.52 |
25 | Glansirin B isomer | 6.29 | 905 | 3.39 | 5.07 | 3.46 | 2.04 | 2.76 | 2.16 | 2.43 | 2.23 | 1.84 |
26 | Eucalbanin A/cornusiin B isomer | 6.79 | 1085 | 11.16 | 2.96 | 2.59 | 6.15 | 8.33 | 2.61 | 3.49 | 4.15 | 2.00 |
TOTAL | 276.81 | 543.40 | 174.01 | 275.04 | 199.90 | 139.76 | 335.34 | 141.56 | 114.77 |
Cultivar | α-Tocopherol | γ-Tocopherol | Sum β and δ-Tocopherol | Total | |||
---|---|---|---|---|---|---|---|
mg/100g d.m. | % | mg/100g d.m. | % | mg/100g d.m. | % | mg/100g d.m. | |
July | |||||||
Apollo | 0.00a ± 0.00 | 0 | 1.76a ± 0.02 | 100 | 0.00a ± 0.00 | 0 | 1.76a ± 0.02 |
Leopold | 0.47b ± 0.33 | 21 | 1.46a ± 0.06 | 65 | 0.32b ± 0.02 | 14 | 2.25a ± 0.11 |
Resovia | 3.08g ± 0.21 | 45 | 2.73b ± 0.20 | 40 | 1.00c ± 0.16 | 15 | 6.81c ± 0.25 |
August | |||||||
Apollo | 2.17e ± 0.05 | 22 | 3.35c ± 0.05 | 36 | 3.91e ± 0.25 | 42 | 9.38 ± 0.25 |
Leopold | 1.56d ± 0.03 | 44 | 1.56a ± 0.20 | 44 | 0.43b ± 0.07 | 12 | 3.55b ± 0.28 |
Resovia | 3.70 ± 0.01 | 29 | 3.53c ± 0.03 | 27 | 5.73g ± 0.06 | 44 | 12.97e ± 0.10 |
September | |||||||
Apollo | 7.77h ± 0.12 | 44 | 5.30d ± 0.02 | 30 | 4.70f ± 0.03 | 26 | 17.73f ± 0.08 |
Leopold | 1.06c ± 0.10 | 13 | 5.03d ± 0.47 | 61 | 2.15d ± 0.22 | 26 | 8.25d ± 0.78 |
Resovia | 2.88f ± 0.12 | 16 | 5.87e ± 0.06 | 28 | 10.37h ± 0.03 | 56 | 18.30g ± 0.01 |
Two-factor ANOVA-p | |||||||
factor 1 | <0.001 | <0.001 | <0.001 | <0.001 | |||
factor 2 | <0.001 | <0.001 | <0.001 | <0.001 | |||
factor 1 × factor 2 | <0.001 | <0.001 | <0.001 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 2019, 24, 2936. https://doi.org/10.3390/molecules24162936
Pycia K, Kapusta I, Jaworska G. Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules. 2019; 24(16):2936. https://doi.org/10.3390/molecules24162936
Chicago/Turabian StylePycia, Karolina, Ireneusz Kapusta, and Grażyna Jaworska. 2019. "Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols" Molecules 24, no. 16: 2936. https://doi.org/10.3390/molecules24162936
APA StylePycia, K., Kapusta, I., & Jaworska, G. (2019). Impact of the Degree of Maturity of Walnuts (Juglans regia L.) and Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules, 24(16), 2936. https://doi.org/10.3390/molecules24162936